分子生物学之组学与医学
分子生物学在医学中的应用

VS
潜在应用场景
基因治疗、遗传病筛查和预防、农作物遗 传改良、动物模型制备、生物制药等领域 都有望应用基因组编辑技术。
06
总结:分子生物学在医学中重要意 义
提高疾病诊断和治疗水平
利用分子生物学技术,可以实现对病原体的 快速、准确检测,提高诊断的敏感性和特异 性。
DNA双螺旋结构
由碱基对、磷酸和脱氧核糖组成,具有遗传 信息存储和复制功能。
RNA种类与功能
mRNA、tRNA和rRNA分别参与蛋白质合成 、氨基酸转运和核糖体组成。
DNA与RNA关系
DNA通过转录产生RNA,RNA再参与蛋白质 合成,实现遗传信息表达。
基因表达调控机制
01
02
03
转录因子
通过与DNA结合,调控基 因转录速率和选择性。
分子生物学在医学中的应 用
汇报人:XX 2024-01-28
目录
• 分子生物学基础概念及技术 • 基因诊断与疾病预测 • 靶向药物设计与治疗策略 • 免疫疗法原理与实践应用 • 基因组编辑技术在医学中前景展望 • 总结:分子生物学在医学中重要意义
01
分子生物学基础概念及技术
DNA与RNA结构与功能
通过分析基因表达谱和蛋白质组学数据,有 助于深入了解疾病发生发展机制,为治疗提 供新思路。
分子生物学方法可用于监测疾病进程和评估 治疗效果,为医生制定个性化治疗方案提供 依据。
推动个体化医疗和精准健康管理发展
基于个体差异的基因组信息,可 以实现个体化用药和精准治疗,
提高治疗效果并减少副作用。
通过基因检测和遗传咨询,可以 帮助人们了解自身遗传风险,制
现代基础医学概论(分子生物学与现代医学篇)

四、基因治疗中的病毒载体:
如逆转录病毒、腺相关病毒等,经 过改造,对人体无害。
五、基因治疗的临床应用: 目前还刚刚起步,对单基因病较易 1、恶性肿瘤:抑癌基因;反义RNA; 2、心血管疾病: 3、遗传性疾病: 4、艾滋病: 5、其他:
复习思考题
1、分子病、基因病、基因组学、蛋白 质组学、基因诊断、基因工程药物 、基因治疗的概念。
1、核酸操作层面的技术: 核酸分子杂交、PCR、DNA测序等 2、基因转移技术: 基因转导、基因转染等 3、蛋白质操作层面的技术: 蛋白质电泳、 4、细胞层面的技术: 流式细胞仪,等等 5、其他:图像分析仪,等等
ቤተ መጻሕፍቲ ባይዱ
蛋白质电泳图
第三节 分子生物学在疾病 诊断中的应用
一、基因诊断的概念: 通过分子生物学技术从基因(DNA
好的事情马上就会到来,一切都是最 好的安 排。下 午6时24分25秒 下午6时24分18:24:2520.10.19
一马当先,全员举绩,梅开二度,业 绩保底 。20.10.1920.10.1918:2418:24:2518:24:25Oc t-20
牢记安全之责,善谋安全之策,力务 安全之 实。2020年10月19日 星期一6时24分 25秒M onday, October 19, 2020
、亚单位疫苗
2、基因工程疫苗:用DNA重组技术 3、传统生物制品:如胎盘球蛋白 4、基因工程药物:细胞因子、蛋白质
激素、抗体、其他活性蛋白质类
四、基因工程药物与疫苗的发展趋势 :
一是发展快: 二是范围广: 三是竞争激烈:
第五节 基因治疗
概念:指将正常基因或具有治疗作 用的DNA片段导入人体靶细胞以矫 正或置换致病基因的治疗方法。
生物化学与分子生物学在医学中的应用

药物靶点筛选
通过分析药物作用前后蛋白质表达谱 的变化,筛选潜在的药物靶点,为药 物研发提供新思路。
蛋白质相互作用网络分析
01
蛋白质相互作用类型
包括直接相互作用和间接相互作用,涉及蛋白质的结构、功能、代谢等
多个方面。
02
蛋白质相互作用研究方法
如酵母双杂交、免疫共沉淀、蛋白质芯片等技术可用于研究蛋白质相互
安全性评价
关注药物不良反应、免疫相关毒性等,确保新型免疫调节剂的安 全性和耐受性。
