人教版九年级数学下册 26.1反比例函数培优训练(含答案)

合集下载

初三数学反比例函数的专项培优练习题(含答案)含答案

初三数学反比例函数的专项培优练习题(含答案)含答案

初三数学反比例函数的专项培优练习题(含答案)含答案一、反比例函数1.如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A,B,反比例函数y= 经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y= 的图象有唯一公共点M,且OM= ,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.【答案】(1)解:当a=﹣3时,y=﹣3x+2,当y=0时,﹣3x+2=0,x= ,∵点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合),∴0<m<,,DANG则,﹣3x+2= ,当x=m时,﹣3m+2= ,∴k=﹣3m2+2m(0<m<)(2)解:由题意得:,ax+2= ,ax2+2x﹣k=0,∵直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,∴△=4+4ak=0,ak=﹣1,∴k=﹣,则,解得:,∵OM= ,∴12+(﹣)2=()2,a=±(3)解:当a=﹣2时,y=﹣2x+2,∴点A的坐标为(1,0),点B的坐标为(0,2),∵将Rt△AOB在第一象限内沿直线y=x平移个单位得到Rt△A′O′B′,∴A′(2,1),B′(1,3),点M是Rt△A′O′B′斜边上一动点,当点M′与A′重合时,k=2,当点M′与B′重合时,k=3,∴k的取值范围是2≤k≤3【解析】【分析】(1)当a=﹣3时,直线解析式为y=﹣3x+2,求出A点的横坐标,由于点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合)从而得到m的取值范围,由﹣3x+2= ,由X=m得k=﹣3m2+2m(0<m<);(2)由ax+2= 得ax2+2x﹣k=0,直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,△=4+4ak=0,ak=﹣1,由勾股定理即可;(3)当a=﹣2时,y=﹣2x+2,从而求出A、B两点的坐标,由平移的知识知A′,B′点的坐标,从而得到k的取值范围。

人教版九年级下册数学 26.1 反比例函数 课时训练(含答案)

人教版九年级下册数学 26.1 反比例函数  课时训练(含答案)

人教版 九年级数学 26.1 反比例函数 课时训练一、选择题1. (2019·上海)下列函数中,函数值y 随自变量x 的值增大而增大的是( )A .y =3xB .y =-3x C .y =3xD .y =-3x2. 在函数y =x +4x 中,自变量x 的取值范围是( ) A. x >0 B. x ≥-4C. x ≥-4且x ≠0D. x >0且x ≠-43. 若一次函数y =mx +6的图象与反比例函数y =nx 在第一象限的图象有公共点,则有( )A. mn ≥-9B. -9≤mn <0C. mn ≥-4D. -4≤mn ≤04. (2020·内江)如图,点A 是反比例函数ky x=图象上的一点,过点A 作AC x ⊥轴,垂足为点C ,D 为AC 的中点,若AOD ∆的面积为1,则k 的值为( )A.43B.83C. 3D. 45. 如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB=45,反比例函数y =48x 在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于( )A. 60B. 80C. 30D. 406. (2020·常州)如图,点D 是OABC 内一点,CD 与x 轴平行,BD 与y 轴平行,BD =2,∠ADB =135°,S △ABD =2.若反比例函数y =kx (x >0)的图像经过A 、D 两点,则k 的值是( ) A .2 2B .4C .3 2D .67. 反比例函数y =1-6tx 的图象与直线y =-x +2有两个交点,且两交点横坐标的积为负数,则t 的取值范围是( ) A. t <16 B. t >16 C. t ≤16 D. t ≥168. (2019·江苏宿迁)如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 与原点O 重合,顶点B 落在x 轴的正半轴上,对角线AC 、BD 交于点M ,点D 、M恰好都在反比例函数y =k x (x >0)的图象上,则ACBD的值为A .2B .3C .2D .5二、填空题9. 我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y =-3x 的图象上有一些整点,请写出其中一个整点的坐标________.10. (2020·安顺)如图,点A 是反比例函数3y x图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为 .11. 如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C在反比例函数y =kx 的图象上,则k 的值为________.12. (2019·贵州安顺)如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x(x >0)的图象分别交于A 、B 两点,连接OA 、OB ,已知△OAB 的面积为4,则k 1﹣k 2=__________.13. 如图,点A ,B 是双曲线y =6x 上的点,分别过点A ,B 作x 轴和y 轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和.为________.14. 如图,直线y =-2x +4与双曲线y =kx 交于A 、B 两点,与x 轴交于点C ,若AB =2BC ,则k =________.15. (2019·浙江绍兴)如图,矩形ABCD 的顶点A ,C 都在曲线y kx(常数k >0,x >0)上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是__________.16. (2019•北京)在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =1k x 上,点A 关于x 轴的对称点B 在双曲线y =2k x,则k 1+k 2的值为__________.三、解答题17. (2019•吉林)已知y 是x 的反比例函数,并且当x =2时,y =6.(1)求y 关于x 的函数解析式; (2)当x =4时,求y 的值.18. 如图,直线y=2x与反比例函数y=kx(k≠0,x>0)的图象交于点A(m,8),AB⊥x 轴,垂足为B.(1)求k的值;(2)点C在AB上,若OC=AC,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD,求点D的坐标.19. 如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,3).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A、B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.20. (2019•甘肃)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.21. 如图,直线y=2x+6与反比例函数y=kx(k>0)的图象交于点A(m,8),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的解析式;(2)观察图象,直接写出当x>0时不等式2x+6-kx>0的解集;(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?人教版九年级数学26.1 反比例函数课时训练-答案一、选择题1. 【答案】A【解析】A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.2. 【答案】C【解析】综合开平方时被开方数为非负数和分母不为0可得x取值范围,则x+4≥0且x≠0,故x≥-4且x≠0.3. 【答案】A【解析】如解图,根据题意,两个函数的图象在第一象限有公共点,则关于x的方程nx=mx+6有实数根,方程化简为:mx2+6x-n=0,显然m≠0,Δ=36+4mn ≥0,所以mn ≥-9,由于一次函数与反比例函数y =nx 在第一象限的图象有公共点,所以n >0,显然当一次函数y 随x 的增大而增大时,两个函数图象在第一象限有交点,即mn ≥-9符合题意.4. 【答案】D【解析】本题考查了反比例函数系数k 的几何意义、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.先设出点A 的坐标,进而表示出点D 的坐标,利用△ADO 的面积建立方程求出2mn =,即可得出结论.∵点A 的坐标为(m ,2n ),∴2mn k =,∵D 为AC 的中点,∴D (m ,n ),∵AC ⊥x 轴,△ADO 的面积为1,∴()ADO 11121222S AD OC n n m mn =⋅=-⋅==,∴2mn =,∴24k mn ==,因此本题选D .5. 【答案】D【解析】如解图所示,过点A 作AG ⊥OB ,垂足为G ,设A 点纵坐标为4m ,∵sin ∠AOB =45,∴OA =5m ,根据勾股定理可得OG =3m ,又∵点A 在反比例函数y =48x 上,∴3m ×4m =48,∴m 1=2,m 2=-2(不合题意,舍去),∴AG =8,OG =6,OA =OB =10,∵四边形OBCA 是菱形,∴BC ∥OA ,∴S △AOF =12S 菱形OBCA =12×AG×OB =12×8×10=40.故选D .6. 【答案】D【解析】【解析】过点D 、点A 分别作x 轴、y 轴的垂线,两条垂线相交于点E ,过点A 作AF ⊥x 轴于点F ,由∠BDF =135°,可证△DEA 为等腰直角三角形,因为S △ABD =12BD ·AE ,2=12×2·AE ,所以AE =22,所以DE =AE =22,又由于BC 与OA 平行且相等,可证△CDB ≌△OAF ,所以AF =2,设A (2,2),所以D (2-22,32),所以(2-22)×32=k ,解得k =6.7. 【答案】B【解析】将y =-x +2代入到反比例函数y =1-6tx 中,得:-x +2=1-6t x ,整理,得:x 2-2x +1-6t =0,∵反比例函数y =1-6tx 的图象与直线y =-x +2有两个交点,且两交点横坐标的积为负数,∴⎩⎨⎧(-2)2-4(1-6t )>01-6t <0,解得t >16.8. 【答案】A【解析】设D (m ,km),B (t ,0), ∵M 点为菱形对角线的交点,∴BD ⊥AC ,AM =CM ,BM =DM ,∴M (2m t +,2km),把M (2m t +,2k m )代入y =k x 得2m t +•2km=k ,∴t =3m , ∵四边形ABCD 为菱形,∴OD =AB =t ,∴m2+(km)2=(3m)2,解得k=22m2,∴M(2m,2m),在Rt△ABM中,tan∠MAB=2122BM mAM m==,∴2ACBD=.故选A.二、填空题9. 【答案】(1,-3)(答案不唯一,合理即可) 【解析】对于y=-3x,依题意,说明只要x是3的约数即可,如(1,-3),(-1,3).10. 【答案】3【解析】在反比例函数3yx=中,3k=.由k的几何意义,可得四边形OBAC的面积为3.11. 【答案】-6【解析】如解图,连接AC交y轴于点D,因为四边形ABCO 是菱形,且面积为12,则△OCD的面积为3,利用反比例函数k的几何意义可得k=-6.12. 【答案】8【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k 1,△BOP 的面积为12k 2,∴△AOB 的面积为12k 1﹣12k 2,∴12k 1﹣12k 2=4,∴k 1﹣k 2=8,故答案为8.13. 【答案】8【解析】设两个空白矩形面积为S 1、S 2,则根据反比例函数的几何意义得:S 1+2=S 2+2=6,∴S 1=S 2=4,∴两个空白矩形的面积和为:S 1+S 2=8.14. 【答案】32 【解析】设A(x 1,k x 1),B(x 2,k x 2),∵直线y =-2x +4与y =k x交于A ,B 两点,∴-2x +4=k x ,即-2x 2+4x -k =0,∴x 1+ x 2=2,x 1x 2=k2,如解图,过点A 作AQ ⊥x 轴于点Q ,BP ⊥AQ 于点P ,则PB ∥QC ,∴AP PQ =ABBC =2,即k x 1-k x 2k x 2=2,∴x 2=3x 1,∴x 1= 12,x 2 = 32,∴k = 2x 1x 2=32.15. 【答案】y 35x 【解析】∵D (5,3),∴A (3k ,3),C (5,5k ),∴B (3k ,5k ),设直线BD 的解析式为y =mx +n , 把D (5,3),B (3k ,5k)代入, 得5335m n k k m n +=⎧⎪⎨+=⎪⎩,解得350m n ⎧=⎪⎨⎪=⎩, ∴直线BD 的解析式为y 35=x . 故答案为y 35=x .16. 【答案】0【解析】∵点A (a ,b )(a >0,b >0)在双曲线y =1k x上,∴k 1=ab ; 又∵点A 与点B 关于x 轴对称,∴B (a ,–b ), ∵点B 在双曲线y =2k x上,∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0; 故答案为:0.三、解答题17. 【答案】(1)y =12x.(2)y =3. 【解析】(1)因为y 是x 的反例函数,所以设y =kx(k ≠0), 当x =2时,y =6. 所以k =xy =12, 所以y =12x. (2)当x =4时,y =3.18. 【答案】(1)∵直线y =2x 与反比例函数y =kx (k ≠0,x >0)的图象交于点A (m ,8),则2m =8, 解得m =4, ∴A (4,8), ∴k =4×8=32;(2)设AC =x ,则OC =x ,BC =8-x ,在Rt △OBC 中,由勾股定理得:OC 2=OB 2+BC 2, 即x 2=42+(8-x )2,解得x =5,∴AC =5; (3)设点D 的坐标为(x ,0).分两种情况: ①当x >4时,如解图①,∵S △OCD =S △ACD , ∴12OD ·BC =12AC ·BD , ∴3x =5(x -4),解得x =10;②当0<x <4时,如解图②,同理得:3x =5(4-x ),解得x =52. ∴点D 的坐标为(10,0)或(52,0).19. 【答案】(1)如解图,过点C作CD⊥OA于点D,则OD=1,CD=3,在Rt△OCD中,由勾股定理得OC=OD2+CD2=2,∵四边形OABC为菱形,∴BC=AB=OA=OC=2,则点B的坐标为(3,3),设反比例函数的解析式为y=kx(k≠0),∵其图象经过点B,∴将B(3,3)代入,得3=k3,解得k=33,∴该反比例函数的解析式为y=33 x;(2)∵OA=2,∴点A的坐标为(2,0),由(1)得B (3,3),设图象经过点A 、B 的一次函数的解析式为y =k ′x +b (k ′≠0), 将A (2,0),B (3,3)分别代入, 得⎩⎨⎧2k ′+b =03k ′+b =3,解得⎩⎨⎧k ′=3b =-23,∴该一次函数的解析式为y =3x -23;(3)由图象可得,满足条件的自变量x 的取值范围是2<x <3.20. 【答案】(1)一次函数的解析式为y =–x +1,反比例函数的解析式为y =–2x. (2)S △ABD =3.(3)y 1<y 2. 【解析】(1)∵反比例函数y =mx经过点B (2,–1),∴m =–2, ∵点A (–1,n )在y =2x-上,∴n =2,∴A (–1,2), 把A ,B 坐标代入y =kx +b ,则有221k b k b -+=+=-⎧⎨⎩,解得11k b =-=⎧⎨⎩,∴一次函数的解析式为y =–x +1,反比例函数的解析式为y =–2x. (2)∵直线y =–x +1交y 轴于C ,∴C (0,1), ∵D ,C 关于x 轴对称,∴D (0,–1), ∵B (2,–1),∴BD ∥x 轴,∴S △ABD =12×2×3=3.(3)∵M (x 1,y 1)、N (x 2,y 2)是反比例函数y =–2x上的两点,且x 1<x 2<0,s ∴y 1<y 2.21. 【答案】(1)∵直线y =2x +6经过点A (m ,8), ∴2×m +6=8,解得m =1, ∴A (1,8),∵反比例函数经过点A (1,8),∴k =8, ∴反比例函数的解析式为y =8x ; (2)不等式2x +6-kx >0的解集为x >1;(3)由题意,点M ,N 的坐标为M (8n ,n ),N (n -62,n ), ∵0<n <6,∴n -62<0,∴8n -n -62>0,∴S △BMN =12|MN |×|y M |=12×(8n -n -62)×n =-14(n -3)2+254, ∴n =3时,△BMN 的面积最大,最大值为254.。

