人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

合集下载

新人教版九年级数学上册讲义

新人教版九年级数学上册讲义

九年级上册数学讲义姓名:电话:第二十一章 一元二次方程1、 一元二次方程 方程中只含有一个未知数,而且未知数的最高次数是2的方程,一般地,这样的方程都整理成为形如ax bx c a 200++=≠()的一般形式,我们把这样的方程叫一元二次方程。

其中ax bx c 2,,分别叫做一元二次方程的二次项、一次项和常数项,a 、b 分别是二次项和一次项的系数。

如:24102x x -+=满足一般形式ax bx c a 200++=≠(),2412x x ,,-分别是二次项、一次项和常数项,2,-4分别是二次项和一次项系数。

注:如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。

●夯实基础例1 把下列方程先化成一元二次方程的一般形式,再写出它的二次项系数,一次项系数和常数项。

(1)272y y =-(2)()()512152y y y +-=-(3)()m x n mx x 2210++-=(是未知数)例2 已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围.例3 若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________.●能力提升例4若方程(m-1)x 2+ x=1是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠1 B .m≥0 C .m≥0且m≠1 D .m 为任何实数●培优训练例5 m 为何值时,关于x 的方程2((3)4m m x m x m -+=是一元二次方程.第一讲 一元二次方程的定义例6关于x 的方程(m+3)x m2-7+(m-3)x+2=0是一元二次方程,则m 的值为例7(2000•兰州)关于x 的方程(m 2-m-2)x 2+mx+1=0是一元二次方程的条件是( )A .m≠-1B .m≠2C .m≠-1或m≠2D .m≠-1且m≠2●课后练习1、m 为何值时,关于x 的方程2((3)4m m x m x m -+=是一元二次方程.2、已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围.3、已知关于x 的方程22()(2)x a ax -=-是一元二次方程,求a 的取值范围.4、若2310a b a b x x +--+=是关于x 的一元二次方程,求a 、b 的值.5、若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为________(1)直接开平方法形如x m m 20=≥()的方程都可以用开平方的方法写成x m =±,求出它的解,这种解法称为直接开平方法。

初三数学培优教材(培训学校专用)

初三数学培优教材(培训学校专用)

2016年初二升初三暑期培优教材(数学)第一讲 一元二次方程【学习目标】1、学会根据具体问题列出一元二次方程,培养把文字叙述的问题转换成数学语言的能力。

2、了解一元二次方程的解或近似解。

3、增进对方程解的认识,发展估算意识和能力。

【知识要点】1、一元二次方程的定义:只含有一个未知数的整式方程,并且都可以化为02=++c bx ax (a 、b 、c 、为常数,0a ≠)的形式,这样的方程叫做一元二次方程。

(1)定义解释:①一元二次方程是一个整式方程;②只含有一个未知数;③并且未知数的最高次数是2。

这三个条件必须同时满足,缺一不可。

(2)02=++c bx ax (a 、b 、c 、为常数,0a ≠)叫一元二次方程的一般形式,也叫标准形式。

(3)在02=++c bx ax (0a ≠)中,a ,b ,c 通常表示已知数。

2、一元二次方程的解:当某一x 的取值使得这个方程中的c bx ax ++2的值为0,x 的值即是一元二次方程02=++c bx ax 的解。

3、一元二次方程解的估算:当某一x 的取值使得这个方程中的c bx ax ++2的值无限接近0时,x的值即可看做一元二次方程02=++c bx ax 的解。

【经典例题】例1、下列方程中,是一元二次方程的是 ①042=-y y ; ②0322=--x x ; ③312=x ; ④bx ax =2;⑤x x 322+=; ⑥043=+-x x ; ⑦22=t ; ⑧0332=-+xx x ;⑨22=-x x ;⑩)0(2≠=a bx ax 例2、(1)关于x 的方程(m -4)x 2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程.(2)如果方程ax 2+5=(x+2)(x -1)是关于x 的一元二次方程,则a__________.(3)关于x 的方程135)32(12=+-++x x m m m 是一元二次方程吗?为什么?例3、把下列方程先化为一般式,再指出下列方程的二次项系数,一次项系数及常数项。