联合用药策略
探索新型免疫调节剂与其他药物的联合应用,以提高疗效并降低 毒性反应。
06
遗传代谢性疾病筛查和防治策略
遗传代谢性疾病分类和特点
有机酸代谢病
如甲基丙二酸血症、丙酸血症等 ,由于有机酸代谢途径中酶的缺 陷导致有机酸代谢异常。
当前存在问题和挑战
复杂疾病机制解析
生物化学与分子生物学在解析复杂疾病(如癌症、神经退 行性疾病)的发生发展机制方面仍面临挑战。
个体化诊疗需求
随着精准医疗的提出,如何实现针对个体的精准诊断和治 疗成为当前的重要问题。
技术手段局限性
尽管基因编辑、高通量测序等技术日益成熟,但仍存在准 确性、效率和安全性等方面的挑战。
面临的挑战
包括技术安全性、效率问题、伦理道 德问题、法规监管问题等。此外,基 因诊断和基因治疗技术的成本也是限 制其广泛应用的重要因素之一。
03
蛋白质组学与疾病研究
蛋白质组学基本概念及技术方法
蛋白质组学定义
研究生物体、组织或细胞 中全部蛋白质的表达、结 构、功能及相互作用的科 学。
技术方法
包括双向凝胶电泳、质谱 分析、蛋白质芯片、蛋白 质组学数据库等。
分子生物学技术在医学中的应用

安全性与有效性评估
安全性评估
细胞疗法和再生医学技术的安全性评估 主要包括对细胞来源、制备过程、移植 后免疫反应等方面的严格监控和管理。 同时,需要建立长期随访制度,及时发 现并处理可能出现的不良反应和并发症 。
VS
有效性评估
有效性评估主要关注治疗效果和患者生存 质量的改善情况。通过设立合理的评价指 标和对照组,采用多中心、随机、双盲等 临床试验设计,对细胞疗法和再生医学技 术的有效性进行客观评价。同时,需要关 注技术的长期疗效和可持续性,为临床决 策提供科学依据。
ERA
分子生物学技术概述
分子生物学技术是一系列研究生物大分子(如蛋白质、DNA、RNA等)结构、功能 和相互作用的技术手段。
常见的分子生物学技术包括PCR、基因克隆、基因编辑、蛋白质组学、代谢组学等 。
这些技术为生物医学研究提供了强大的工具,有助于深入了解生命的本质和疾病的 发生发展机制。
医学领域的重要性
细胞疗法
通过细胞培养、基因修饰 等手段,制备具有治疗作 用的细胞产品,如CAR-T 细胞疗法等。
抗体药物
运用分子生物学技术,开 发重组抗体、双特异性抗 体等新型抗体药物,提高 治疗效果和降低副作用。
临床前研究与临床试验
01
临床前研究
在实验室动物模型中评价药物的疗效和安全性,包括药代动力学、毒理
学等研究。
03
个性化治疗
基于患者的基因和免疫特 征,制定个性化的治疗方 案。
组合治疗
将免疫治疗与其他治疗方 式(如化疗、放疗等)结 合,提高治疗效果。
临床实践
已在多种肿瘤治疗中取得 显著成果,如黑色素瘤、 肺癌等。
挑战与未来发展
克服免疫逃逸
解决肿瘤细胞逃避免疫系统识别和攻击的问 题。
分子生物学与其他学科的关系

1 分子生物学与中药医学
1 分子生物学与中药医学
——筛选开发新药
随着基因结构和功能研究的突破,致病基因的发现,药物的研究的目标之一是在基因水平上寻找 要用的靶标,通过比较药物处理前后细胞基因表达的差异来推测筛选药物作用的靶,从而找到“导向 药物”。目标之二是用基因芯片技术检测药物的毒性或副作用,进行毒理研究。生物芯片技术所具 有的高集成与组合化学相结合,为新药研究的初筛提供超高通量筛选。这将有利于确定中药的有效 活性成分和有效活性部位,为开发中药新药提供一个简便、快捷的新途径。
THANKS
分子生物传感器
分子蛋白质组学
3 总结
分子生物学与生物医学息息相关,它是深入研究分 子生物学的基础学科,对医学致病机理及药物研发 等来说是不可或缺的。相信在今后分子生物学与生 物医学的结合领域将更为广阔,联系应用也将更为 密切。希望分子生物学技术能被充分利用到医学乃 至其他更为广阔的领域,帮助人们更深入的了解生 命,也更好的来造福人类!