人教版九年级下册数学第二十六章 反比例函数含答案(满分必刷)

人教版九年级下册数学第二十六章 反比例函数含答案(满分必刷)

人教版九年级下册数学第二十六章反比例函数含答案一、单选题(共15题,共计45分)1、在平面直角坐标系中,反比例函数的图象在其所在的每个象限内y随x的增大而减小,则k的取值范围是A. B. C. D.2、如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,反比例函数y= (k≠0,x>0)的图象与正方形的两边AB、BC分别交于点E、F,FD⊥x轴,垂足为D,连接OE,OF,EF,FD与OE相交于点G.下列结论:①OF=OE;②∠EOF=60°;③四边形AEGD与△FOG面积相等;④EF=CF+AE;⑤若∠EOF=45°, EF=4,则直线FE的函数解析式为.其中正确结论的个数是()A.2B.3C.4D.53、一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20,则y与x的函数图象大致是( )A. B. C. D.4、如图,在Rt△OAB中,∠OBA=90°,OA在x轴上,AC平分∠OAB,OD平分∠AOB,AC与OD相交于点E,且OC=,CE=,反比例函数的图象经过点E,则k的值为()A. B. C. D.5、如图,平行四边形AOBC中,对角线交于点E,双曲线y= (k>0)经过A、E两点,若平行四边形AOBC的面积为24,则k的值是()A.8B.7.5C.6D.96、在同平面直角坐标系中,函数y=x﹣1与函数y=的图象大致是()A. B. C. D.7、已知点M(-2,4)在双曲线y= 上,则下列各点一定在该双曲线上的是()A.(-2,-4)B.(4,-2)C.(2,4)D.(4,2)8、已知广州市的土地总面积约为7434 km2,人均占有的土地面积S(单位:km2/人)随全市人口n(单位:人)的变化而变化,则S与n的函数关系式为()A.S=7434nB.S=C.n=7434SD.S=9、如图,以平行四边形ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数y= 的图象交BC于D,连接AD,则四边形AOCD的面积是()A.6B.7C.9D.1010、二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A. B. &nbsp; C.D.11、如图,在平面直角坐标系中,双曲线y=,y=﹣与⊙O相交,以交点为顶点的八边形ABCDEFGH是正八边形,则此正八边形的面积为()A.32B.64C.16D.16+1612、若反比例函数y=的图象位于第二、四象限,则k的取值可以是( )A.0B.1C.2D.以上都不是13、已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的()A. B. C. D.14、如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x 轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y= (x>0)的图象上,若AB=2,则k的值为()A.4B.2C.2D.15、下列各式不能确定为反比例函数关系的是()A. B. C. D.二、填空题(共10题,共计30分)16、给出以下命题:①平分弦的直径垂直于这条弦;②已知点、、均在反比例函数的图象上,则;③若关于x的不等式组无解,则;④将点向左平移3个单位到点,再将绕原点逆时针旋转90°到点,则的坐标为.其中所有真命题的序号是________.17、若反比例函数的图象经过点,则m=________.18、点(2,5)在反比例函数的图象上,那么k=________.19、双曲线y1, y2在第一象限的图象如图,已知y1=,过y1上的任意一点A作x轴的平行线交y2于点B,交y轴于点C,若S△AOB=,则y2的表达式是________.20、已知点(,),(,),(,)均在反比例函数的图象上,则,,的大小关系是________.(用“<”连接)21、若反比例函数y=的图象经过第一、三象限,则 k的取值范围是________ .22、已知反比例函数的图象具有下列特征:在所在的象限内,y随x 的增大而增大,那么m的取值范围是________.23、如图在平面直角坐标系中,周长为12的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上.点B,在反比例函数y=位于第一象限的图象上.则k的值为________.24、如图,矩形的面积为,它的对角线与双曲线相交于点,且,则________.25、如图,已知第一象限内的点A在反比例函数y= 上,第二象限的点B在反比例函数y= 上,且OA⊥OB,tanA= ,则k的值为________.三、解答题(共5题,共计25分)26、函数y=(m﹣2)x 是反比例函数,则m的值是多少?27、如图,一次函数的图象与反比例函数(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点=27,.D,且S△DBP(1)求点D的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?28、已知函数y=(m﹣1)x|m|﹣2是反比例函数.(1)求m的值;(2)求当x=3时,y的值.29、如图,等边三角形ABC放置在平面直角坐标系中,已知A(0,0),B (4,0),反比例函数的图象经过点C.求点C的坐标及反比例函数的解析式.30、在平面直角坐标系中,反比例函数y= (k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、D5、A6、C7、B8、B9、C10、A11、A12、A13、D14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