九年级上下册数学培优系统讲义

九年级上下册数学培优系统讲义

九年级上下册数学培优系统讲义第1讲 一元二次方程㈠★知识点精讲1.一元二次方程的概念⑴ 只含有 个未知数,未知数的最高次数是 且二次项系为_____的整式方程叫一元二次方程.⑴一元二次方程的一般形式()002≠=++a c bx ax ,其中二次项系数为 ,一次项系数为 ,常数项为 .2.一元二次方程的解法⑴直接开平方法:针对()()02≥=+an n a m x⑴配方法:针对()002≠=++a c bx ax ,再通过配方转化成())0(2≥=+n n m x a注:① 配方法的目的是将方程左边化成含未知数的完全平方,右边是一个非负 常数的形式;②配方法常用于证明一个式子恒大于0或恒小于0,或者求二次函数的最值.⑶ 公式法:当0≥∆时(=∆ ),用求根公式 ,求一元二次方程()002≠=++a c bx ax 根的方法.⑶ 因式分解法:通过因式分解,把方程变形为()()0=--n x m x a ,则有m x =或n x =.注:⑴ 因式分解的常用方法(提公因式、公式法、十字相乘法)在这里均可使用,其中十字相乘法是最方便、快捷的方法.⑵ 此法可拓展应用于求解高次方程.典型例题讲解及思维拓展●例1 ⑴方程()0132=+++mx x m m 是关于x 的一元二次方程,则m = .⑴关于x 的一元二次方程()01122=-++-a x x a 有一个根是0,则a = .拓展变式练习11.关于x 的方程03)3(72=+---x x m m 是一元二次方程,则m =__________.2.已知方程012=-+mx x 的一个根121-=x ,则m 的值为 .●例2 解下列方程:⑶0182=+-x x ⑵()()2221239x x -=-拓展变式练习2解下列方程:⑶8632+-=x x⑵()()2221239x x -=-⑶()()1232=--x x⑶()222596x x x -=+-⑸04)32(5)23(2=+-+-x x⑹()()02123122=++-+x x⑺()2223n n m x m x =+--⑻a x a ax x -=+-222●例3 已知0132=-+x x ,求⎪⎭⎫ ⎝⎛--+÷--2526332x x x x x 的值.拓展变式练习3 1.已知0200052=--x x ,求()()211223-+---x x x 的值.2.已知0132=+-a a ,求2219294a a a ++--的值.■ 巩固训练题一、填空题1.若方程()()053222=-++--x m x m m 是一元二次方程,则m 的值为 . 2.已知方程()()08=-+x a x 的解与方程0872=--x x 的解完全相同,则a = .3.如果二次三项式226m x x +-是一个完全平方式,那么m 的值是___________.4.若412+-mx x 是一个完全平方式,则m 的值是___________.5.已知06522=--y xy x ,则yx 的值是 . 6.已知7532=++x x ,则代数式2932-+x x 的值为________________.二、解答题1. 解下列方程:⑴ 04052=-x ⑴ ()0644292=-+x⑶20x x -= ⑶ 0813642=+-x x⑶ 22)52()2(+=-x x (6)()x x 210532-=-2. 某商店如果将进价为8元的商品按10元销售,每天可售出200件,通过一段时间的摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件,每降价0.5元,其销售量就增加10件.(1)你能帮店主设计一种方案,使每天的利润达到700元吗?(2)当售价是多少元时,能使一天的利润最大?最大利润是多少?■思维与能力提升1. 设a 、b 为实数,求542222+-++b b ab a 的最小值,并求此时a 、b 的值.2.设a 、b 、c 为实数,求1984254222+--+++c b c b ab a 的最小值,并求此时c b a ++的值.3.已知()012009200720082=-⨯-x x 的较大根为a ,020*******=--x x 的较小根为b ,求()2003b a +.4.如图,锐角∆ABC 中,PQRS 是∆ABC 的内接矩形,且S S PQRS ABC n 矩形=∆,其中n 为不小于3的自然数,求证:AB BS为无理数.DS 金牌数学专题二 一元二次方程㈡★知识点精讲1.一元二次方程根的判别式⑴ 根的判别式:一元二次方程()002≠=++a c bx ax 是否有实根,由 的符号确定,因此我们把 叫做一元二次方程的根的判别式,并用∆表示,即 .⑵ 一元二次方程根的情况与判别式的关系:⇔>∆0方程有 的实数根;⇔=∆0方程有 的实数根;⇔<∆0方程 实数根;⇔≥∆0方程 实数根.2.根系关系(韦达定理)⑴ 对于一元二次方程()002≠=++a c bx ax 的两根21x x ,,有ab x x -=+21,ac x x =⋅21 ⑵ 推论:如果方程02=++q px x 的两个根是21,x x ,那么p x x -=+21,q x x =⋅21. ⑶ 常用变形:()2122122212x x x x x x -+=+ ()()212212214x x x x x x -+=- 3.列方程解应用题的一般步骤:⑴______,⑵______,⑶______⑷______,⑸______,⑹______.4.常见题型⑴ 面积问题;⑵ 平均增长(降低)率问题;⑶ 销售问题;⑷ 储蓄问题.典型例题讲解及思维拓展●例1. 若关于x 的方程()()0122122=++--x m x m 有实根,求m 的取值范围.拓展变式练习11.若关于x 的方程032)1(22=-+++-m m x x m 有实数根,求m 的值.2.是否存在这样的非负整数m ,使得关于x 的一元二次方程()0191322=-+--m x m mx 有两个不相等的实数根,若存在,请求出m 的值,若不存在,请说明理由.●例2 已知21x x ,是方程03622=++x x 的两根,不解方程,求下列代数式的值: ⑶2112x x x x + ⑶ ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+122111x x x x ⑶ ()221x x -拓展变式练习21. 已知21x x ,是方程03622=++x x 的两根,不解方程,,求下列各式的值:⑶ 321231x x x x + ⑶ 112112+++x x x x ⑶ 21x x -2.已知关于x 的方程()024122=+--m x m x ,是否存在正数m ,使方程的两实根的平方和等于224?若存在,则求出来;若不存在,说明理由.●例3 某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A 市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A 市三年共投资“改水工程”多少万元?拓展变式练习31. 市政府为解决市民看病贵的问题,决定下调一些药品的价格.某种药品的售价为125元/盒,连续两次降价后的售价为80元/盒,假设每次降价的百分率相同,求这种药品每次降价的百分率.2. 王洪将100元暑期勤工俭学所得的100元,按一年期定期存入少儿银行,到期后取出本息和,其中的50元捐给希望工程,余下的部分又按一年定期存入,这时存款利率已下调到第一年的一半,这样到期后得本息和共63元,求第一年的存款利率.3.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出).⑴求y与x的函数关系式;(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?■巩固训练题一、填空题1.已知方程022=+-m x x 的一个根是51-,则另一根为 ,m = . 2.如果21x x ,是两个不相等的实数,且12121=-x x ,12222=-x x ,则=21x x .3.若a 、b 是方程0532=--x x 的两个实数根,则b b a 3222-+= .4.以2与-6为根的一元二次方程是 .5. 一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,则平均每次降价的百分比率是____________.6.巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x ,则可列方程为 .二、解答题1.已知a 、b 是方程042=+-m x x 的两个根,b 、c 是方程0582=+-m x x 的两个根,求m 的值.2.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委 州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量W(克)与销售价x (元/千克)有如下关系:W=-2x +80.设这种产品每天的销售利润y (元).(1)求y 与x 之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?■思维与能力提升1.当k 是什么整数时,方程()()072136122=+---x k x k 有两个不相等的正 整数根?2.已知关于x 的方程()0321222=--++-m m x m x 的两个不相等实数根中 有一根为0.是否存在实数k ,使关于x 的方程()02522=-+----m m k x m k x 的两个实根21x x ,之差的绝对值为1?若存在,求出k 的值;若不存在,请说明理由.3.已知21x x ,是关于x 的方程()002≠=++p q px x 的两个实数根,且13222121=++x x x x ,()()0211211=+++x x xx ,求q p +的值.4.已知实数a 、b 、c 满足2=++c b a ,4=abc ,求a 、b 、c 中最大者的 最小值.■补充讲解■反思与归纳DS 金牌数学专题三反比例函数★知识点精讲1.反比例函数⑴ 概念:一般地,如果两个变量x ,y 之间的关系可以表示成x k y =(k 为常数,0≠k )的形式,那么称y 是x 的反比例函数,其中自变量x 不能为零. ⑵ 常见形式:x k y =(k 为常数,0≠k ),1-=kx y (k 为常数,0≠k ), k xy =(k 为常数,0≠k ) 2.反比例函数的图象 ⑴ 反比例函数x k y =(k 为常数,0≠k )的图象是由两条曲线组成的,叫 做 ,因为0≠k 、0≠x ,所以函数图象与x 、y 轴均无交点,而且它是一个以原点为对称中心的中心对称图形. ⑵ 图象基本性质0>k 0<k反 比 例 函 数 图 象性 质两分支位于 象限, 在每一象限内,y 随x 的增大 而两分支位于 象限, 在每一象限内,y 随x 的增大 而⑶ k 的几何意义=AOBP S 矩形_________.=∆AOP S Rt __________.3.直线1y k x m =+和双曲线x k y 2=的交点⑴求直线1y k x m =+和双曲线x k y 2=的交点就是求方程组 的解.反之,交点坐标同时满足两个函数的解析式,可利用待定系数法求解. ⑵ 交点个数由两方程组成的方程组转化得到的一元二次方程20(0)ax bx c a ++=≠的解的情况决定.①当 时,直线与双曲线有两个交点. ②当 时,直线与双曲线有一个交点.y P(m,n) AoxB③当 时,直线与双曲线没有交点. 4.反比例函数和一次函数的综合应用① 交点与解析式相互转化 ② 求三角形、四边形面积 ③ 特殊三角形、四边形的存在性问题 ④ 其它综合典型例题讲解及思维拓展 ● 例1 若反比列函数1232)12(---=k kx k y 的图像经过二、四象限.⑴求k 的值.⑵ 若点()1,2y A -,()2,1y B -,()3,3y C 都在其图象上,比较,,的大小关系.拓展变式练习11.若反比例函数22)12(--=m x m y 的图像在第一、三象限,则m 的值是 .2.在函数(为常数)的图象上有三个点(-2,),(-1,),(,),函数值,,的大小为 . 3.设有反比例函数,、为其图象上的两点,若时,,则的取值范围是___________.1y 2y 3y x k y 22--=k 1y 2y 213y 1y 2y 3y●例2 如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A 、B 两点.(1)根据图象,分别写出A 、B 的坐标; (2)求出两函数解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值拓展变式练习21. 如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)ky k x=>的图象于Q ,32OQC S ∆=,求k 的值和Q 点的坐标.2. 已知21y y y -=,1y 与x 成反比例,2y 与2x 成正比例,且当1-=x 时,5-=y ;1=x 时,1=y .求y 与x 之间的函数关系式.x yO A P C QBOxyBA D C 3.已知函数221y y y +=,1y 与2x 成正比例,2y 与x 2成反比例,且当1-=x 时,1=y ;当2=x 时,437=y .求y 关于x 的函数关系式.●例3 如图,已知反比例函数()0<=k y x k 的图象经过点A (3)m -,,过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为3. ①求k 和m 的值;②若一次函数1y ax =+的图象经过点A ,并且与x 轴相交于点C ,求∠ACO 的度数和AO :AC 的值.拓展变式练习31.已知点A 是直线)1(++-=k x y 和双曲线x k y =在第四象限的交点,AB⊥x 轴于点B ,且S 5.1=∆ABO .(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A 、C 的坐标和△AOC 的面积;(3)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.2.如图,一次函数y kx b =+的图象经过第一、二、三象限,且与反比例函数图象相交于A B ,两点,与y 轴交于点C ,与x 轴交于点D ,5OB =.且点B 横坐标是点B 纵坐标的2倍. (1)求反比例函数的解析式;(2)设点A 横坐标为m ,ABO △面积为S ,求S 与m 的函数关系式,并求出自变量m 的取值范围.3.如图所示,点A 、B 在反比例函数()0≠=k y xk 的图象上,且点A 、B•的横坐标分别为a 、2a (a >0),AC⊥x 轴于点C ,且△AOC 的面积为2. (1)求该反比例函数的解析式. (2)若点(-a ,1y )、(-2a ,2y )在该函数的图象上,试比较1y 与2y 的大小. (3)求△AOB 的面积.O xyA C DB●例4 若一次函数12-=x y 和反比例函数x k y 2=的图象都经过点(1,1).⑴求反比例函数的解析式;⑵已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; ⑶利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.拓展变式练习41.已知反比例函数x k y 2=和一次函数12-=x y ,其中一次函数图像经过(a ,b )(a +1,k b +)两点.(1)求反比例函数的解析式;(2)如图,已知点A 在第一象限,且同时在上述两个函数的图像上,求A 点坐标;(3)利用(2)的结论,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,所符合条件的P 点坐标都求出来;若不存在,请说明理由.2. C 、D 是双曲线x my =在第一象限内的点,直线CD 分别交x 轴、y 轴于 A 、B 两点,设C 、D 坐标分别是(1x ,y 1)、(2x ,y 2),连结OC 、OD.∠AOD=∠BOC=α,作CE⊥y 轴 ,DF⊥x 轴,且31==OF DFOE CE ,10=OC . ⑴求C 、D 的坐标和m 的值.⑵求OCD S ∆.⑶双曲线上是否存在一点P ,使得POD POC S S ∆∆= 若存在,请给出证明;若不存在,请说明理由.3.已知双曲线()0163>=x y x,与经过点A(1,0)、B(0,1)的直线交于点P 、Q ,连结OP 、OQ.⑴求证:ΔOAQ≌ΔOBP⑵若C 是OA 上不与O 、A 重合的任意一点,CA=a ,(0<a <1),CD⊥AB 于D ,DE⊥OB 于E.①a 为何值时,CE=AC ?②在线段OA 上是否存在点C ,使点CE∥AB?若存在这样的点,则请写出点C 的坐标,若不存在,请说明理由.xyCDA B EF OA . x y OB . x y OC .x y O D . x y O■巩固训练题一、选择题 1.函数x k y =的图象经过点(-4,6),则下列各点中在xk y =图象上的是( ) A.(3,8) B.(3,-8) C.(-8,-3) D.(-4,-6) 2.已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是( )A.正数B.负数C.非正数D.不能确定 3.