1 分子生物学与中药医学
——探讨中药机理
背景:中药进入体内发挥作用的基本环节是药物分子与生命分子之间的直接或间接相互作用。中 药发挥作用必然会引起从遗传信息到整体功能实现中多个层面的结构与功能状态的改变,而决定 这些层面的结构与功能的基础是基因。
例如近年来国内有不少学者开展了中药及复方干预基因 表达的调控研究,初步证明中药作用与其生物活性成分调 控基因的表达有关。 中药的抗癌机制可能是通过调控 c—fos和P53、PC1-2、c—myc等基因的表达来诱导肿 瘤细胞凋亡。
分子生物学在医学中的应用

分子生物学在医学中的应用分子生物学是研究生物体内分子结构、功能和相互作用的学科领域。
近年来,随着分子生物学技术的快速发展和进步,其在医学中的应用逐渐扩大并发挥了重要作用。
本文将探讨分子生物学在医学中的几个主要应用领域。
一、基因诊断与基因治疗基因诊断是通过检测个体基因组中存在的异常基因变异,来确定疾病的诊断和治疗方案的过程。
分子生物学技术为基因诊断提供了强大的工具。
例如,多聚酶链反应(PCR)技术可以扩增微量的DNA片段,从而使得病原体的检测变得更为敏感和快速。
此外,DNA测序技术的快速发展,使得研究人员能够更准确地分析基因组序列,从而发现和诊断基因异常引起的疾病。
基因治疗是利用分子生物学的手段来治疗基因缺陷引起的疾病。
例如,通过基因转导技术,可以将正常的基因导入患者体内,修复或替代异常的基因。
这种方法已经在某些遗传性疾病的治疗中取得了一定的成功,为一些无法通过传统药物治疗的疾病提供了新的希望。
二、分子靶向治疗分子靶向治疗是指通过干扰特定的分子信号通路或作用靶标分子,来治疗癌症等疾病。
分子生物学技术的快速发展为分子靶向治疗提供了强有力的支持。
例如,通过对肿瘤细胞基因组的深入研究,可以筛选出特定的突变基因,并设计出相应的靶向药物。
而且,利用重组DNA技术,研究人员还可以合成和生产人源化的单克隆抗体,用于癌症治疗中的免疫治疗。
三、疾病基因组学研究疾病基因组学研究旨在通过对疾病相关的基因组变异进行全面分析,揭示疾病的致病机制。
近年来,分子生物学技术在疾病基因组学研究中得到了广泛应用。
例如,基因芯片技术可以快速检测和分析大量基因的表达水平,从而发现与疾病相关基因的异常表达。
此外,利用CRISPR/Cas9技术,研究人员还可以通过编辑特定基因的序列,来研究该基因在疾病发生发展中的作用。
四、个体化医学个体化医学是一种以患者个体的基因组信息为依据,为患者提供个性化的医疗服务和治疗方案的医学模式。
分子生物学技术为个体化医学提供了关键技术支持。
分子生物学在疾病诊断中的应用

分子生物学在疾病诊断中的应用随着现代医学诊断技术的飞速发展,生物技术的应用越来越广泛。
其中,分子生物学技术是一种新型的诊断技术,它被广泛应用于疾病的诊断中。
本文将从蛋白质组学、基因组学和转录组学三个方面,探讨分子生物学在疾病诊断中的应用。
一、蛋白质组学在疾病诊断中的应用蛋白质组学是指对于所有基因产生的蛋白质进行分析。
蛋白质是细胞大分子之一,其结构和功能与生物体的机能密切相关。
因此,蛋白质组学的应用对于诊断疾病非常重要。
例如,通过蛋白质质谱技术,可以在血液中检测到肿瘤标志物,从而进行肿瘤的早期检测和诊断。
同时,蛋白质质谱技术也可以应用于心血管疾病的诊断。
结合临床病史和其他检查结果,通过血液中某些特定蛋白质的测定,可以诊断出是否患有心肌梗死、心肌缺血等疾病。
除此之外,蛋白质组学技术还能检测出某些遗传病,例如蛋白质组学在地中海贫血的诊断中的应用。
地中海贫血是一种常见的遗传性疾病,通过蛋白质组学技术,可以检测出患者的血红蛋白型式,从而进行诊断和治疗。
总的来说,蛋白质组学技术是一种重要的诊断手段,其应用能够更准确、快速地诊断出某些疾病,提高了诊断的准确性和精度。
二、基因组学在疾病诊断中的应用基因组学是指研究基因组结构、功能及其调控的一门学科。
基因组学的应用在现代医学中越来越受到重视。
例如,在肿瘤的早期诊断中,基因组学技术被广泛应用。
通过基因组学技术,可以发现肿瘤细胞与正常细胞基因组序列的差异,从而进行肿瘤的预测和定位。