人教版 九年级下数学 第26章 反比例函数 培优训练(含答案)

人教版 九年级下数学 第26章 反比例函数 培优训练(含答案)

人教版 九年级数学 第26章 反比例函数培优训练一、选择题(本大题共10道小题)1. 一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地,当他按原路匀速返回时,汽车的速度v 千米/小时与时间t 小时的函数关系是( )A. v =320tB. v =320tC. v =20tD. v =20t2. 反比例函数y =-1x的图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( )A. y 1<y 2<0B. y 1<0<y 2C. y 1>y 2>0D. y 1>0>y 23. (2020·黑龙江龙东)如图,正方形ABCD 的两个顶点B ,D 在反比例函数y的图象上,对角线AC ,BD 的交点恰好是坐标原点O ,已知B(﹣1,1),则k 的值是( )A .﹣5B .﹣4C .﹣3D .﹣14. (2020·苏州)如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点()3,2D 在对角线OB 上,反比例函数()0,0ky k x x=>>的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A.84,3⎛⎫ ⎪⎝⎭B.9,32⎛⎫ ⎪⎝⎭C.105,3⎛⎫ ⎪⎝⎭D.2416,55⎛⎫ ⎪⎝⎭5. (2019·海南)如果反比例函数y =2a x-(a 是常数)的图象在第一、三象限,那么a 的取值范围是 A .a <0 B .a >0C .a <2D .a >26. (2019•广西)若点(1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx(k <0)的图象上,则y 1,y 2,y 3的大小关系是 A .y 1>y 2>y 3 B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 17. (2020·长沙)2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开 ,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为106 m 3土石方的任务,该运输公司平均运送土石方的速度v (单位:m 3/天)与完成运送任务所需的时间t (单位:天)之间的函数关系式是 · ( )A .tv 610=B .t 106=vC .26101t v =D .26t 10=v8. (2020·宜昌)已知电压U 、电流I 、电阻R 三者之间的关系式为:U =IR (或者RUI),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是( ).A .B .C .D .9. (2020·衡阳)反比例函数y =kx 经过点(2,1) ,则下列说法错误..的是 ( ) A. k =2 B.函数图象分布在第一、三象限C.当x >0时,随x 的增大而增大D.当x >0时,y 随x 的增大而减小10. (2019·湖北咸宁)在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O 重合,顶点A ,B 恰好分别落在函数y =﹣1x (x <0),y =4x(x >0)的图象上,则sin ∠ABO 的值为A .13B .33C .54D .55二、填空题(本大题共6道小题)11. 已知反比例函数y =kx(k ≠0)的图象如图所示,则k 的值可能是________(写一个即可).12. 如图,过原点O 的直线与反比例函数y 1、y 2的图象在第一象限内分别交于点A 、B ,且A 为OB 的中点.若函数y 1=1x,则y 2与x 的函数表达式是________.13. (2019·黑龙江齐齐哈尔)如图,矩形ABOC 的顶点B 、C 分别在x轴,y 轴上,顶点A 在第二象限,点B 的坐标为(﹣2,0).将线段OC 绕点O 逆时针旋转60°至线段OD ,若反比例函数y =kx(k ≠0)的图象经过A 、D 两点,则k 值为__________.。