已知点P 是反比例函数()0≠=k y xk 的图像上任一点,过P•点分别作x 轴,y 轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k 的值为( )A .2B .-2C .±2 D.44.如图,已知函数ky x=-中,0x >时,y 随x 的增大而增大,则y kx k =-的大致图象为( )5.已知关于x 的函数()1-=x k y 和y=-kx(k ≠0),它们在同一坐标系内的图像大致是下图中的( )二、解答题1.如图,正比例函数()0>=k kx y 与反比例函数xk y =的图象交于A 、C 两点,过A 点作x 轴的垂线,垂足为B ,过C 点作x 轴的垂线,垂足为D ,求S 四边形ABCD .2.制作一种产品,需先将材料加热到60C ︒后,再进行操作,设刻材料温度为y C ︒,从开始加热计算的时间为x 分钟,据了解,该材料加热后,温度y 与时间成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图),已知该材料在操作加工前的温度为15C ︒,加热5分钟后温度达到60C ︒. ⑴分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系;⑵拫据工艺要求,当材料的温度低于15C ︒时,须停止操作,那么从开始加热到停止操作,共经历了多长时间?3.等腰三角形OAB 在直角坐标系中的位置如图,点A 的坐标为(33,3-), 点B 的坐标为(-6,0).(1)若三角形OAB 关于y 轴的轴对称图形是三角形O A B '',请直接写出A 、B 的对称点A 'B '、的坐标;(2)若将三角形OAB 沿x 轴向右平移a 个单位,此时点A 恰好落在反比例函数x y 36=的图像上,求a 的值;(3)若三角形OAB 绕点O 按逆时针方向旋转α度(090α<<). ①当α=30时点B 恰好落在反比例函数x k y =的图像上,求k 的值. ②问点A 、B 能否同时落在①中的反比例函数的图像上,若能,求出α的值;若不能,请说明理由.y xO56015■思维与能力提升1、如图,在直角坐标平面内,函数x my =(0x >,m 是常数)的图象经过(14)A ,,()B a b ,,其中1a >.过点A 作x 轴的垂线,垂足为C ,过点B 作y 轴的垂线,垂足为D ,连结AD 、DC 、CB .(1)若ABD △的面积为4,求点B 的坐标;(2)求证:DC AB ∥;(3)当AD BC =时,求直线AB 的函数解析式.2.如图,将一块直角三角形纸板的直角顶点放在()5.01,C 处,两直角边分别与y x ,轴平行,纸板的另两个顶点恰好是直线29+=kx y 与双曲线)0(>=m y x m的交点.(1)求m 和k 的值;(2)设双曲线)0(>=m y xm 在B A ,之间的部分为L ,让一把三角尺的直角顶点P 在L 上滑动,两直角边始终与坐标轴平行,且与线段AB 交于N M ,两点,请探究是否存在点P 使得AB MN 21=,写出你的探究过程和结论.B A ,yONM CP3.如图,已知直线AB 交两坐标于A 、B 两点,且OA=OB=1,点P (a 、b )是双曲线x y 21=上在第一象内的点过点P 作PM⊥x 轴于M 、PN⊥y 轴于N .两垂线与直线AB 交于E 、F .(1)写出点E 、F 的坐标(分别用a 或b 表示) (2)求△OEF 的面积(结果用a 、b 表示); (3)△AOF 与△BOE 是否相似?请说明理由;(4)当P 在双曲线x y 21=上移动时,△OEF 随之变动,观察变化过程,△OEF 三内角中有无大小始终保持不变的内角?若有,请指出它的大小,并说明理由.■补充讲解■反思与归纳DS 金牌数学专题四直角三角形的边角关系㈠★知识点精讲1.在ABC Rt ∆中,锐角A 的对边与邻边的比叫做A ∠的_________,记做_______,即_______tan =A ;锐角A 的邻边与对边的比叫做A ∠的_________,记做_______,即_______cot =A .2.坡比、坡角①坡面的铅直高度h 与水平宽度l 的比叫做________,用字母i 表示,即________=i ,坡面与水平面的夹角α叫________,即_______tan =α. ②工程上斜坡的倾斜程度通常用坡度来表示,坡面的_______和________的比称为坡度或坡比,坡度是坡角的_______,坡度______,坡面越陡. 3.在ABC Rt ∆中,锐角A 的对边与斜边的比叫做A ∠的_________,记做_______,即_______sin =A ;锐角A 的邻边与斜边的比叫做A ∠的_________,记做_______,即_______cos =A .4.在ABC Rt ∆中,若︒=∠+∠90B A ,则A sin 与A cos 的关系是_______,由此可得()_______90sin =-︒A ,()_______90cos =-︒A .典型例题讲解及思维拓展● 例1. 在ABC Rt ∆中,︒=∠90C ,如果125tan =A ,且24=AC ,求:⑴BC 和AB 的长;⑵A sin 和A cos 的值.拓展变式练习11. 在ABC Rt ∆中,︒=∠90C ,如果135tan =A ,且26=AC ,求:⑴BC 和AB 的长; ⑵A sin 和A cos 的值.2.在ABC Rt ∆中,︒=∠90C ,D 是BC 上的一点,34tan =∠ADC ,21tan =B ,BD=5,求AD 的长.3.在ABC Rt ∆中,︒=∠90C ,D 是AC 的中点,且BC=AC ,求CDA ∠tan 和DAC ∠sin 的值.●例2.如图,某县为了增强防洪能力,加固长90米,高5米,坝顶宽为4米,迎水坡和背水坡的坡度都是1:1的横断面是梯形的防洪大坝.要讲大坝加高1米,背水坡的坡度改为1:1.5,已知坝顶宽不变,问大坝的横截面积增加了多少平方米?增加了多少立方米土方?拓展变式练习21. 如图,拦水坝的横截面为梯形ABCD,AD∥BC,AB=DC,AD=6,BC=14,梯形ABCD的面积是40,求斜坡AB的坡度.2. 如图,水库大坝的横断面为梯形,坝顶宽6m,坝高23m,斜坡AB的坡度3:1i,斜坡CD的坡度为c,求斜坡AB的坡角(精确到'1),坝底宽AD和斜坡AB的长.(精确到1.0m)3. 泸杭甬高速公路拓宽宁波段工程进入全面施工阶段,在现有双向四车道的高速公路两侧经加宽形成双向八车道.如图,路基原横断面为等腰梯形ABCD ,AD ∥BC ,斜坡DC 的坡度为i 1,在其一侧加宽DF=7.75米,点E 、F 分别在BC 、AD 的延长线上,斜坡FE 的坡度为i 2(i 1<i 2).设路基的高DM=h 米,拓宽后横断面一侧增加的四边形DCEF 的面积为s 米2. (1)已知i 2=1:1.7,h=3米,求ME 的长.(2)不同路段的i 1、i 2、、、h 是不同的,请你设计一个求面积S 的公式(用含i 1、i 2的代数式表示).● 例3. 计算︒+︒-︒-︒︒30tan 345sin 260cos 45cos 30sin拓展变式练习3 1.计算下列各题:⑴()()2121145sin 260tan 130sin 2-︒+︒---︒-; ⑵()212321+-+÷-x x x ,其中︒-︒=60cos 245sin 4x .2. 在ABC ∆中,若()0cos 1tan 223=-+-B A ,其中A ∠、B ∠均为锐角,求C ∠的度数.3. 已知31tan =α且α为锐角,求ααααcos sin 2cos 2sin 3+-的值.■巩固训练题1.已知211(sin )sin 22αα-=-,则锐角α的取值范围是 .2.在△ABC 中,90C ∠=︒且两直角边a b 、满足22560a ab b -+=,则sin A = .3.如图,已知AD 为等腰△ABC 底边上的高,且4tan 3B =,AC 上有一点E ,满足2:3AE EC =:,那么tan ADE ∠= .二.解答题1.如图,在四边形ABCD 中,60DAB ∠=︒,90ABC CDA ∠=∠=︒,2CD =,3BC =,求AB 的长.2. 两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1. 固定△ABC 不动,将△DEF 进行如下操作:(1) 如图 (1),△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),连结DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图 (2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图 (3),△DEF 的D 点固定在AB 的中点,然后绕D 点按顺时针方向旋转 △DEF ,使DF 落在AB 边上,此时F 点恰好与B 点重合,连结AE ,请你求出sinα 的值.A B E FC D 图 (1)A B E F CD 图 (2)A B() (F )C D 图 (3) Eα■ 思维与能力提升在ABC Rt ∆中,︒=∠90C ,若A ∠、B ∠、C ∠的对边分别是a 、b 、c . ⑴若()A A 22sin sin =,()A A 22cos cos =,请根据三角形函数的定义证明:①1cos sin 22=+A A ; ②BBB cos sin tan =.⑵根据上面的两个结论解答:①若2cos sin =+A A ,求A A cos sin -的值;②若2tan =B ,求B B BB sin cos 2sin cos 4+-的值.■ 补充讲解■反思与归纳DS金牌数学专题五直角三角形的边角关系㈡★知识点精讲1.仰角、俯角:①当从低处观测高处的目标时,视线与水平线所成的角叫;②当从高处观测低处的目标时,视线与水平线所成的角叫.2.方位角:指北或指南方向与_____________所成的夹角叫方位角.典型例题讲解及思维拓展●例1.如图,小唐同学正在操场上放风筝,风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B之间的距离;(2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少?(结果可保留根号)拓展变式练习11.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30︒,B村的俯角为60︒(如图7).求A、B两个村庄间的距离.(结果精确到米,参考数据2 1.4143 1.732==,)QB C PA450 60︒30︒图72.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC ,小丽同学在点A 处,测得条幅顶端D 的仰角为30°,再向条幅方向前进10米后, 又在点B 处测得条幅顶端D 的仰角为45°,已知测点A 、B 和C 离地面高度都为1.44米,求条幅顶端D 点距离地面的高度.(计算结果精确到0.1米,参考数据.)3.在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°; (2)在点A 和大树之间选择一点B (A 、B 、D 在同一直线上),测得由点B 看大树顶端C 的仰角恰好为45°;(3)量出A 、B 两点间的距离为4.5米.请你根据以上数据求出大树CD 的高度.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)23 1.732≈≈60o4.如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B ,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离. 结果保留根号,参考数据:42615sin -=︒,42615cos +=︒,3215tan -=︒,3215cot +=︒.● 例2. 如图,在某海域内有三个港口A 、D 、C .港口C 在港口A 北偏东60方向上,港口D 在港口A 北偏西60方向上.一艘船以每小时25海里的速度沿北偏东30的方向驶离A 港口3小时后到达B 点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B 处测得港口C 在B 处的南偏东75方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B 处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.拓展变式练习21.根据“十一五”规划,元双(双柏—元谋)高速工路即将动工.工程需要测量某一条河的宽度.如图,一测量员在河岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得 68=∠ACB .求所测之处河AB 的宽度.(o o o sin68≈0.93,cos68≈0.37,tan68≈2.48)2.载着“点燃激情,传递梦想”的使用,6月2日奥运圣火在古城荆州传递, 途经A 、B 、C 、D 四地,其中A 、B 、C 三地在同一直线上,D 地在A 地北偏东45º方向,在B 地正北方向,在C 地北偏西60º方向.C 地在A 地北偏东75º方向.B 、D 两地相距2km .问奥运圣火从A 地传到D 地的路程大约是多少?(最后结果....保留整数,参考数据:2 1.4,3 1.7≈≈)A CB3.如图,A 、B 、C 三个粮仓的位置如图所示,A 粮仓在B 粮仓北偏东26,180千米处;C 粮仓在B 粮仓的正东方,A 粮仓的正南方.已知A 、B 两个粮仓原有存粮共450吨,根据灾情需要,现从A 粮仓运出该粮仓存粮的53支援C粮仓,从B 粮仓运出该粮仓存粮的52支援C 粮仓,这时A 、B 两处粮仓的存粮吨数相等.(sin 260.44=,cos 260.90=,tan 260.49=) (1)A 、B 两处粮仓原有存粮各多少吨? (2)C 粮仓至少需要支援200吨粮食,问此调拨计划能满足C 粮仓的需求吗? (3)由于气象条件恶劣,从B 处出发到C 处的车队来回都限速以每小时35公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶4小时,那么小王在途中是否需要加油才能安全的回到B 地?请你说明理由.■巩固训练题 一、选择题1. 已知α为锐角,且cot (90°-α)=3,则α的度数为( ) A .30° B .60° C .45° D .75°北南 西东CB A262.如图,在Rt △ABC中,∠C=900,∠A=300,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连结FB,则tan ∠CFB 的值等于( )32353A 53333、 B、 C、 D、3.已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( )A .sin 40mB .cos 40mC .tan 40mD .tan 40m4.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( ) A .154B .14C .15D .45.已知α为锐角,则ααcos sin +=m 的值( ) A .1>m B .1=m C .1<m D .1≥m6. 如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半 圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的值为( )A .43B .34C .45D .357.在Rt △ABC 中,∠C=90°,若AC=2BC,则tanA 的值是( )A.21B. 2C. 55D. 258.已知ABC ∆中,AC=4,BC=3,AB=5,则sin A =( ) A. 35B. 45C. 53D. 349. 如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.5的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离约为( )A .4.5mB .4.6mC .6mD .8m10.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是( ).A.250m B.2503m C.50033m D.2502m.A O B东北A DB E 图6 i =1:C 二.解答题1. 如图,港口B 位于港口O 正西方向120海里处,小岛C 位于港口O 北 偏西60°方向.一艘科学考察船从港口O 出发,沿北偏西30°的OA 方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°方向以60海里/小时的速度驶向小岛C ,在小岛C 用一小时装补给物资后,立即按原来的速度给考察船送.⑴快艇从港口B 到小岛C 需要多少时间?⑵快艇从小岛C 出发后最少需要多少时间才能和考察船相遇?2. 如图6,梯形ABCD 是拦水坝的横断面图,(图中3:1 i 是指坡面的铅 直高度DE 与水平宽度CE 的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD 的面积.(结果保留三位有效数字.参考数据:3≈1.732,2≈1.414)。