利用基因组学技术,医生可以对生物体进行基因组检测,从而预测是否患有某种遗传病,并采取针对性的预防和治疗措施。
此外,在调节免疫系统方面,基因组学技术也是非常实用的。
以肠道微生物群落为例,通过基因组学技术可以检测出微生物菌群的种类和数量,进而判断肠道是否存在问题,从而进行调整治疗。
三、转录组学在疾病诊断中的应用转录组学是研究转录组分子组成和功能的学科,其应用也非常广泛。
例如,在肝癌的诊断中,转录组学技术可以应用于寻找肝癌标记物。
分子生物学技术在医学检验中的应用有哪些

分子生物学技术在医学检验中的应用有哪些以核酸或蛋白质等为研究对象的学科称为分子生物学。
随着DNA双螺旋结构模型的提出,分子生物学技术也为大众所认知,且受到广泛关注,不仅推动了遗传研究学进步,为生命遗传信息提供了多样化可能,也为其他相关学科的快速发展奠定了良好基础,如细胞学、血液学、生物化学以及微生物学等。
分子生物学技术也被用于现代医学,本文重点谈谈在医学检验工作中,分子生物学技术的具体应用。
分子生物学技术以核酸生化为前提为临床主治医师提供新型检验措施,使得临床病情分析、诊断工作效率与工作质量得到大幅度提升。
(一)聚合酶链式反应聚合酶链式反应(PCR)也被称为无细胞克隆技术或者多聚酶链反应。
应用PCR技术能获得丰富、全新的样品靶DNA序列缺陷,改变了传统检验诊断以及科学研究。
在临床分子生物学中,PCR技术现阶段广泛应用于食品检测、出入境检验检、寄生虫学、免疫学以及基因治疗等工作中。
在微生物学、肿瘤学以及免疫学等工作中,PCR技术也得到了非常广泛的应用。
等位基因特异性PCR技术、PCR-限制性片段长度多态性分析法等技术是PCR技术的发展延伸,前者能准确鉴定基因型,后者则能检测与特定酶切位点有关的突变手段。
此外,还包括实时荧光定量PCR、定量聚合酶链反应,该技术能对定量检测目的DNA,而且检测更加便捷,准确度也更高;而PCT-单链构象多态性技术则能检测产物的序列内多态性。
(二)生物芯片技术生物芯片技术能一次性检测大量生物分子,也被称为高通量密集型技术,不仅包括组织芯片、蛋白质芯片,还包括基因芯片。
生物芯片技术不仅可用于流行病学筛查以及疾病诊断,还可用于科学研究。
(三)分子生物传感器分子生物传感器的识别元件为固定化生物分子,其完整的分析系统组成包括信号放大器装置、处理换能器装置。
在分体体液的一些小分子有机物、生物大分子等多种物质的检验检测中均可使用分子生物传感器。
上述检验项目都可以为诊疗病情、环境监测提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( isoelectric focusing , IEF)电泳,利用蛋白质
分子的等电点不同使蛋白质得以分离;随后进行 SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE),按蛋 白质分子量的大小进行分离。
目录
蛋白质的二维电泳
目录
(二)质谱技术是蛋白质组鉴定的重要工具
① 以2-DE分离为核心的研究路线:混合蛋白首先通过 2-DE 分离,然后进行胶内酶解,再用质谱进行鉴定。 ② 以色谱分离为核心的技术路线:混合蛋白先进行酶解, 经色谱或多维色谱分离后,对肽段进行串联质谱分析以 实现蛋白的鉴定。
目录
(一)二维电泳是分离蛋白质组的有效方法
2-DE是分离蛋白质组最基本的工具,其原理
① 建立高度随机、插入片段大 序列组装(sequence assembly):借助软件将所测得 的序列进行组装,产生一定数量的相连重叠群; ④ 缺口填补:利用引物延伸或其他方法对BAC克隆中还 存在的缺口进行填补。
3.高通量测序技术大大加快了基因组DNA测序进度
目录
第二节
转 录 组 学
Transcriptomics
目录
转录组(transcriptome)指生命单元(通
常是一种细胞)所能转录出来的可直接参与蛋 白质翻译的mRNA(编码RNA)总和,而其他 所有非编码RNA均可归为RNA组(RNome)。 转录组学(transcriptomics)是在整体水