人教版九年级数学下《第26章反比例函数》专项训练含答案

人教版九年级数学下《第26章反比例函数》专项训练含答案

第26章 反比例函数 专项训练 专训1 反比例函数与几何的综合应用名师点金:解反比例函数与几何图形的综合题,一般先设出几何图形中的未知数,然后结合函数的图象用含未知数的式子表示出几何图形与图象的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待求字母系数的方程(组),解方程(组)即可得所求几何图形中的未知量或函数解析式中待定字母的值.反比例函数与三角形的综合1.如图,一次函数y =kx +b 与反比例函数y =6x (x>0)的图象交于A(m ,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出使kx +b<6x 成立的x 的取值范围;(3)求△AOB 的面积.(第1题)2.如图,点A ,B 分别在x 轴、y 轴上,点D 在第一象限内,DC ⊥x 轴于点C ,AO =CD =2,AB =DA =5,反比例函数y =kx (k >0)的图象过CD 的中点E.(1)求证:△AOB ≌△DCA ; (2)求k 的值;(3)△BFG 和△DCA 关于某点成中心对称,其中点F 在y 轴上,试判断点G 是否在反比例函数的图象上,并说明理由.(第2题)反比例函数与四边形的综合类型1:反比例函数与平行四边形的综合3.如图,过反比例函数y =6x (x >0)的图象上一点A 作x 轴的平行线,交双曲线y =-3x (x <0)于点B ,过B 作BC ∥OA 交双曲线y =-3x (x <0)于点D ,交x轴于点C ,连接AD 交y 轴于点E ,若OC =3,求OE 的长.(第3题)类型2:反比例函数与矩形的综合4.如图,矩形OABC 的顶点A ,C 的坐标分别是(4,0)和(0,2),反比例函数y =kx(x>0)的图象过对角线的交点P 并且与AB ,(第4题)BC 分别交于D ,E 两点,连接OD ,OE ,DE ,则△ODE 的面积为________. 5.如图,在平面直角坐标系中,矩形OABC 的对角线OB ,AC 相交于点D ,且BE ∥AC ,AE ∥OB.(1)求证:四边形AEBD 是菱形;(2)如果OA =3,OC =2,求出经过点E 的双曲线对应的函数解析式.(第5题)类型3:反比例函数与菱形的综合6.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数y =3x的图象(第6题)经过A ,B 两点,则菱形ABCD 的面积为( ) A .2 B .4C .2 2D .4 27.如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =kx (k>0,x>0)的图象上,点D 的坐标为(4,3).(1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在反比例函数y =kx(k>0,x>0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.(第7题)类型4:反比例函数与正方形的综合8.如图,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA ,OC 分别在x 轴,y 轴上,点B 的坐标为(2,2),反比例函数y =kx (x >0,k ≠0)的图象经过线段BC 的中点D(1)求k 的值;(2)若点P(x ,y)在该反比例函数的图象上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R ,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的函数解析式并写出x 的取值范围.(第8题)反比例函数与圆的综合(第9题)9.如图,双曲线y =kx (k>0)与⊙O 在第一象限内交于P ,Q 两点,分别过P ,Q 两点向x 轴和y 轴作垂线,已知点P 的坐标为(1,3),则图中阴影部分的面积为________.10.如图,反比例函数y =kx (k <0)的图象与⊙O 相交.某同学在⊙O 内做随机扎针试验,求针头落在阴影区域内的概率.(第10题)专训2 全章热门考点整合应用名师点金:反比例函数及其图象、性质是历年来中考的热点,既有与本学科知识的综合,也有与其他学科知识的综合,题型既有选择、填空,也有解答类型.其热门考点可概括为:1个概念,2个方法,2个应用及1个技巧.1个概念:反比例函数的概念1.若y =(m -1)x |m|-2是反比例函数,则m 的取值为( )A .1B .-1C .±1D .任意实数2.某学校到县城的路程为 5 km ,一同学骑车从学校到县城的平均速度v(km /h )与所用时间t(h )之间的函数解析式是( )A .v =5tB .v =t +5C .v =5tD .v =t53.判断下面哪些式子表示y 是x 的反比例函数:①xy =-13;②y =5-x ;③y =-25x ;④y =2ax (a 为常数且a ≠0).其中________是反比例函数.(填序号)2个方法:方法1:画反比例函数图象的方法 4.已知y 与x 的部分取值如下表:解析式;(2)画出这个函数的图象.方法2:求反比例函数解析式的方法5.已知反比例函数y =kx 的图象与一次函数y =x +b 的图象在第一象限内相交于点A(1,-k +4).试确定这两个函数的解析式.6.如图,已知A(-4,n),B(2,-4)是一次函数y =kx +b 的图象和反比例函数y =mx的图象的两个交点.求:(1)反比例函数和一次函数的解析式;(2)直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)方程kx +b -mx =0的解(请直接写出答案);(4)不等式kx +b -mx<0的解集(请直接写出答案).(第6题)2个应用应用1:反比例函数图象和性质的应用7.画出反比例函数y =6x 的图象,并根据图象回答问题:(1)根据图象指出当y =-2时x 的值;(2)根据图象指出当-2<x<1且x ≠0时y 的取值范围; (3)根据图象指出当-3<y<2且y ≠0时x 的取值范围.应用2:反比例函数的实际应用8.某厂仓库储存了部分原料,按原计划每小时消耗2吨,可用60小时.由于技术革新,实际生产能力有所提高,即每小时消耗的原料量大于计划消耗的原料量.设现在每小时消耗原料x(单位:吨),库存的原料可使用的时间为y(单位:小时).(1)写出y 关于x 的函数解析式,并求出自变量的取值范围.(2)若恰好经过24小时才有新的原料进厂,为了使机器不停止运转,则x应控制在什么范围内?1个技巧:用k 的几何性质巧求图形的面积9.如图,A ,B 是双曲线y =kx (k ≠0)上的两点,过A 点作AC ⊥x 轴,交OB于D 点,垂足为C.若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .43B .83C .3D .4(第9题)(第10题)10.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =2x 和y =-4x 的图象于A ,B 两点,C 是y 轴上任意一点,则△ABC 的面积为________.11.如图是函数y =3x 与函数y =6x 在第一象限内的图象,点P 是y =6x 的图象上一动点,PA ⊥x 轴于点A ,交y =3x 的图象于点C ,PB ⊥y 轴于点B ,交y =3x 的图象于点D.(1)求证:D 是BP 的中点;(2)求四边形ODPC 的面积.(第11题)答案专训11.解:(1)∵A(m ,6),B(3,n)两点在反比例函数y =6x (x>0)的图象上,∴m =1,n =2,即 A(1,6),B(3,2).又∵A(1,6),B(3,2)在一次函数y =kx +b 的图象上, ∴⎩⎨⎧6=k +b ,2=3k +b ,解得⎩⎨⎧k =-2,b =8, 即一次函数解析式为y =-2x +8.