人教版九年级数学下册培优体系讲义

人教版九年级数学下册培优体系讲义

第二十六章 反比例函数1. 反比例函数的意义预习归纳两个变量x ,y 满足 时,y 是x 的反比例函数,其中k 是 .例题讲解【例】在反比例函数4y x=中,当x =2时,函数 y 的值为( ) A .4 B .2 C .-2 D .0基础题训练1.下列函数中是反比例函数的是( ) A .y =2x B .2x y = C . 2y x = D . 21y x =+ 2.下列函数:①12y x =;②2x y =③xy =3 ;④ky x=;⑤12y x -=,其中y 是x 的反比例函数的有( )A .1个B .2个C .3个D .4个 3.若函数1a y x+=是反比例函数,则 a 的取值范围是( ). A .a>-1 B .a≠-1 C .a<-1 D .a≠0 4.当路程 s 一定时,速度 v 与时间 t 之间的函数关系是( ).A .正比例函数B . 一次函数C .反比例函数D .不同于以上的函数关系 5.下列函数关系中是反比例函数的是( )A .等边三角形面积与边长的关系B .直角三角形两锐角的关系C .长方形面积一定时,长与宽的关系D .等腰三角形顶角与底角的关系 6.下列各点中,在函数2y x=的图象上的是( ) A .(2,1) B .(-2,1) C .(2,-2) D .(2,2) 7. (2014.齐齐哈尔)在平面直角坐标系x o y 中,点 P 到x 轴的距离为3个单位长度,到原点o 的距离为5个单位长度,则经过点 P 的反比例函数的解析式为 . 8.已知 y 是x 的反比例函数,当 x =2时,y =-6 (1)求 y 与x 的函数关系式; (2)当 x =4时,求 y 的值中档题训练9.函数21y k x +=是反比例函数,则k 的取值范围是( ). A .k ≠12- B .k >12- C .k <12- D .k ≠0 .10.若 y 与x 成正比例,y 与 z 成反比例,则下列说法正确的是( )A .z 是x 的正比例函数B .z 是x 的反比例函数C .z 是x 的一次函数D .z 不是x 的函数 11.若y 与一3x 成反比例,x 与z 成正比例,则 y 是z 的( )A .正比例函数B .反比例函数C . 一次函数D .不能确定12.反比例函数()212m y m +=-的函数值为3时,求自变量x 的值.13.已知梯形的面积为60cm 2 ,其上底是下底的13,设下底长为x cm ,高为 y cm . (1)求y 与.x 的函数关系式; (2)当 y =6时,求x 的值.综合题训练14.已知函数 y =y 1-y 2 ,y 1与x 成反比例,y 2与 x -2成正比例,且当x =1时,y =-1;当x =3时,y =5(l)求 y 与x 的函数关系式;(2)当x =-3时,求y 的值.2.比例函数的图象与性质(一)预习归纳1.反比例函数的图象叫做2.反比例函数kyx=与kyx=-的图象关于对称,也关于对称.例题讲解【例】如图是我们学过的反比例函数的图象,它的函数解析式可能是( )A. y=x2B.4yx= C.3yx=- D. y=12x基础题训练1.(2014 邵阳)若反比例函数kyx=的图象经过点(-1,2),则k的值是.2. (2015 河南) 如图,直线y = kx与双曲线y =2x(x>0)交于点A(1,a),则k= .3.函数2(1)my m x-=-为反比例函数,则m为()A. 1B.±1C.0D. -14.反比例函数的图象经过点(3,2),下列各点中,在此函数图象上的点是()A. (3,-2)B. (-3,2)C. (-3,-2)D. (-2,3)5.反比例函数2yx=的图象位于()A.第一、三象限B.第二、三象限C. 第二、四象限D.第三、四象限6.已知点(1,1)在反比例函数ky x=(k 为常数,k ≠0)的图象上,则这个反比例函数的大致图象是( )7.(2014年漳州)双曲线1k y x+=所在象限内,y 的值随x 值的增大而减小,则满足条件的一个数值k 为8.(2015温州)如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数ky x=的图象经过点B ,则k 的值.9.若点(-1,4)是反比例函数ky x=图象上一点,则此函数图象必经过点( ). A. (2,2) B .(2,-2) C .(-4,-1) D .(-1,-4) 10.已知反比例函数1y x=,下列结论不正确的是( ). A.图象经过点(1,1) B.图象在第一、三象限 C. C. 当x>1时,0<y<1D.当x<0时,y 随x 的增大而增大11.在同一直角坐标系中,正比例函数y=x 与反比例函数2y x=的图象大致是( )A. B. C. D.12.反比例函数3y x=关于x 轴对称的图象的函数解析式为13.(2015·哈尔滨)点A (-1,1y ),B (-2,2y )在反比例函数2y x=的图象上,则1y ,2y 的大小关系是( ).A. 1y > 2yB.1y = 2yC.1y <1y D .不能确定 14.如图,若点A 在反比例函数ky x=(k≠0)的图象上,AM ⊥x 轴于点M ,△AMO 的面积为3.(1)求k 的值;(2)当A 点在反比例函数图象上运动时,其他条件不变,△AMO 的面积会发生变化吗?并说明你的理由.综合题训练15.(2015·沈阳)如图,已知一次函数332y x =-与反比例函数ky x=的图象相交于点A(4,n ),与x 轴相交于点B.(1)填空:n 的值为 ,k 的值为 ;(2)以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标; (3)考察反比例函数ky x=的图象,当y≥2时,请直接写出自变量x 的取值范围.3.反比例函数的图象与性质(二)预习归纳1.当k >0时,反比例函数()0ky k x=≠的图象在第 象限;在每个象限的图象上,y 随x 的增大而 . 2.当k <0时,反比例函数()0ky k x=≠的图象在第 象限;在每个象限的图象上,y 随x 的增大而 .例题讲解【例】(2015·泰州)点(a -1,y 1)、(a +1,y 2)在反比例函数()0ky k x=>的图象上,若y 12,则a 的取值范围是 .基础题训练1.若双曲线21k y x -=经过第一、三象限,则k 的取值范围是( ). A .12k > B .12k < C .12k = D .不存在2.反比例函数1k y x-=的图象,当0x <时,y 随x 的增大而减小,则k 的取值范围是( ).A .k <1B .k ≤1C .k >1D .k ≥13.(2015·包头)已知点A (-2,y 1)B (-1,y 2)和C (3,y 3)都在反比例函数3y x=的图象上,则y 1,y 2,y 3的大小关系为 (用“<”连接). 4.正比例函数y =kx 和反比例函数ky x=在同一坐标系内的图象为( ).ABC D5.(2014·天水)已知函数my x=的图象如图,以下结论:①m <0;②在每个分支上,y 随x 的增大而增大; ③若点A (-1,a )点B (2,b )在图象上,则a <b ;④若点P (x ,y )在图象上,则点P 1(-x , -y )也在图象上.其中正确的个数是( ).A .4个B .3个C .2个D .1个 6.(2015·广州)已知反比例函数7m y x-=的图象的一支位于第一象限. (1)判断该函数图象的另一支所在的象限,并求m 的取值范围; (2)如图,O 为坐标原点,点A 在该反比例函数位于第一象限的图 象上,点B 与点A 关于x 轴对称,若△OAB 的面积为6,求m 的值.7.如图,已知一次函数()0y kx b k =+≠的图像与x 轴,y 轴分别交于A (1,0),B (0,1)两点,且又与反比例函数()0my m x=≠的图象在第一象限交于C 点,C 标为2.(1)求一次函数的解析式;(2)求C 点坐标及反比例函数的解析式.中档题训练8.(2015·兰州)在同一直角坐标系中,一次函数y =kx -k 与反比例函数()0≠=k xky 的图象大致是( )ABC D9.反比例函数xky =的图象与正比例函数y =kx 的图象的交点个数为( ). A . 0个 B .1个 C .2个 D .1个或2个 10.(2015·天津)已知反比例函数xy 6=,当1时,y 的取值范围是( ). A .0<y <1 B .1<y <2 C .2<y <6 D .y >6综合题训练11.(2015·上海)已知:如图,在平面直角坐标系xOy 中,正比例函数x y 34=的图象经过点A ,点A 的坐标为4,反比例函数xmy =的图象也经过点A ,第一象限内的点B 在这个反比例函数的图象上,过点B 作BC ∥x 轴,交y 轴于点C ,且AC =AB ,求: (1)这个反比例函数的解析式; (2)直线AB 的表达式 .专题 反比例函数的概念、性质小结与复习一、反比例函数的基本概念1.在下列函数中,m 为何值时y 是x 的反比例函数?(1)xm y 2+= (2)x m y 42-= (3)()221-+=m x m y2.已知点A (x 1,y 1)和点B (x 2,y 2)都在xy 6=的图象上,若x 1· x 2=4,求y 1· y 2的值.二、反比例函数图象的性质3. 若反比例函数xm y 1+=的图象在第一、三象限,则m 的取值范围是( ). A . m >-1 B .m ≥-1 C .m <-1 D .m ≤-1 4.若反比例函数ky x=的图象在第二、四象限, 则一次函数y =kx +k 图象经过( ). A .第一、二、三象限 B .第二、三、四象限 C .第一、二、四象限 D .第一、三、四象限5.(2015·武汉)在反比例函数xmy 31-=图象上有两点A (x 1,y 1),B (x 2,y 2),x 1<0< x 2,y 1< y 2,则m 的取值范围是( ). A . 31>m B .31<m C .31≥m D .31≤m 6.在同一坐标系中,函数xky =与k kx y +=的图象大致是( ).BDO7.(2014·赤峰)如图,反比例函数xky =(k >0)的图象与以原点(0,0)为圆心的圆 交于A 、B 两点,且A (1,),图中阴影部分的面积等于 .(结果保留π)8.(2015·兰州)若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数xky =(k >0)的图 象上,且x 1=-x 2,则( ).A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.y 1=-y 29.如图,已知反比例函数xky =(x >0),则k 的取值范围是( ). A .1<k < B .2<k <3 C .2<k <4 D .2≤k ≤4211 B专题 反比例函数与一次函数1.已知反比例函数xky =(k 为常数,k ≠0)的图象经过点A (2,3). (1)求这个函数的解析式;(2)判断点B (-1,6),C (3,2)是否在这个函数的图象上,并说明理由; (3)当-3<x <-1时,求y 的取值范围.2.(2015·广东)如图,反比例函数xky =(k ≠0,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3BD . (1)求k 的值;(2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C ,D 两点距离之和d =MC +MD 最小,求点M 的坐标.3.如图,A (-4,n ),B (2,-4)是一次函数y =kx +b 的图象和反比例函数xmy =的图象的两个交点.(1)求反比例函数和一次函数的解析式 ;(2)求方程kx +b -xm=0的解(请直接写出答案);B(3)求不等式kx +b -xm<0的解集(请直接写出答案).4.如图,一次函数y =kx +b 与反比例函数y =xm的图象交于A (2,3)、B (-3,n )两点. (1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx +b >xm的解集 ; (3)过点B 作BC ⊥x 轴,垂足为C ,求S △ABC .5.