1.用肽质量指纹图谱鉴定蛋白质
蛋白质经过酶解成肽段后,获得所有肽段的分子质量, 形成一个特异的肽质量指纹图谱(PMF),通过数据库搜 索与比对,便可确定待分析蛋白质分子的性质。
2.用串联质谱鉴定蛋白质
用 PMF 方法不能鉴定的蛋白质可通过质谱技术获得该 蛋白质一段或数段多肽的串联质谱( MS/MS )信息并通过 数据库检索来鉴定该蛋白质。
目录
第五节
其 他 组 学
目录
一、糖组学研究生命体聚糖多样性及其 生物学功能
糖组学( glycomics )侧重于糖链组成及其功
能的研究,其主要研究对象为聚糖,具体内容包
括研究糖与糖之间、糖与蛋白质之间、糖与核酸
之间的联系和相互作用。
目录
(一)糖组学分为结构糖组学与功能糖组学 两个分支
糖组( glycome )指单个个体的全部聚糖,糖组学 则对糖组(主要针对糖蛋白)进行全面的分析研究,包 括结构和功能两方面内容,可为结构糖组学(structural glycomics )和功能糖组学( functional glycomics )两个 分支。
② MS:按质荷比(m/z)进行各种代谢物的定性或定量分
析,可得到相应的代谢产物谱; ③ 色谱-质谱联用技术:这种联用技术使样品的分离、定性、
定量一次完成,具有较高的灵敏度和选择性。
目前常用的联用技术包括气相色谱-质谱联用 (GC-MS)和液相色谱-质谱联用(LC-MS)。
目录
代谢组学研究的技术系统及手段
代谢组学( metabonomics )就是测定一
个生物 /细胞中所有的小分子( Mr1 000 d)
组成,描绘其动态变化规律,建立系统代谢图
谱,并确定这些变化与生物过程的联系。
目录
一、代谢组学的任务是分析生物/细胞 代谢产物的全貌
代谢组学分为四个层次:
① 代谢物靶标分析:对某个或某几个特定组分的分 析; ② 代谢谱分析:对一系列预先设定的目标代谢物进 行定量分析; ③ 代谢组学:对某一生物或细胞所有代谢物进行定 性和定量分析; ④ 代谢指纹分析:不分离鉴定具体单一组分,而是 对代谢物整体进行高通量的定性分析。
目录
蛋白质的质谱分析
目录
三、蛋白质相互作用研究是认识蛋白 质功能的重要内容
蛋白质-蛋白质相互作用是维持细胞生命活动的 基本方式。 研究蛋白质相互作用常用的方法有酵母双杂交、 亲和层析、免疫共沉淀、蛋白质交联、荧光共振能 量转移(FRET)等。
目录
第四节
代 谢 组 学
Metabonomics
目录
平上研究细胞编码基因转录情况及转录调控
规律的科学。
目录
一、转录组学研究全部mRNA的 表达及功能
转录组学就是要阐明生物体或细胞在特定生理或病理 状态下表达的所有种类的 mRNA及其功能。目前,转录组 学研究的侧重点涉及基因转录的区域、转录因子结合位点、 染色质修饰点、DNA甲基化位点等。
转录组研究的主要技术:
蛋白质表达谱(global protein expression profile)
分析。
目录
蛋白质组研究相关的数据库
蛋白序列数据库(SWISS-PROT/TrEMBL; http://www.expasy.ch/)、 基因序列数据库(GenBank,EMBL; /,/)、 蛋白质模式数据库(Prosite; http://www.expasy.ch/sprot/prosite.html)、 蛋白质二维凝胶电泳数据库、蛋白质三维结构数据库 (PDB,/;FSSP,
机制的研究等。它从整体水平上研究一种组织或 细胞在同一时间或同一条件下所表达基因的种类、 数量、功能及在基因组中的定位,或同一细胞在 不同状态下基因表达的差异。
目录
(一)通过全基因组扫描鉴定DNA序列中的基因
(二)通过BLAST等程序搜索同源基因
(三)通过实验设计验证基因功能 (四)通过转录组和蛋白质组描述基因表达模式
目录
(二)通过BAC克隆系、鸟枪法等完成大规 模DNA测序
1.BAC克隆系的构建是大规模DNA测序的基础 BAC 是一种装载 DNA 大片段的克隆载kb数百 kb)、嵌合率低、
遗传稳定性好、易于操作等优点。