(第1题)(2)根据图象可知使kx +b<6x 成立的x 的取值范围是0<x<1或x>3.(3)如图,分别过点A ,B 作AE ⊥x 轴,BC ⊥x 轴,垂足分别为E ,C ,设直线AB 交x 轴于D 点.令-2x +8=0,得x =4,即D(4,0). ∵A(1,6),B(3,2),∴AE =6,BC =2.∴S △AOB =S △AOD -S △ODB =12×4×6-12×4×2=8.2.(1)证明:∵点A ,B 分别在x 轴,y 轴上,点D 在第一象限内,DC ⊥x轴于点C ,∴∠AOB =∠DCA =90°.在Rt △AOB 和Rt △DCA 中,∵⎩⎨⎧AO =DC ,AB =DA ,∴Rt △AOB ≌Rt △DCA.(2)解:在Rt △ACD 中,∵CD =2,DA =5, ∴AC =DA 2-CD 2=1.∴OC =OA +AC =2+1=3.∴D 点坐标为(3,2).∵点E 为CD 的中点,∴点E 的坐标为(3,1).∴k =3×1=3. (3)解:点G 在反比例函数的图象上.理由如下:∵△BFG 和△DCA 关于某点成中心对称, ∴△BFG ≌△DCA.∴FG =CA =1,BF =DC =2,∠BFG =∠DCA =90°.∵OB =AC =1,∴OF =OB +BF =1+2=3.∴G 点坐标为(1,3). ∵1×3=3,∴点G(1,3)在反比例函数的图象上.3.解:∵BC ∥OA ,AB ∥x 轴,∴四边形ABCO 为平行四边形. ∴AB =OC =3.设A ⎝⎛⎭⎪⎫a ,6a ,则B ⎝ ⎛⎭⎪⎫a -3,6a , ∴(a -3)·6a=-3.∴a =2.∴A(2,3),B(-1,3).∵OC =3,C 在x 轴负半轴上,∴C(-3,0), 设直线BC 对应的函数解析式为y =kx +b , 则⎩⎨⎧-3k +b =0,-k +b =3,解得⎩⎪⎨⎪⎧k =32,b =92.∴直线BC 对应的函数解析式为y =32x +92.解方程组⎩⎪⎨⎪⎧y =32x +92,y =-3x ,得⎩⎨⎧x 1=-1,y 1=3,⎩⎨⎧x 2=-2,y 2=32. ∴D ⎝⎛⎭⎪⎫-2,32.设直线AD 对应的函数解析式为y =mx +n ,则⎩⎨⎧2m +n =3,-2m +n =32,解得⎩⎪⎨⎪⎧m =38,n =94.∴直线AD 对应的函数解析式为y =38x +94.∴E ⎝⎛⎭⎪⎫0,94.∴OE =94.4.154 点拨:因为C(0,2),A(4,0),由矩形的性质可得P(2,1),把P 点坐标代入反比例函数解析式可得k =2,所以反比例函数解析式为y =2x .因为D点的横坐标为4,所以AD =24=12.因为点E 的纵坐标为2,所以2=2CE ,所以CE=1,则BE =3.所以S △ODE =S 矩形OABC -S △OCE -S △BED -S △OAD =8-1-94-1=154.5.(1)证明:∵BE ∥AC ,AE ∥OB ,∴四边形AEBD 是平行四边形.∵四边形OABC 是矩形,∴DA =12AC ,DB =12OB ,AC =OB.∴DA =DB.∴四边形AEBD 是菱形.(2)解:如图,连接DE ,交AB 于F , ∵四边形AEBD 是菱形,∴DF =EF =12OA =32,AF =12AB =1.∴E ⎝ ⎛⎭⎪⎫92,1.设所求反比例函数解析式为y =kx,把点E ⎝ ⎛⎭⎪⎫92,1的坐标代入得1=k 92,解得k =92.∴所求反比例函数解析式为y =92x.(第5题)(第7题) 6.D7.解:(1)如图,过点D作x轴的垂线,垂足为F.∵点D的坐标为(4,3),∴OF=4,DF=3.∴OD=5.∴AD=5.∴点A的坐标为(4,8).∴k=xy=4×8=32. (2)将菱形ABCD沿x轴正方向平移,使得点D落在函数y=32x(x>0)的图象上点D′处,过点D′作x轴的垂线,垂足为F′.∵DF=3,∴D′F′=3.∴点D′的纵坐标为3.∵点D′在y=32x的图象上,∴3=32x,解得x=323,即OF′=323.∴FF′=323-4=203.∴菱形ABCD沿x轴正方向平移的距离为20 3.8.解:(1)∵正方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(2,2),∴C(0,2).∵D是BC的中点,∴D(1,2).∵反比例函数y=kx(x>0,k≠0)的图象经过点D,∴k=2.(2)当P在直线BC的上方,即0<x<1时,∵点P(x,y)在该反比例函数的图象上运动,∴y=2 x .∴S四边形CQPR =CQ·PQ=x·⎝⎛⎭⎪⎫2x-2=2-2x;当P在直线BC的下方,即x>1时,同理求出S四边形CQPR=CQ·P Q =x·⎝⎛⎭⎪⎫2-2x =2x -2,综上,S =⎩⎨⎧2x -2(x >1),2-2x (0<x <1).9.410.解:∵反比例函数的图象关于原点对称,圆也关于原点对称,故阴影部分的面积占⊙O 面积的14,则针头落在阴影区域内的概率为14.专训2 1.B 2.C 3.①③④4.解:(1)反比例函数:y =-6x.(2)如图所示.(第4题)5.解:∵反比例函数y =kx 的图象经过点A(1,-k +4),∴-k +4=k1,即-k +4=k ,∴k =2,∴A(1,2).∵一次函数y =x +b 的图象经过点A(1,2), ∴2=1+b ,∴b =1.∴反比例函数的解析式为y =2x ,一次函数的解析式为y =x +1.6.解:(1)将B(2,-4)的坐标代入y =m x ,得-4=m2,解得m =-8.∴反比例函数的解析式为y =-8x. ∵点A(-4,n)在双曲线y =-8x上,∴n =2. ∴A(-4,2).把A(-4,2),B(2,-4)的坐标分别代入y =kx +b ,得 ⎩⎨⎧-4k +b =2,2k +b =-4,解得⎩⎨⎧k =-1,b =-2. ∴一次函数的解析式为y =-x -2. (2)令y =0,则-x -2=0,x =-2. ∴C(-2,0).∴OC =2.∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6.(3)x 1=-4,x 2=2.(4)-4<x<0或x>2.7.解:如图,由观察可知: (1)当y =-2时,x =-3;(2)当-2<x<1且x ≠0时,y<-3或y>6; (3)当-3<y<2且y ≠0时,x<-2或x>3.(第7题)点拨:解决问题时,画出函数图象.由图象观察得知结果.由图象解决相关问题,一定要注意数形结合,学会看图.8.解:(1)库存原料为2×60=120(吨),根据题意可知y 关于x 的函数解析式为y =120x.由于生产能力提高,每小时消耗的原料量大于计划消耗的原料量,所以自变量的取值范围是x>2.(2)根据题意,得y ≥24,所以120x≥24. 解不等式,得x ≤5,即每小时消耗的原料量应控制在大于2吨且不大于5吨的范围内.点拨:(1)由“每小时消耗的原料量×可使用的时间=原料总量”可得y 关于x 的函数解析式.(2)要使机器不停止运转,需y ≥24,解不等式即可.(第9题)9.B 点拨:如图,过点B 作BE ⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,则CD =12BE.设A ⎝ ⎛⎭⎪⎫x ,k x ,则B ⎝ ⎛⎭⎪⎫2x ,k 2x ,CD =k 4x ,AD =k x -k 4x .∵△ADO 的面积为1,∴12AD·OC=1,即12⎝⎛⎭⎪⎫k x -k 4x ·x=1.解得k =83. 10.311.(1)证明:∵点P 在双曲线y =6x 上,∴设P 点坐标为⎝ ⎛⎭⎪⎫6m ,m .∵点D 在双曲线y =3x 上,BP ∥x 轴,D 在BP 上,∴D 点坐标为⎝⎛⎭⎪⎫3m ,m .∴BD =3m ,BP =6m , 故D 是BP 的中点.(2)解:由题意可知S △BOD =32,S △AOC =32,S 四边形OBPA =6.四边形ODPC =S四边形OBPA-S△BOD-S△AOC=6-32-32=3.∴S。