(2015·北京)在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与双曲线y =x8的一个交点为P (2,m ),与x 轴、y 轴分别交于点A 、B . (1)求m 的值;(2)若P A =2AB ,求k 的值.6.如图,已知反比例函数y =xk的图象经过第二象限内的点A (-1,m ),AB ⊥x 轴于点B ,△AOB 的面积为2,若直线y =ax +b 经过点A ,并且经过反比例函数y =xk的图象上另一点C (n ,-2).(1)求直线y =ax +b 的解析式;(2)设直线y =ax +b 与x 轴交于点M ,求AM 的长.专题 勾股定理与反比例函数1.如图,直线y =2x 与双曲线y =xk(x >0)的图象交于点A ,且OA =5,求k 的值.2.如图,直线y =x 向右平移b 个单位后得到直线l ,l 与函数y =xk(x >0)的图象相交于点A ,与x 轴相交于点B ,且228OA OB -=,求k 的值.x3.如图,点B 为双曲线y =xk(x >0)上一点,直线AB 平行于y 轴交直线y =x 于点A ,若224OB AB -=,求k 的值.4.如图,点A 为双曲线()20y x x=-<上一点,AB ∥x 轴交直线y x =于点B ,求22AB OA -的值.5.如图,反比例函数y =xk(x >0)图象上的两点A 、B 的横坐标分别为1,3.点P 为x 轴正半轴上一点,若PA PB -的最大值为,则k = .6.如图,直线y =x -1交x 轴于D ,交双曲线y =xk(x >0)于B ,直线y =2x 交双曲线y =xk(x >0)于A ,OA =OB ,求k 的值.7.如图,直线y x =向右平移b 个单位后得直线l ,l 与双曲线()60y x x=>相交于点A ,与x 轴相交于点B ,求22OA OB -的值.8.如图,B 点为双曲线()100y x x=>上一点,直线AB 平行于y 轴,交直线y x =于点A ,求22OB AB -的值.9.如图,直线y x m =-+与双曲线2y x=-相交于C 点,与y 轴交于B ,与x 轴交于A 点,求BC AC ⋅的值.10.如图,直线4y x =-+交x 轴于点A ,交y 轴于点B ,点P 为双曲线()60y x x=>上一点,PC ⊥x 轴于C ,交AB 于点N ,PD ⊥y 轴于D ,交AB 于点M . (1)求证:OA =OB ;(2)当P 点运动时,AM BN ⋅的值是否发生变化?若不变,求其值.4.实际问题与反比例函数预习归纳基本公式:s =vt ,F =PS ,U =IR ,S △=21ah .例题讲解【例】在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会改变.密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图所示,则当体积V =10cm 3时,气体的密度为( ). A .5kg/m 3 B .2kg/m 3 C .100kg/m 3 D .1kg/m3(m 3)基础题训练1.某同学要到离家2000米外的学校上学,那么他每分钟走m (米)和所用时间t (分钟)之间的函数关系式为______________.2.已知三角形的面积一定,则它底边a 上的高h 与底边a 之间的函数关系的图象大致是( ).A .B .C .D .3.已知甲、已两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系的图象大致是( )A .B .C .D . 4.(2015·河北)一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x (年)成反比例关系,当x =2时,y =20,则y 与x 的函数图象大致是( )A .B .C .D .5.你吃过拉面吗?实际在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y (m )是面条粗细(横截面积)S (mm 2)的反比例关系,其图象如图所示. (1)写出y 与S 之间的函数关系式;(2)当面条粗1.62mm 时,求面条的总长度.中档题训练6.某空调厂的装配车间计划组装9000台空调.(1)从组装空调开始,每天组装的台数y (台)与组装的天数x (天)有怎样的函数关系?(2)原计划60天完成,由于气温升高,厂家决定让这批空调提前10天上市,那么组装车间每天至少要多组装多少台?(mm 2)m,6小时可将满池水全部排空.7.某蓄水池的排水管每小时排水83(1)求蓄水池的容积;m),此时将满池水排空所需时间t (2)如果增加排水管,使每小时排水量达到Q(3(h),求Q与t之间的函数关系式;(3)如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少?8.有200个零件需要一天内加工完成,设当工作效率为每人加工P个零件时,需要q个工人.(1)求q与p的函数关系式;(2)若每人每天工作效率提高25%,则工人数减少百分之多少?综合题训练9.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(1)猜测并确定y与x之间的函数关系式;(2)设销售贺卡的利润为w元,求w与x之间的函数关系式;(3)若规定此贺卡的售价最高不能超过10元/个,当日销售单价x定为多少时,才能获得最大日销售利润?5.实际问题与反比例函数(二)预习归纳基本公式:s =vt ,F =PS ,U =IR ,S ∆=12ah . 例题讲解【例】汽车油箱中有油20升,汽车行驶过程中每小时耗油x 升,则其行驶时间y (小时)与x (升)之间的函数关系式为( ) A .y =20x B .y =20x C .y =20x D .y =20—x 基础题训练1. 面积为4的矩形一边为x ,另一边为y ,则y 与x 的变化规律用图象大致表示为( )2. 一定质量的二氧化碳,当它的体积V =53m 时,它的密度3=1.98kg m ρ/ . (1)求ρ与V 的函数关系式;(2)当V =93m 时,求二氧化碳的密度ρ.3.几位同学玩撬石头的游戏,已知阻力和阻力臂不变,分别是1200牛顿和0.5米,设动力为F ,动力臂为l .(1)动力F 与动力臂有怎样的函数关系?(2)小刚选取了动力臂为2米的撬棍,你能得出他撬动石头至少需要多大的力吗? 4.(2014▪云南)将油箱注满k 升油后,轿车行驶的总路程s (单位:千米)与平均耗油量a (单位:升/千米)之间满足反比例函数关系s =ka(k 是常数,k ≠0).已知某轿车油箱 注满后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.D(1)求该轿车可行驶的总路程s 与平均耗油量a 之间的函数解析式(关系式); (2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?中档题训练5.如图,一个圆台形的物体的上底面是下底面的12,放在桌子上它对桌面的压强为100Pa ,若倒过来后,它对桌面的压强是 Pa .6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa)是气球体积V (3m )的反比例函数,其图象如图所示,当气球内的气压大于160kPa 时,气球将爆炸,为了安全起见,气球的体积应( ).A .不大于0.63m B .不大于963m C .不小于0.63m D .不小于963m7.码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间 (1)轮船到达目的地后开始卸货,卸货速度v (单位:吨/天)与卸货时间t (单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?3m )18.制作一种产品,需先将材料加热,达到60℃后,再进行操作.据了解,该材料停止加热时,温度y (℃)与时间x (min )成反比例关系,如图所示.已知该材料在操作加工前的温度为15℃,加热5min 后温度达到60℃. (1)当x ≥5时,求y 与x 的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,必须停止操作,那么从开始加热到停止操作,共经历了多少时间?综合题训练9.(2015▪衡阳)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x (时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系式; (2)血液中药物浓度不低于4微克/毫升的持续时间为多少小时?)专题 反比例函数与面积问题1.如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,△ABP的面积为2,求反比例函数的解析式.2.如图,点A 为双曲线y =2x 的图象上一点,过A 作AB ∥x 轴交双曲线y =-4x于点B ,连AO ,BO ,求△AOB 的面积.3.如图,点A 在双曲线y =1x 上,点B 在双曲线y =kx上,且AB ∥x 轴,AD ⊥x 轴,BC ⊥x 轴,C 、D 在x 轴上,若长方形ABCD 的面积为6,求k 的值.4.如图,在平面直角坐标系中,函数y =kx(x >0,常数k >0)的图象经过点A (1,2)和点B ,过点B 作y 轴的垂线,垂足为C ,若△ABC 的面积为2,求点B 的坐标.5.如图,直线y =2x —4交x 轴、y 轴于B 、C ,交双曲线y =kx于E ,且BC =2BE ,求k6.(2015·成都)如图,一次函数y =-x +4的图象与反比例函数ky x(k 为常数,且k ≠0)的图象交于A (1,a ),B 两点.⑴求反比例函数的表达式及点B 的坐标;⑵在x 轴上找一点P ,使PA +PB 的值最小,求满足条件的点P 的坐标及△PAB 的面积.7.(2015·陕西)如图,在平面直角坐标系中,过点M (-3,2)分别作x 轴、y 轴的垂线与反比例函数4y=的图象交于A 、B 两点,求四边形MAOB 的面积.8.如图,点B 为x 轴正半轴上一点,点A 为双曲线4y x=(x >0)上一点,且AO =AB ,过B 作BC ⊥x 轴交双曲线于C 点,求S △ABC .9.(2015·南通)如图,直线y =-mx +n 与双曲线ky x=相交于A (-1,2),B (2,b )两点,与y 轴相交于点C . ⑴求m 、n 的值;⑵若点D 与点C 关于x 轴对称,求△ABD 的面积.x专题 反比例函数与几何小综合1.如图,直线122y x =-+交x 轴于A 点,交y 轴于B 点,点P 为双曲线ky x=(x >0)上一点,且PA =PB ,∠APB =90°,求k 的值.2.如图,直线122y x =--与坐标轴交于A 、B 两点,与双曲线ky x=(x <0)交于C 点,且AC =AB .求k 的值.3.如图,y =-5x +5与坐标轴交于A 、B 两点,△ABC 为等腰直角三角形,BC =AC ,双曲线ky =(x <0)过C 点.求k 的值.4.双曲线ky x=经过P 1,P 2两点,△AOP 1为等腰直角三角形,AP 2⊥x 轴且AP 2=1,求k 的值.5.如图,直线115y x =-分别与x 轴、y 轴相交于B 、A ,点M 为双曲线ky x=(x >0)上一点,若△AMB 是以AB 为底的等腰三角形,求k 的值.6.(2010·兰州) 如图,P 1是反比例函数ky x=(k >0)在第一象限图象上的一点,点A 1的坐标为(2,0) .⑴当点P 1的横坐标逐渐增大时,△P 1OA 1的面积将如何变化?⑵若△P OA 与△P A A 均为等边三角形,求反比例函数的解析式及A 2点的坐标.7.如图,直线y =2x -4分别交x 轴、y 轴于B 、A 两点,交双曲线ky x=(x >0)于点C ,且S △AOC =8.⑴求双曲线的解析式;⑵在C 点右侧的双曲线上是否存在点P ,使∠PBC =45°?