目录
2.鸟枪法是大规模DNA测序的重要方法 步骤:
目录
代谢组学主要以生物体液为研究对象,如
血样、尿样等,另外还可采用完整的组织样品、
组织提取液或细胞培养液等进行研究。
目录
二、核磁共振、色谱及质谱是代谢组学 的主要分析工具
① NMR:是当前代谢组学研究中的主要技术。代谢组学
中常用的NMR谱是氢谱(1H-NMR)、碳谱(13CNMR)及磷谱(31P-NMR);
目录
2.物理作图就是描绘杂交图、限制性酶切图 及克隆系图 物理作图包括:
① 荧光原位杂交图(fluorescent in situ hybridization map,FISH map):将荧光标记的探针与染色体杂 交确定分子标记所在的位置; ② 限制性酶切图(restriction map);将限制性酶切位 点标定在DNA分子的相对位置; ③ 克隆相连重叠群图(clone contig map) 酵母人工染色体(yeast artificial chromosome,YAC) 细菌人工染色体(bacterial artificial chromosome,BAC)
GenBank(/Genbank)是NIH 的基因序列数据库,包含所有已知的核苷酸及蛋白质序列、 以及与之相关的生物学信息和参考文献,是世界上的权威序 列数据库。
目录
三、功能基因组学系统探Байду номын сангаас基因 的活动规律
功能基因组学的主要研究内容包括基因组的
表达、基因组功能注释、基因组表达调控网络及
微阵列(microarray) 基因表达系列分析(SAGE) 大规模平行信号测序系统(MPSS)
目录
二、RNA组学研究非编码RNA的集合
除了 mRNA 以外,细胞内还存在着许多其他
种类的小分子 RNA ,研究它们的种类、时空表达 情况及其生物学意义便是 RNA 组学的范畴。这些 小分子 RNA 包括 snRNA 、 snoRNA 、 scRNA 、催 化性小 RNA 、 siRNA 、 miRNA 等。这些调控型小
比较基因组学(comparative genomics) 基因组学概念
目录
二、结构基因组学的主要任务是基因 组作图和大规模测序
• 结 构 基 因 组 学 (structural genomics) 是 通 过 HGP的实施来完成的。 • HGP 的内容就是制作高分辨率的人类遗传图 和物理图,最终完成人类和其它重要模式生 物全部基因组 DNA序列测定,因此HGP属于 结构基因组学范畴。
目录
(一)遗传作图和物理作图是绘制人类基 因组草图的重要策略
1.遗传作图就是绘制连锁图
遗传图(genetic map)又称连锁图(linkage map)。 遗传作图( genetic mapping )就是确定连锁的遗传标志位 点在一条染色体上的排列顺序以及它们之间的相对遗传距 离,用厘摩尔根( centi-Morgan, cM )表示,当两个遗传 标记之间的重组值为1%时,图距即为1 cM。 (1)限制性片段长度多态性(RFLP) (2) 可变数目串联重复序列(VNTR) (3)单核苷酸多态性(SNP)
组学与医学
-omics and Medicine
目录
目录
第
一
节
基 因 组 学
Genomics
目录
基因组(genome)
一个细胞(或病毒)所载的全部遗传信息,
它代表了一种生物所具有的全部遗传信息。对
真核生物体而言,基因组是指一套完整单倍体 DNA (染色体 DNA )及线粒体或叶绿体 DNA 的全部序列,既有编码序列,也有大量存在的 非编码序列。
),
蛋白翻译后修饰数据库(O-GLYCBASE, http://www.cbs.dtu.dk/databases/OGLYCBASE)
目录
一、蛋白质组学研究细胞内所有蛋白质 的组成及其活动规律
蛋白质组学的研究主要涉及两个方面:一是蛋白质组 表 达 模 式 的 研 究 , 即 结 构 蛋 白 质 组 学 ( structural proteomics);二是蛋白质组功能模式的研究,即功能蛋白 质组学(functional proteomics)。