人教版九年级数学下《第26章反比例函数》专项训练含答案

人教版九年级数学下《第26章反比例函数》专项训练含答案

第26章反比例函数专项训练专训1反比例函数与几何的综合应用名师点金:解反比例函数与几何图形的综合题,一般先设出几何图形中的未知数,然后结合函数的图象用含未知数的式子表示出几何图形与图象的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待求字母系数的方程(组),解方程(组)即可得所求几何图形中的未知量或函数解析式中待定字母的值.反比例函数与三角形的综合1.如图,一次函数y=kx+b与反比例函数y=6x(x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出使kx+b<6x成立的x的取值范围;(3)求△AOB的面积.(第1题)2.如图,点A,B分别在x轴、y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=5,反比例函数y=kx(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G 是否在反比例函数的图象上,并说明理由.(第2题)反比例函数与四边形的综合类型1:反比例函数与平行四边形的综合3.如图,过反比例函数y =6x (x >0)的图象上一点A 作x 轴的平行线,交双曲线y =-3x (x <0)于点B ,过B 作BC ∥OA 交双曲线y =-3x (x <0)于点D ,交x轴于点C ,连接AD 交y 轴于点E ,若OC =3,求OE 的长.(第3题)类型2:反比例函数与矩形的综合4.如图,矩形OABC 的顶点A ,C 的坐标分别是(4,0)和(0,2),反比例函数y =kx(x>0)的图象过对角线的交点P 并且与AB ,(第4题)BC 分别交于D ,E 两点,连接OD ,OE ,DE ,则△ODE 的面积为________. 5.如图,在平面直角坐标系中,矩形OABC 的对角线OB ,AC 相交于点D ,且BE ∥AC ,AE ∥OB.(1)求证:四边形AEBD 是菱形;(2)如果OA =3,OC =2,求出经过点E 的双曲线对应的函数解析式.(第5题)类型3:反比例函数与菱形的综合6.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=3x的图象(第6题)经过A,B两点,则菱形ABCD的面积为( )A.2 B.4C.2 2 D.4 27.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=kx(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在反比例函数y=kx(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.(第7题)类型4:反比例函数与正方形的综合8.如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(2,2),反比例函数y=kx(x>0,k≠0)的图象经过线段BC的中点D(1)求k的值;(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S 关于x的函数解析式并写出x的取值范围.(第8题)反比例函数与圆的综合(第9题)9.如图,双曲线y=kx(k>0)与⊙O在第一象限内交于P,Q两点,分别过P,Q两点向x轴和y轴作垂线,已知点P的坐标为(1,3),则图中阴影部分的面积为________.10.如图,反比例函数y=kx(k<0)的图象与⊙O相交.某同学在⊙O内做随机扎针试验,求针头落在阴影区域内的概率.(第10题)专训2全章热门考点整合应用名师点金:反比例函数及其图象、性质是历年来中考的热点,既有与本学科知识的综合,也有与其他学科知识的综合,题型既有选择、填空,也有解答类型.其热门考点可概括为:1个概念,2个方法,2个应用及1个技巧.1个概念:反比例函数的概念1.若y=(m-1)x|m|-2是反比例函数,则m的取值为( )A.1 B.-1C.±1 D.任意实数2.某学校到县城的路程为5 km,一同学骑车从学校到县城的平均速度v(km/h)与所用时间t(h)之间的函数解析式是( )A.v=5t B.v=t+5C.v=5tD.v=t53.判断下面哪些式子表示y是x的反比例函数:①xy=-13;②y=5-x;③y=-25x;④y=2ax(a为常数且a≠0).其中________是反比例函数.(填序号)2个方法:方法1:画反比例函数图象的方法4.已知y与x的部分取值如下表:解析式;(2)画出这个函数的图象.方法2:求反比例函数解析式的方法5.已知反比例函数y=kx的图象与一次函数y=x+b的图象在第一象限内相交于点A(1,-k+4).试确定这两个函数的解析式.6.如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.求:(1)反比例函数和一次函数的解析式;(2)直线AB与x轴的交点C的坐标及△AOB的面积;(3)方程kx+b-mx=0的解(请直接写出答案);(4)不等式kx+b-mx<0的解集(请直接写出答案).(第6题)2个应用应用1:反比例函数图象和性质的应用7.画出反比例函数y=6x的图象,并根据图象回答问题:(1)根据图象指出当y=-2时x的值;(2)根据图象指出当-2<x<1且x≠0时y的取值范围;(3)根据图象指出当-3<y<2且y≠0时x的取值范围.应用2:反比例函数的实际应用8.某厂仓库储存了部分原料,按原计划每小时消耗2吨,可用60小时.由于技术革新,实际生产能力有所提高,即每小时消耗的原料量大于计划消耗的原料量.设现在每小时消耗原料x(单位:吨),库存的原料可使用的时间为y(单位:小时).(1)写出y关于x的函数解析式,并求出自变量的取值范围.(2)若恰好经过24小时才有新的原料进厂,为了使机器不停止运转,则x应控制在什么范围内?1个技巧:用k的几何性质巧求图形的面积9.如图,A,B是双曲线y=kx(k≠0)上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为( )A.43B.83C.3 D.4(第9题)(第10题)10.如图,过x轴正半轴上的任意一点P作y轴的平行线交反比例函数y=2 x 和y=-4x的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为________.11.如图是函数y=3x与函数y=6x在第一象限内的图象,点P是y=6x的图象上一动点,PA⊥x轴于点A,交y=3x的图象于点C,PB⊥y轴于点B,交y=3x的图象于点D.(1)求证:D是BP的中点;(2)求四边形ODPC的面积.(第11题)答案专训11.解:(1)∵A(m ,6),B(3,n)两点在反比例函数y =6x (x>0)的图象上,∴m =1,n =2,即 A(1,6),B(3,2).又∵A(1,6),B(3,2)在一次函数y =kx +b 的图象上, ∴⎩⎨⎧6=k +b ,2=3k +b ,解得⎩⎨⎧k =-2,b =8, 即一次函数解析式为y =-2x +8.(第1题)(2)根据图象可知使kx +b<6x 成立的x 的取值范围是0<x<1或x>3.(3)如图,分别过点A ,B 作AE ⊥x 轴,BC ⊥x 轴,垂足分别为E ,C ,设直线AB 交x 轴于D 点.令-2x +8=0,得x =4,即D(4,0). ∵A(1,6),B(3,2),∴AE =6,BC =2.∴S △AOB =S △AOD -S △ODB =12×4×6-12×4×2=8.2.(1)证明:∵点A ,B 分别在x 轴,y 轴上,点D 在第一象限内,DC ⊥x轴于点C ,∴∠AOB =∠DCA =90°.在Rt △AOB 和Rt △DCA 中,∵⎩⎨⎧AO =DC ,AB =DA ,∴Rt △AOB ≌Rt △DCA.(2)解:在Rt △ACD 中,∵CD =2,DA =5, ∴AC =DA 2-CD 2=1.∴OC =OA +AC =2+1=3.∴D 点坐标为(3,2).∵点E 为CD 的中点,∴点E 的坐标为(3,1).∴k =3×1=3. (3)解:点G 在反比例函数的图象上.理由如下:∵△BFG 和△DCA 关于某点成中心对称, ∴△BFG ≌△DCA.∴FG =CA =1,BF =DC =2,∠BFG =∠DCA =90°.∵OB =AC =1,∴OF =OB +BF =1+2=3.∴G 点坐标为(1,3). ∵1×3=3,∴点G(1,3)在反比例函数的图象上.3.解:∵BC ∥OA ,AB ∥x 轴,∴四边形ABCO 为平行四边形. ∴AB =OC =3.设A ⎝⎛⎭⎪⎫a ,6a ,则B ⎝ ⎛⎭⎪⎫a -3,6a , ∴(a -3)·6a=-3.∴a =2.∴A(2,3),B(-1,3).∵OC =3,C 在x 轴负半轴上,∴C(-3,0), 设直线BC 对应的函数解析式为y =kx +b , 则⎩⎨⎧-3k +b =0,-k +b =3,解得⎩⎪⎨⎪⎧k =32,b =92.∴直线BC 对应的函数解析式为y =32x +92.解方程组⎩⎪⎨⎪⎧y =32x +92,y =-3x ,得⎩⎨⎧x 1=-1,y 1=3,⎩⎨⎧x 2=-2,y 2=32. ∴D ⎝⎛⎭⎪⎫-2,32.设直线AD 对应的函数解析式为y =mx +n ,则⎩⎨⎧2m +n =3,-2m +n =32,解得⎩⎪⎨⎪⎧m =38,n =94.∴直线AD 对应的函数解析式为y =38x +94.∴E ⎝⎛⎭⎪⎫0,94.∴OE =94.4.154 点拨:因为C(0,2),A(4,0),由矩形的性质可得P(2,1),把P 点坐标代入反比例函数解析式可得k =2,所以反比例函数解析式为y =2x .因为D点的横坐标为4,所以AD =24=12.因为点E 的纵坐标为2,所以2=2CE ,所以CE=1,则BE =3.所以S △ODE =S 矩形OABC -S △OCE -S △BED -S △OAD =8-1-94-1=154.5.(1)证明:∵BE ∥AC ,AE ∥OB ,∴四边形AEBD 是平行四边形.∵四边形OABC 是矩形,∴DA =12AC ,DB =12OB ,AC =OB.∴DA =DB.∴四边形AEBD 是菱形.(2)解:如图,连接DE ,交AB 于F , ∵四边形AEBD 是菱形,∴DF =EF =12OA =32,AF =12AB =1.∴E ⎝ ⎛⎭⎪⎫92,1.设所求反比例函数解析式为y =kx,把点E ⎝ ⎛⎭⎪⎫92,1的坐标代入得1=k 92,解得k =92.∴所求反比例函数解析式为y =92x.(第5题)(第7题) 6.D7.解:(1)如图,过点D作x轴的垂线,垂足为F.∵点D的坐标为(4,3),∴OF=4,DF=3.∴OD=5.∴AD=5.∴点A的坐标为(4,8).∴k=xy=4×8=32.(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数y=32x(x>0)的图象上点D′处,过点D′作x轴的垂线,垂足为F′.∵DF=3,∴D′F′=3.∴点D′的纵坐标为3.∵点D′在y=32x的图象上,∴3=32x,解得x=323,即OF′=323.∴FF′=323-4=203.∴菱形ABCD沿x轴正方向平移的距离为20 3.8.解:(1)∵正方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(2,2),∴C(0,2).∵D是BC的中点,∴D(1,2).∵反比例函数y=kx(x>0,k≠0)的图象经过点D,∴k=2.(2)当P在直线BC的上方,即0<x<1时,∵点P(x,y)在该反比例函数的图象上运动,∴y=2 x .∴S四边形CQPR =CQ·PQ=x·⎝⎛⎭⎪⎫2x-2=2-2x;当P在直线BC的下方,即x>1时,同理求出S四边形CQPR=CQ·P Q =x·⎝⎛⎭⎪⎫2-2x =2x -2,综上,S =⎩⎨⎧2x -2(x >1),2-2x (0<x <1).9.410.解:∵反比例函数的图象关于原点对称,圆也关于原点对称,故阴影部分的面积占⊙O 面积的14,则针头落在阴影区域内的概率为14.专训2 1.B 2.C 3.①③④4.解:(1)反比例函数:y =-6x.(2)如图所示.(第4题)5.解:∵反比例函数y =kx 的图象经过点A(1,-k +4),∴-k +4=k1,即-k +4=k ,∴k =2,∴A(1,2).∵一次函数y =x +b 的图象经过点A(1,2), ∴2=1+b ,∴b =1.∴反比例函数的解析式为y =2x ,一次函数的解析式为y =x +1.6.解:(1)将B(2,-4)的坐标代入y =m x ,得-4=m2,解得m =-8.∴反比例函数的解析式为y =-8x. ∵点A(-4,n)在双曲线y =-8x上,∴n =2. ∴A(-4,2).把A(-4,2),B(2,-4)的坐标分别代入y =kx +b ,得 ⎩⎨⎧-4k +b =2,2k +b =-4,解得⎩⎨⎧k =-1,b =-2. ∴一次函数的解析式为y =-x -2. (2)令y =0,则-x -2=0,x =-2. ∴C(-2,0).∴OC =2.∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6.(3)x 1=-4,x 2=2.(4)-4<x<0或x>2.7.解:如图,由观察可知: (1)当y =-2时,x =-3;(2)当-2<x<1且x ≠0时,y<-3或y>6; (3)当-3<y<2且y ≠0时,x<-2或x>3.(第7题)点拨:解决问题时,画出函数图象.由图象观察得知结果.由图象解决相关问题,一定要注意数形结合,学会看图.8.解:(1)库存原料为2×60=120(吨),根据题意可知y 关于x 的函数解析式为y =120x.由于生产能力提高,每小时消耗的原料量大于计划消耗的原料量,所以自变量的取值范围是x>2.(2)根据题意,得y ≥24,所以120x≥24. 解不等式,得x ≤5,即每小时消耗的原料量应控制在大于2吨且不大于5吨的范围内.点拨:(1)由“每小时消耗的原料量×可使用的时间=原料总量”可得y 关于x 的函数解析式.(2)要使机器不停止运转,需y ≥24,解不等式即可.(第9题)9.B 点拨:如图,过点B 作BE ⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,则CD =12BE.设A ⎝ ⎛⎭⎪⎫x ,k x ,则B ⎝ ⎛⎭⎪⎫2x ,k 2x ,CD =k 4x ,AD =k x -k 4x .∵△ADO 的面积为1,∴12AD·OC=1,即12⎝⎛⎭⎪⎫k x -k 4x ·x=1.解得k =83. 10.311.(1)证明:∵点P 在双曲线y =6x 上,∴设P 点坐标为⎝ ⎛⎭⎪⎫6m ,m .∵点D 在双曲线y =3x 上,BP ∥x 轴,D 在BP 上,∴D 点坐标为⎝⎛⎭⎪⎫3m ,m .∴BD =3m ,BP =6m , 故D 是BP 的中点.(2)解:由题意可知S △BOD =32,S △AOC =32,S 四边形OBPA =6.四边形ODPC =S四边形OBPA-S△BOD-S△AOC=6-32-32=3.∴S。

人教版数学九年级下册第二十六章《反比例函数》测试卷(含答案)

人教版数学九年级下册第二十六章《反比例函数》测试卷(含答案)