若存在,求P 点坐标;若不存在,请说明理由.8.如图所示,已知A(4,m),B(-1,n)在反比例函数8yx=的图象上,直线AB与x轴交于C,如果点D在y轴上,且DA=DC,⑴求C点的坐标;⑵求D点的坐标.9.如图1,直线y=-x+4交x轴、y轴于B、C,点A为x轴正半轴上一点,S△ABC=165,C A的延长线交双曲线kyx=(x>0)于E点,且A C=4AE.⑴求点A的坐标及k的值;⑵如图2,正方形OMKN的顶点M、N分别在双曲线及线段BC上,求出点M、N的坐标.专题反比例函数与四边形1.如图,四边形ABCO为等腰梯形,双曲线kyx=过点B,且S四ABCO=4,求k的值.2.如图,矩形ABCO,点E在AB上,且BE=2AE,点F在BC上,双曲线kyx=正好过E、F两点,S△BOF=4,求k的值.3.如图,B(-1,0),正方形ABCD的中心为O1,双曲线kyx=正好经过C,O1两点,求k的值.4.如图,矩形ABCD的面积为8,点A坐标为(1,2),双曲线kyx=正好经过B、D两点,且AB∥x轴,求k的值.5.如图,正方形ABCD,A(0,1),C(-5,0),双曲线kyx=过D点,求k的值.6.在平面直角坐标系中,直线y=-2x+2分别与x轴、y轴相交于点A、B,四边形ABCD是正方形,双曲线kyx=在第一象限经过D点.(1)求双曲线的函数解析式;(2)将正方形ABCD沿x轴向左平移多少个单位长度时,点C的对应点C’恰好落在(1)中的双曲线上?专题反比例函数与一元二次方程1.如图,已知直线y=-x+2分别与x轴、y轴相交于点A、B,与双曲线kyx=交于点E、F,若AB=3EF,求k的值.2.(2010·武汉)如图,直线y x b=+与y轴交于点A,与双曲线kyx=在第一象限交于B、C两点,且AB·AC=4,求k的值.3.如图,直线y=-x+5与双曲线kyx=交于A、B两点,点C为双曲线上A、B之间的一点,求△ABC的最大面积.4.如图,将直线y =-x 沿x 轴正方向平移5个单位后与()0ky k x=>的图像交于A 、B 两点,且AB=,求k 的值.5.如图,△ABC 的三个顶点分别为A (1,2),B (2,5),C (6,1).若函数ky x=在第一象限内的图象与△ABC 有交点,求k 的取值范围.专题 反比例函数与圆1.如图,半径为5的⊙P 与y 轴交于M (0,-4),N (0,-10)两点,函数()0ky x x=<的图象过P 点,求k 的值.2.如图,直线AB 与坐标轴交于A (-2,0),B (0,1)两点,M 为线段AB 上的一点,⊙M 分别与OA 、OB 相切与点C 、D ,反比例函数ky x=的图象过点M ,求k 的值.3.如图,⊙O 1与y 轴切于点C (0,-2),与x 轴负半轴交于点A (-2,0),B 两点,双曲线ky x=过点O 1,点P 在双曲线上,PE ⊥x 轴,垂足为E ,求S △OPE .4.如图,⊙O 1与坐标轴于A 、B 、C 、D 四点,A (1,0),B (-3,0),D (0,-1),双曲线ky x=过点O 1,求k 的值.5.如图,半径为5的⊙O 1与直线y =x +2于A (0,2),C 两点,交y 轴于B (0,10),CD 是⊙O 1的直径,若函数()0ky x x=<的图象过点D ,求k 的值.专题 反比例函数与二次函数1.(2010·武汉)二次函数()20y ax b b =+>与反比例函数ay x=在同一坐标系中的图象可能是( )A B C D 2.(2014·长沙) 函数ay x=与函数()20y ax a =≠在同一坐标系中的图象可能是( )A B C D3.(2014·南昌) 已知反比例函数ky x=与的图象如右图,则二次函数2224y kx x k =-+的图象大致是()A B C D4.(2014·河北)定义新运算:a ○+b =()()00ab ba b b⎧>⎪⎪⎨⎪-<⎪⎩,例如:4○+5=45,4○+(-5)=-45.则函数y =2○+x(x ≠0)的图象大致是( )A B C D专题 反比例函数综合1.(2014·济南)如图1,反比例函数ky x(x >0)的图象经过点A(1),射线AB 与反比例函数图象交于另一点B (1,a ),射线AC 与y 轴交于点C ,∠BAC =75°,AD ⊥y 轴,垂足为D .(1)求k 的值;(2)求tan ∠DAC 的值及直线AC 的解析式; (3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线l ⊥x 轴,与AC 相交于点N ,连接CM ,求△CMN 面积的最大值.2.水产公司有一种产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下表:观察表中数据,发现这种海产品的每天销售量y (千克)是销售价格x (元/千克)的函数,且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)按(2)中定价继续销售15天后,公司发现声音的这些海产品不超过2天必须全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?图1第二十七章相似1.图形的相似预习归纳两个形状,大小的图形是相似形.例题讲解【例】两个三角形相似,其中一个三角形的两个内角分别为40°,60°,那么另一个三角形的最大角为,最小角为.基础题训练1.下列图形中,不是相似图形的是()2.下列说法正确的是()A.相似三角形一定全等B.不全等的两个三角形一定不相似C.全等三角形不一定是相似三角形D.全等三角形一定是相似三角形3.在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地的实际距离是()A.1250km B.125km C.12.5km D.1.25km4.已知△ABC与△A1B1C1相似,顶点A、B、C的对应点分别是A1、B、C1,∠A=55°,∠B=100°,则∠C1的度数是()A.55°B.100°C.25°D.不能确定5.在下面的三个矩形中,相似的是()A.甲和乙B.甲和丙C.乙和丙D.甲、乙和丙1cm 2cm2cm4cm3cm4cm 丙乙甲6.如图,梯形ABCD与梯形A`B`C`D`相似(A、B、C、D的对应点分别为A`、B`、C`、D`),则α= ,β= ,x= ,y= ,z= .A`A7.请在方格纸中画出与原图形相似的图形.8.如图,DE ∥BC . (1)求AB AD 、AC AE 、BCDE的值; (2)证明△ADE 与△ABC 相似.2.523954ED CBA中档题训练9.下列五个结论:①两个正三角形相似;②两个等腰直角三角形相似;③两个菱形相似;④两个矩形相似;⑤两个正方形相似.其中正确的结论是 . 10. 要做甲乙两种形状相同(相似)的三角形框架,已知三角形框架甲的三边长分别为50cm 、60cm 、80cm ,三角形框架乙的一边长为20cm ,那么,符合条件的三角形框架乙共有( ) A . 1种 B . 2种 C . 3种 D . 4种 11. 如图,△ABC 与△DEF 相似,∠B 、∠E 为钝角,求未知边x 、y 的长度.y x 8241614FE DCBA12.如图,△ABC 中,D 、E 分别在边AB 、AC 上,DE ∥BC ,AD =2BD ,AE =2CE ,32BC DE . 求证:△ABC 与△ADE 相似.E D CBA综合题训练13.在AB =30m ,AD =20m 的矩形花坛四周修筑小路.(1)如图1,如果四周小路的宽均相等,那么小路四周所围成的矩形ABCD 和矩形ABCD 相似吗?请说明理由.图1D`C`B`A`DCBA(2)如图2,如果相对着的两条小路的宽均相等,小路的宽x 与y 的比值为多少时,能使小路四周所围成的矩形ABCD 和矩形ABCD 相似?请说明理由.图2D`C`B`A`yxDCBA2. 相似三角形的判定(一)预习归纳1.三条平行线截两条直线,所得的 比相等. 2.平行于三角形一边的直线截其他两边(或两边的延长线),所得的 相等. 3.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所得的三角形与原三角形 .例题讲解【例】如图,在△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,DF ∥AC ,若AC =10,BC =20,DE =12,求DF 的长.E FDCBA基础题训练1.如图l 1∥l 2∥l 3,下列比例式不成立的是( )A .EF DE BC AB = B . EF DF BC AC = C . CF AD AC AB = D . DFACDE AB =2.(2015·长沙)如图,在△ABC 中,DE ∥BC ,31=BC DE ,DE =6,则BC 的长是 .3.(2015·哈尔滨)如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC的延长线上,连接EF ,分别交AD 、CD 于点G 、H ,则下列结论错误的是( )A .EF EG BE EA = B . GD AG GH EG = C . CF BC AE AB = D . ADCFEH FH =4.(2015·成都)如图,在△ABC 中,DE ∥BC ,AD =6,DB =3,AE =4,则EC 的长为( ) A . 1 B . 2 C . 3 D . 4第2题图第3题图第4题图第1题图l 3l 2l 1ABCDE H ABDEABCDE F G E D CB A5.如图,菱形ABCD 内接于△AEF ,AE =5,AF =4,求菱形的边长.AEFBDC6.如图,在△ABC 中,直线DN 平行于中线AF 交AB 于点D ,交AC 的延长线于点E ,交边BC 于点N .求证:ACAEAB AD =. N A EF BDC中档题训练7.(2015·宁夏)在平行四边形ABCD 中,E 为BC 边上的一点,连接AE . (1)若AB =AE ,求证:∠DAE =∠ADC ;(2)若点E 为BC 的中点,连接BD ,交AE 于点F ,求EF :F A 的值.BE8.如图,△ABC 中,∠ACB 的平分线CD 交AB 于D ,过B 作BE ∥CD 交AC 的延长线于点E . 求证:AD ACDB CB=.9.如图,四边形ABCD 中,AD ∥BC ,AC ,BD 交于点O ,过点O 作EF 分别交AB ,CD 于E ,F ,且EF ∥BC ,求证:OE =OF .B10.如图,在△ABC 中,点E 是AC 上一点,DE ∥BC 交AB 于D ,EF ∥AB 交BC 于F ,AD =3,BD =5,DE =4,求CF 的长.BC综合题训练11.在△ABC 中,点D 为边BC 上一点,点E 为边AC 的中点,AD 与BE 交于点P .(1)如图1,当BD =CD 时,PEPB= ; (2)如图2,当CD =2BD 时,求证:PE =PB .图1CDCD图23. 相似三角形的判定(二)预习归纳如果两个三角形的三组 的比相等,那么这两个三角形相似.例题讲解【例】△ABC 的三边长分别为6、8、12,△A 1B 1C 1的三边长分别为2、3、2.5,△A 2B 2C 2的三边长分别为6、3、4,则△ABC 与 相似.基础题训练1.一个三角形三边的长分别是3、5、7,另一个与它相似的三角形的最长边是21,则其他两边长的和是( )A .19B .17C .24D .212.已知△ABC 的三边长分别为6,7.5,9,△DEF 的一边长为4,若△DEF 与△ABC 相似,则△DEF 的另两边长可能为( ) A .2,3 B .4,5 C .5,6 D .6,73.如图,A 、B 、C 、P 、Q 、甲、乙、丙、丁都是正方形网格的格点,为使△PQR ∽△ABC ,则点R 应是甲、乙、丙、丁四点中的( )A .甲B .乙C .丙D .丁4.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( ).CB5.△ABC 的三边长分别为2A 1B 1C 1的两边长分别为1,当△A 1B 1C 1的第三边长为 时,△ABC 与△A 1B1C 1相似.ABCD。