人教版数学九年级下册第二十六章《反比例函数》测试卷[时间:100分钟满分:120分]一、选择题(每小题3分,共30分)1. 下列函数中,y是x的反比例函数的是()A. y=-12xB. y=-29xC. y=86xD. y=1-6x2.反比例函数y=5nx的图象经过点(2,3),则n的值是()A. -2B. -1C. 0D. 13. 反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A. 第二、三象限B. 第一、三象限C. 第三、四象限D. 第二、四象限4.已知反比例函数y=3x,下列结论中不正确的是()A. 图象经过点(-1,-3)B. 图象在第一、三象限C. 当x>1时,0<y<3D. 当x<0时,y随着x的增大而增大5. 已知反比例函数y=-10x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A. y1<y2<0B. y1<0<y2C. y1>y2>0D. y1>0>y26.如图所示,直线y=x+2与双曲线y=kx相交于点A,点A的纵坐标为3,则k的值为()A. 1B. 2C. 3D. 4第6题第7题7.已知二次函数y=-(x-a)2-b的图象如图所示,则反比例函数y=abx与一次函数y=ax+b的图象可能是()A B C D8. 在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图所示,当V =10 m 3时,气体的密度是( )A. 1 kg/m 3B. 2 kg/m 3C. 100 kg/m 3D. 5 kg/m 3第8题 第9题9.如图,A ,B 两点在反比例函数y =1k x 的图象上,C ,D 两点在反比例函数y =2kx的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1的值为( )A. 4B.143 C. 163D. 6 10. 某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )A. 16小时B. 1578小时C. 151516小时 D. 17小时二、填空题(每小题3分,共24分)11.请写出一个图象在第二、四象限的反比例函数的解析式:.12. 若反比例函数y=(m-1)x|m|-2,则m的值是.13.若函数y=2mx的图象在每个象限内y的值随x值的增大而增大,则m的取值范围为.14. 如图,Rt△ABC的两个锐角顶点A,B在函数y=kx(x>0)的图象上,AC∥x轴,AC=2.若点A的坐标为(2,2),则点B的坐标为.15.已知反比例函数y=4x,当函数值y≥-2时,自变量x的取值范围是________.16.若变量y与x成反比例,且当x=3时,y=-3,则y与x之间的函数关系式是________,在每个象限内函数值y随x的增大而________.17.某闭合电路,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间的函数关系的图象,当电阻R为6 Ω时,电流I为________A.第17题第18题18. 如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为________.三、解答题(共66分)19. (8分)已知y与x-1成反比例,且当x=-5时,y=2.(1)求y与x的函数关系式;(2)当x=5时,求y的值.20. (8分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.(1)写出y与S的函数关系式;(2)当面条粗为1.6 mm2时,求面条总长度.21. (12分)已知反比例函数y=4 x .(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=4x(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移到C2处所扫过的面积.22. (12分)如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=ax的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.23. (12分)如图,在平面直角坐标系xOy中,直线y=x-2与y轴相交于点A,与反比例函数y=kx在第一象限内的图象相交于点B(m,2).(1)求该反比例函数的关系式;(2)若直线y=x-2向上平移后与反比例函数y=kx在第一象限内的图象相交于点C,且△ABC的面积为18,求平移后的直线对应的函数关系式.24. (14分)为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知药物燃烧时室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物燃烧后,y与x成反比例(如图所示).请根据图中提供的信息,解答下列问题:(1)药物燃烧后y与x的函数关系式为;(2)当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;(3)当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?。

人教版初三数学9年级下册 第26章 26.1.2反比例函数的图像与性质 课时训练(含答案)

人教版初三数学9年级下册 第26章 26.1.2反比例函数的图像与性质 课时训练(含答案)

26.1.2反比例函数的图像与性质一、选择题1. 若点(3,6)在反比例函数y=kx(k≠0)的图象上,那么下列各点在此图象上的是( ) A.(−3,6)B.(2,9)C.(2,−9)D.(3,−6)2. 在反比例函数y=k−1x的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>1B.k>0C.k≥1D.k<13. 下列反比例函数的图象一定在第一,三象限的是( )A.y=mx B.y=m+1xC.y=m2+1xD.y=−mx4. 已知函数y=kx的图象经过点(2,3),下列说法正确的是( )A.y随x的增大而增大B.函数的图象只在第一象限C.当x<0时,必有y<0D.点(−2,−3)不在此函数图象上5. 已知A(x1,y1),B(x2,y2)是反比例函数y=kx(k≠0)图象上的两点,当x1<x2<0时,y1> y2,那么一次函数y=kx−k的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6. 一次函数y=kx+b(k≠0)与反比例函数y=kx(k≠0)的图象在同一直角坐标系中的大致图象如图所示,则k,b的取值范围是( )A.k>0,b>0B.k<0,b>0C.k<0,b<0D.k>0,b<07. 如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=kx (x>0)的图象经过顶点B,则k的值为( )A.12B.20C.24D.328. 在反比例函数y=k(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1>x2>0,则y1−y2的x值为( )A.正数B.负数C.非正数D.非负数9. 已知抛物线y=x2−2x+m+1与x轴有两个不同的交点,则函数y=m的大致图象为x( )A.B.C.D.二、填空题10. 点(1,3)在反比例函数y=k的图象上,则k=,在图象的每一支上,y随x的增大x而.11. 如图所示,某反比例函数的图象经过点(−2,1),则此反比例函数表达式为.12. 反比例函数y=2a−1的图象有一支位于第一象限,则常数a的取值范围是.x13. 已知点A(2,y1),B(4,y2)都在反比例函数y=k(k<0)的图象上,则y1y2(填“>”“<”x或“=”).14. 已知函数y=(m+1)x m2−5是反比例函数,且图象在第一、三象限内,则m=.15. 如图,在平面直角坐标系中,点P是反比例函数y=k(x>0)图象上的一点,分别过点P作xPA⊥x轴于点A,PB⊥y轴于点B,若四边形OAPB的面积为3,则k的值为.16. 反比例函数y=k+1,点(x1,y1),(x2,y2)在其图象上,当x1<0<x2时,有y1>y2,则k x的取值范围是.图象上的概率17. 从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=12x是.18. 如图,已知点A(1,2)是反比例函数y=k图象上的一点,连接AO并延长交双曲线的另一分支x于点B,点P是x轴上一动点.若△PAB是等腰三角形,则点P的坐标是.19. 如图,已知直线y=k1x+b与x轴,y轴相交于P,Q两点,与y=k2的图象相交于Axn=0;③S△AOP= (−2,m),B(1,n)两点,连接OA,OB给出下列结论:①k1k2<0;②m+12的解集是x<−2或0<x<1.其中正确结论的序号是.S△BOQ;④不等式k1x+b>k2x三、解答题20. 作出反比例函数y=−4的图象,并结合图象回答:x(1) 当x=2时,y的值;(2) 当1<x≤4时,y的取值范围;(3) 当1≤y<4时,x的取值范围.21. 已知反比例函数y=m−7的图象的一支位于第一象限.x(1) 判断该函数图象的另一支所在的象限,并求m的取值范围;(2) 如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.22. 如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=k(k>0,x>0)的图象上,点D的坐标为(4,3).x(1) 求k的值;(2) 若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=k(k>0,x>0)的图象x上时,求菱形ABCD沿x轴正方向平移的距离.23. 如图,P1,P2是反比例函数y=k(k>0)在第一象限图象上的两点,点A1的坐标为x(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1,P2为直角顶点.(1) 求反比例函数的解析式;(2) ①求P2的坐标;②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1,P2的一次函数的函的函数值.数值大于反比例函数y=kx24. 如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数y=k(x>0,k≠0)的图象经过线段BC的中点xD.(1) 求k的值(2) 若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式,并写出x的取值范围.25. 已知反比例函数的图象过点(1,−2).(1) 求这个函数的解析式,并画出图象.(2) 若点A(−5,m)在该图象上,则点A关于两坐标轴和原点的对称点是否也在图象上?26. 如图,一次函数y=kx+b的图象l分别与x轴,y轴交于点E,F,与双曲线y=−4x (x<0)交于点P(−1,n),F是PE的中点.(1) 求直线l的解析式;(2) 若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?27. 如图1,已知正比例函数和反比例函数图象都经过点M(−2,−1),P(−1,−2)为双曲线上的一点,Q为坐标平面上一动点.(1) 写出正比例函数和反比例函数的关系式.(2) 如图2,当点Q在第一象限中的双曲线上运动时,作以OP,OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.答案一、选择题1. 【答案】B2. 【答案】A3. 【答案】C4. 【答案】C5. 【答案】B6. 【答案】D7. 【答案】D8. 【答案】A9. 【答案】B二、填空题10. 【答案】3;减小11. 【答案】y=−2x12. 【答案】a>12的图象有一支位于第一象限,【解析】∵反比例函数y=2a−1x∴2a−1>0,解得a>1.213. 【答案】<14. 【答案】215. 【答案】316. 【答案】k<−117. 【答案】1618. 【答案】(−3,0)或(5,0)或(3,0)或(−5,0)19. 【答案】②③④三、解答题20. 【答案】(1) y=−2.(2) −4<y≤−1.(3) −4≤x<−1.21. 【答案】(1) 根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m−7>0,则m>7.(2) ∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC 的面积为 3.设 A 12x ⋅m−7x=3,解得 m =13.22. 【答案】(1) 如图,过点 D 作 x 轴的垂线,垂足为 F .因为点 D 的坐标为 (4,3),所以 OF =4,DF =3.所以 OD =5.所以 AD =5.所以点 A 的坐标为 (4,8).所以 k =4×8=32.(2) 如图,将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y =32x(x >0) 的图象上的Dʹ 处,过点 Dʹ 作 x 轴的垂线,垂足为 Fʹ.因为 DF =3,所以 DʹFʹ=3.所以点 Dʹ 的纵坐标为 3.因为点 Dʹ 在 y =32x的图象上,所以 3=32x ,解得 x =323,即 OFʹ=323.所以 FFʹ=323−4=203.所以菱形 ABCD 沿 x 轴正方向平移的距离为 203.23. 【答案】(1) y =4x .(2) ① P 2 的坐标为 (2+22,22−2);② 2<x <2+22.24. 【答案】(1) k =2.(2) S =2x−2,x >12−2x,0<x <1.25. 【答案】(1) y =−2x ,图略.(2) m =25,点 A −5,关于两坐标轴对称的点均不在函数图象上,关于原点对称的点在函数图象上.26. 【答案】(1) y =−2x +2.(2) 当 a =−2 时,PA =PB (提示:过点 P 作 PD ⊥AB ).27. 【答案】(1) 正比例函数解析式为 y =12x ,反比例函数解析式为 y =2x .(2) 平行四边形 OPCQ 周长的最小值是 2(OP +OQ )=2(5+2)=25+4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 9
人教版九年级数学第二学期26.1反比例函数培优训练
一、单选题
1.若点(1,2)-在反比例函数(0)k y k x =
≠的图象上,那么下列各点在此图象上的是( ) A .(1,2)-- B .(1,2) C .(1,2)- D .(4,1)-
2.已知反比例函数2y x =-
,下列结论不正确的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大
C .图象在第二、四象限内
D .若x >1,则y >-2 3.在函数()0k y k x
=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y <<
B .132y y y <<
C .321y y y <<
D .231y y y << 4.当0x <时,反比例函数2y x
=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大
C .在第三象限,y 随x 的增大而减小
D .在第四象限,y 随x 的增大而减小 5.已知反比例函数y =,当1<x <3时,y 的最小整数值是( )
A .3
B .4
C .5
D .6
6.如图,已知点P 在反比例函数k y x
=
上,PA x ⊥轴,垂足为点A ,且AOP ∆的面积为4,则k 的值为( )
A .8
B .4
C .8-
D .4-
7.若正比例函数y=﹣2x 与反比例函数y=
k x 图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为( ) A .(2,﹣1) B .(1,﹣2) C .(﹣2,﹣1) D .(﹣2,1)
8.已知反比例函数k y x
=的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k
=-;②若120x x <<,
则12y y >;③若120x x +=,则120y y +=其中真命题个数是( )
A .0
B .1
C .2
D .3
二、填空题 9.在反比例函数1k y x
-=
的图象的每一支上,y 都随x 的增大而减少,则k 的取值范围是______. 10.如图,在平面直角坐标系中,点A ,B 在反比例函数()0k y k x =≠的图象上运动,且始终保持线段
AB =M 为线段AB 的中点,连接OM .则线段OM 长度的最小值是_____(用含k 的代数式表示).
11.如图,点A 在函数y =
4x
(x>0)的图象上,且OA =4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为______.
12.如图,一次函数2y x =+与反比例函数k y x
=
的图像在第一象限交于点M ,若OM =,则k 的值是_______.
3 / 9
13.已知,点P (a ,b )为直线3y x =-与双曲线2y x =-的交点,则11b a
-的值等于__. 14.如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数
1
y x =
的图象上,则图中阴影部分的面积等于_________(结果保留π).
15.直线y =kx(k >0)与双曲线y =
6x
交于A(x 1,y 1)和B(x 2,y 2)两点,则3x 1y 2-9x 2y 1的值为________. 16.如图,正方形的顶点A ,C 分别在y 轴和x 轴上,边BC 的中点F 在y 轴上,若反比例函数y =6x 的图象恰好经过CD 的中点E ,则OA 的长为______.
三、解答题
17.如图,一次函数y 1=kx +b (k ≠0)和反比例函数y 2=
m x (m ≠0)的图象相交于点A (﹣4,2),B (n ,﹣
4)
(1)求一次函数和反比例函数的表达式;
(2)观察图象,直接写出不等式y 1<y 2的解集.
18.在平面直角坐标系xOy 中,直线l :y =kx +b (k ≠0)与反比例函数y 4x
=
的图象的一个交点为M (1,m ). (1)求m 的值; (2)直线l 与x 轴交于点A ,与y 轴交于点B ,连接OM ,设△AOB 的面积为S 1,△MOB 的面积为S 2,若S 1≥3S 2,求k 的取值范围.
19.如图,点A 是直线2y x =与反比例函数1m y x
-=
(m 为常数)的图象的交点.过点A 作x 轴的垂线,垂足为B ,且2OB =.
(1)求点A 的坐标及m 的值;
(2)已知点(0,)(08)P n n <≤,过点P 作平行于x 轴的直线,交直线2y x =于点()11,C x y ,交反比例函数1m y x
-=(m 为常数)的图象于点()22,D x y ,交垂线AB 于点()33,E x y .若231x x x <<,结合函数的图象,直接写出123x x x ++的取值范围.
5 / 9
20.如图,直线y=mx+n 与双曲线y=k x
相交于A (﹣1,2)、B (2,b )两点,与y 轴相交于点C .
(1)求m ,n 的值;
(2)若点D 与点C 关于x 轴对称,求△ABD 的面积;
(3)在坐标轴上是否存在异于D 点的点P ,使得S △PAB =S △DAB ?若存在,直接写出P 点坐标;若不存在,说明理由。

21.如图,已知将反比例函数14y x =-
(x <0),沿y 轴翻折得到反比例函数2k y x =(x >0),一次函数y =ax+b 与2k y x
=交于A (1,m ),B (4,n )两点;
(1)求反比例函数y 2和一次函数y =ax+b 的解析式;
(2)连接OA ,过B 作BC ⊥x 轴,垂足为C ,点P 是线段AB 上一点,若直线OP 将四边形OABC 的面积分成1:2两部分,求点P 的坐标.
22.如图,已知直线y =x ﹣3与双曲线y =
k x
(k >0)交于A 、B 两点,点A 的纵坐标为1. (1)求点B 的坐标; (2)直接写出当x 在什么范围内时,代数式x 2﹣3x 的值小于k 的值;
(3)点C (2,m )是直线AB 上一点,点D (n ,4)是双曲线y =
k x 上一点,将△OCD 沿射线BA 方向平移,得到△O ′C ′D ′.若点O 的对应点O ′落在双曲线y =k x
上,求点D 的对应点D ′的坐标.
23.如图,双曲线y 1=1k x 与直线y 2=2
x k 的图象交于A 、B 两点.已知点A 的坐标为(4,1),点P (a ,b )是双曲线y 1=1k x
上的任意一点,且0<a <4. (1)分别求出y 1、y 2的函数表达式;
(2)连接PA 、PB ,得到△PAB ,若4a =b ,求三角形ABP 的面积;
(3)当点P 在双曲线y 1=
1k x
上运动时,设PB 交x 轴于点E ,延长PA 交x 轴于点F ,判断PE 与PF 的大小关系,并说明理由.
7 / 9
1 / 9 参考答案
1.C2.B3.B4.B5.A6.C7.B8.D
9.1k >
10
11
..
12.3
13.-32
14.π
15.36
16.6
17.(1) y =﹣x ﹣2,;(2) x >2或﹣4<x <0
18.(1)m =4;(2)﹣2≤k <0或0<k ≤1.
19.(1)A (2,4);m=9;(2)6<x 1+x 2+x 3≤7
20.(1)m =﹣1,n =1;(2)3;(3)存在,P 点坐标为(﹣1,0)或(3,0)或(0,3) 21.(1)24y x =,y =﹣x+5;(2)P 的坐标是P 3441,1515⎛⎫ ⎪⎝⎭或P 5322,1515⎛⎫ ⎪⎝⎭
. 22.(1)B (﹣1,﹣4);(2)0<x <4或﹣1<x <0;(3)D ′(3,6)
23.(1)双曲线y 1=4x
;直线为y 2=14x ;(2)15;(3)PE =PF ,理由略.。

相关文档
最新文档