人教版九年级数学上培优精编讲义

人教版九年级数学上培优精编讲义
2 ⑦ 2x2 5xy y2 0 .其中为一元二次方程的是____________.
2. 方程 2x2 -1 3x 的二次项是________,一次项系数是____,常数项是______.
3. 若方程 (m 1)x2 mx 1 0 是关于 x 的一元二次方程,则 m 的取值范围是
2. 已 知 x=a 是 一 元 二 次 方 程 x2 3x 5 0 的 一 个 根 , 则 代 数 式 a2 3a
. ———— 3. 用你认为合适的方法解方程:
(1) x2 4x 1 0 ;
(2) 2x(3x 2) (x 1)(3x 2) ;
(3) x2 2x 8 0 ;

x1
1,
x2


4 5

(2) x1 4 , x2 5 .
(3)
x1


1 3

x2

5

(4) x1 3 3 , x2 3 .
(5)
x1

k
1 k

x2
1.
10. x3 4x2 4x 16 0
解: x2 x 4 4 x 4 0 ,
式法.
4.
完全平方; x b
b2 4ac ;
2a
ax2 bx c 0 ( a 0,a,b,c是常数 );
分解因式;若 ab=0,则 a=0 或 b=0.
精讲精练
1.④⑤;
2. 2x2 , 3 , 1;
3.C; 4. 1;
5.C;
6.C;
7.(1) x2 2x 1 0
3x
3
2x(x 1) 2x2 3 ;

人教版九年级数学培优辅导资料

人教版九年级数学培优辅导资料

九年级数学培优辅导资料第1、2讲 一元一次方程与二元一次方程组一、目标要求:1.了解等式、方程、一元一次方程和二元一次方程(组)的概念,掌握等式的基本性质. 2.掌握一元一次方程的标准形式,熟练掌握一元一次方程和二元一次方程组的解法. 3.会列方程(组)解决实际问题.二、课前热身1.方程2x-5=3的解是( )A .x=4B .x=-4C .x=1D .x=-12.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A.1.2×0.8x+2×0.9(60+x )=87B.1.2×0.8x+2×0.9(60﹣x )=87C.2×0.9x+1.2×0.8(60+x )=87D.2×0.9x+1.2×0.8(60﹣x )=873.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A .3412x y x y +=⎧⎨+=⎩B .3421x y x y +=⎧⎨=+⎩C .3421x y x y +=⎧⎨=+⎩D .23421x y x y +=⎧⎨=+⎩4.方程组525x y x y =+⎧⎨-=⎩的解满足方程x +y -a=0,那么a 的值是( )A .5B .-5C .3D .-35.方程组的解是( )A .B .C .D .三、【基础知识重温】1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.x y 60x 2y 30+=⎧⎨-=⎩x 70y 10=⎧⎨=-⎩x 90y 30=⎧⎨=-⎩x 50y 10=⎧⎨=⎩x 30y 30=⎧⎨=⎩5. 二元一次方程组:把具有相同未知数的两个 合在一起,就组成了一个二元一次方程组.6.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.7.二元一次方程组的解: 二元一次方程组的两个方程的 ,叫做二元一次方程组的解. 8. 解二元一次方程组的方法:消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.四、例题分析题型一 一元一次方程的解法例1. (2016·辽宁大连)方程2x+3=7的解是( )A .x=5B .x=4C .x=3.5D .x=2 【趁热打铁】1.已知关于x 的方程3a-x=4的解为2,求代数式(-a)2-2a+1的值.2.解方程:(1)53(2)8x x +-= (2)212143x x -+=-3.解方程:)21(25)2(34y y y --=+-题型二 二元一次方程组的解法 例2. (2016•新疆)解方程组⎩⎨⎧=-=+②8y 3x ①732y x .例3. (2016•内蒙古通辽)已知a 、b 满足方程组23319a b a b -=⎧⎨+=⎩= .【趁热打铁】1.已知是方程组的解,则a ﹣b 的值是( )A. B. C. D.2.方程组⎩⎨⎧=-=+32y x a y x 的解为⎩⎨⎧==by x 5,则a 、b 分别为 ( )A .a =8,b =-2B .a =8,b =2C .a =12,b =2D .a =18,b =8 3.方程组13x y x y -=⎧⎨+=⎩的解是 。

人教版初三全册数学满分班讲义

人教版初三全册数学满分班讲义

满分晋级阶梯中考内容与要求中考内容中考要求ABC二次函数能结合实际问题情境了解二次函数的意义;会用描点法画出二次函数的图象能通过分析实际问题的情境确定二次函数的表达式;能从图象上认识二次函数的性质;会确定图象的顶点、开口方向和对称轴;会利用二次函数的图象求一元二次方程的近似解能用二次函数解决简单的实际问题;能解决二次函数与其他知识结合的有关问题中考考点分析二次函数在北京中考中属于必考考点,并且都以压轴题形式出现,是中考的难点,也是同学们失分最高的一部分。

这部分内容要求学生们⑴能用数形结合、归纳等数学思想,根据二次函数的表达式确定1二次函数图象特征与变换函数16级方程与函数思想函数15级二次函数图象特征与变换函数14级二次函数实际应用二次函数的开口方向、对称轴和顶点坐标;⑵综合运用方程、几何、函数等知识解决实际问题。

年份2011年2012年2013年题号7,8,238,2310,23分值11分11分9分考点抛物线顶点坐标;函数图象;二次函数和一次函数解析式(函数图象与坐标轴交点、函数图象交点坐标),二次函数与一元二次方程(判别式、求根)函数图象;二次函数的对称性;二次函数和一次函数解析式(函数图象与坐标轴交点、函数图象交点坐标);二次函数图象平移,利用函数图象求取值范围二次函数函数图象的性质;二次函数和一次函数解析式(函数图象与坐标轴交点、函数图象交点坐标),二次函数图像的对称性知识互联网思路导航图象性质:二次函数图象主要掌握开口方向、对称轴、顶点坐标、与坐标轴的交点、单调性和最值等方面.若二次函数解析式为2y ax bx c =++(或2()y a x h k =-+)(0a ≠),则:开口方向00a a >⇔⎧⎨<⇔⎩向上向下,a 越大,开口越小.题型一:二次函数图象与其解析式系数的关系例题精讲【引例】二次函数2y ax bx c =++的图象如图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号【解析】由图知:图象开口向上,所以0a >;函数的对称轴02bx a=->,所以0b <;函数图象与y 轴的交点小于0,所以0c <;函数图象与x 轴有两个不同的交点,所以240b ac ->;同时12bx a=-<,所以20a b +>;1x =所对应的函数值小于0,所以0a b c ++<;1x =-所对应的函数值大于0,所以0a b c -+>典题精练【例1】⑴设0>b ,二次函数122-++=a bx ax y 的图象为下列之一,则a 的值为()A .152--B .152-+C .1-D .1⑵二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为()⑶若二次函数2y ax bx c =++的图象的开口向下,顶点在第一象限,抛物线交于y 轴的正半轴,则点,c P a b ⎛⎫⎪⎝⎭在()A .第一象限B .第二象限C .第三象限D .第四象限【例2】⑴二次函数2y ax bx c =++的图象如图所示,已知OA OB 2=,OC OA <,则a ,b ,c 满足的关系式是⑵如图,抛物线2y ax bx c =++与x 轴交于点A 、B ,与y 轴交于点C ,若12OB OC OA ==,则b 的值为.C BAOy x【例3】(1)已知二次函数c bx ax y ++=2满足:⑴c b a <<;⑵0=++c b a ;⑶图象与x轴有2个交点,且两交点间的距离小于2;则以下结论中正确的有①0a <;②0a b c -+<;③0c >;④20a b ->;⑤412<a b -(2)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列8个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b <;⑤()a b m am b +>+,(1m ≠的实数);⑥20a b +=;⑦240b ac -<,⑧22()a c b +>,其中正确的结论有()A .2个B .3个C .4个D .5个【例4】⑴二次函数2y ax bx c =++的图象的一部分如图所示,求a的取值范围⑵二次函数2y ax bx c =++的图象的一部分如图所示,试求a b c ++的取值范围.思路导航平移“左加右减,上加下减”.对称关于x 轴对称2y ax bx c =++的图象关于x 轴对称后得到图象的解析式是2y ax bx c =---.关于y 轴对称2y ax bx c =++的图象关于y 轴对称后得到图象的解析式是2y ax bx c =-+.关于原点对称2y ax bx c =++的图象关于原点对称后得到图象的解析式是2y ax bx c =-+-.旋转主要旋转180︒和90︒.例题精讲【引例】在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,.⑴求该二次函数的解析式;⑵将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.【解析】⑴设二次函数解析式为2(1)4y a x =--,∵二次函数图象过点(30)B ,,∴044a =-,得1a =.∴二次函数解析式为2(1)4y x =--,即223y x x =--.⑵令0y =,得2230x x --=,解方程,得13x =,21x =-.∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,.∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x 轴的另一个交点坐标为(40),.典题精练题型二:二次函数的图象变换【例5】已知二次函数y =ax 2+bx +c 的图象与反比例函数xa y 4+=的图象交于点A (a ,-3),与y 轴交于点B .⑴试确定反比例函数的解析式;⑵若∠ABO =135︒,试确定二次函数的解析式;⑶在⑵的条件下,将二次函数y =ax 2+bx +c 的图象先沿x 轴翻折,再向右平移到与反比例函数xa y 4+=的图象交于点P (x 0,6).当x 0≤x ≤3时,求平移后的二次函数y 的取值范围.【例6】已知抛物线()221:22101C y ax amx am m a m =-+++>>,的顶点为A ,抛物线2C 的对称轴是y 轴,顶点为点B ,且抛物线1C 和2C 关于点()13P ,成中心对称.⑴用含m 的代数式表示抛物线1C 的顶点坐标;⑵求m 的值和抛物线2C的解析式.【例7】已知抛物线22y x kx k =-+-+.(1)求证:无论k 为任何实数,该抛物线与x (2)在抛物线上有一点P (m ,n ),n <0,310=OP ,且线段OP 与x 轴正半轴所夹锐角的正弦值为45,求该抛物线的解析式;(3)将(2)中的抛物线x 轴上方的部分沿x 轴翻折,与原图象的另一部分组成一个新的图形M ,当直线y x b =-+与图形M 有四个交点时,求b的取值范围.复习巩固题型一二次函数图象与其解析式系数关系巩固练习【练习1】在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是()【练习2】如图,表示抛物线2y ax bx c =++的一部分图象,它与x 轴的一个交点为A ,与y 轴交于点B .则b 的取值范围是()A .20b -<<B .10b -<<C .12b -<<D .01b <<【练习3】二次函数2(0)y ax bx c a =++≠的图象如图所示,且2P a b c a b =-+++,2Q a b c a b =+++-,请比较P 、Q 的大小.-1-1BAO yxDCBAxyO xyO xyO O yx1xyO题型二二次函数的图象变换巩固练习【练习4】如图,已知抛物线1C :()225y a x =+-的顶点为P ,与x 轴相交于A B 、两点(点A 在点B 的左边),点B 的横坐标是1.⑴求P 点坐标及a 的值;⑵如图⑴,抛物线2C 与抛物线1C 关于x 轴对称,将抛物线2C 向右平移,平移后的抛物线记为3C ,3C 的顶点为M ,当点P M 、关于点B 成中心对称时,求3C 的解析式.(福建宁德中考)y xAO B PM图1C 1C 2C 3图⑴【练习5】二次函数2y x =的图象所示,请将此图象向右平移1个单位,再向下平移2个单位.⑴画出经过两次平移后所得到的图象,并写出函数的解析式.⑵求经过两次平移后的图象与x 轴的交点坐标,指出当x 满足什么条件时,函数值大于0?思维拓展训练(选讲)训练1.⑴设a 、b 是常数,且0b >,抛物线2256y ax bx a a =++--为下图中四个图象之一,则a 的值为()-111-1xyOxyOx yO xyOA .6或1-B .6-或1C .6D .1-⑵已知0b <时,二次函数221y ax bx a =++-的图象如下列四个图之一所示.-111-1xyOxyOx yO x yO根据图象分析,a 的值等于....()A .2-B .1-C .1D .2训练2.如图,抛物线2y ax bx c =++与x 轴的一个交点A 在点()20-,和()10-,之间(包括这两点),顶点C 是矩形DEFG 内(包括边界和内部)的一个动点,则①abc _______0(填“>”或“<”);②a 的取值范围是_____________.训练3.已知抛物线2(2)2y kx k x =+--(其中0k >).⑴求该抛物线与x 轴的交点及顶点的坐标(可以用含k 的代数式表示);⑵若记该抛物线顶点的坐标为(,)P m n ,直接写出n 的最小值;⑶将该抛物线先向右平移12个单位长度,再向上平移1k个单位长度,随着k 的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).训练4.已知抛物线2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点.⑴求m 的取值范围;⑵若m >1,且点A 在点B 的左侧,OA :OB =1:3,试确定抛物线的解析式;⑶设⑵中抛物线与y 轴的交点为C ,过点C 作直线l //x 轴,将抛物线在y 轴左侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新图象.请你结合新图象回答:当直线13y x b =+与新图象只有一个公共点P (x 0,y 0)且07y ≤时,求b 的取值范围.第十七种品格:成就古往今来,古今中外,很多人取得了各种成就。

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

九年级讲义目录专题01 二次根式的化简与求值阅读与思考二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧.有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是:1、直接代入直接将已知条件代入待化简求值的式子. 2、变形代入适当地变条件、适当地变结论,同时变条件与结论,再代入求值.数学思想:数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展.=x , y , n 都是正整数)例题与求解【例1】 当x =时,代数式32003(420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、20032-(绍兴市竞赛试题)【例2】 化简(1(ba b ab b -÷-- (黄冈市中考试题)(2(五城市联赛试题)(3(北京市竞赛试题)(4(陕西省竞赛试题)解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解.思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度.【例3】比6大的最小整数是多少?(西安交大少年班入学试题)解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y==想一想:设x=求432326218237515x x x xx x x--++-++的值. (“祖冲之杯”邀请赛试题)的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.【例4】 设实数x ,y 满足(1x y =,求x +y 的值.(“宗泸杯”竞赛试题)解题思路:从化简条件等式入手,而化简的基本方法是有理化.【例5】 (1的最小值.(2的最小值.(“希望杯”邀请赛试题)解题思路:对于(1)的几何意义是直角边为a ,b 的直角三角形的斜边长,从构造几何图形入手,对于(2),设y =,设A (x ,0),B (4,5),C (2,3)相当于求AB +AC 的最小值,以下可用对称分析法解决.方法精髓:解决根式问题的基本思路是有理化,有理化的主要途径是乘方、配方、换元和乘有理化因式.【例6】 设2)m a =≤≤,求1098747m m m m m +++++-的值.解题思路:配方法是化简复合二次根式的常用方法,配方后再考虑用换元法求对应式子的值.能力训练A级1.化简:7()3“希望杯”邀请赛试题)2.若x y x y+=-=,则xy=_____(北京市竞赛试题)3.+(“希望杯”邀请赛试题)4.若满足0<x<y=x,y)是_______(上海市竞赛试题)5.2x-3,则x的取值范围是()A.x≤1B. x≥2C. 1≤x≤2D. x>06)A.1B C. D. 5(全国初中数学联赛试题)7.a,b,c为有理数,且等式a+=成立,则2a+999b+1001c的值是()A.1999 B. 2000 C. 2001D. 不能确定(全国初中数学联赛试题)8、有下列三个命题甲:若α,β是不相等的无理数,则αβαβ+-是无理数;乙:若α,β是不相等的无理数,则αβαβ-+是无理数;丙:若α,β其中正确命题的个数是()A.0个B.1个C.2个D.3个(全国初中数学联赛试题)9、化简:(1(2(3(4(天津市竞赛试题)(5(“希望杯”邀请赛试题)10、设52x=,求代数式(1)(2)(3)(4)x x x x++++的值.(“希望杯”邀请赛试题)117x=,求x的值.12、设x x ==(n 为自然数),当n 为何值,代数式221912319x xy y ++的 值为1985?B 级1.已知3312________________x y x xy y ==++=则. (四川省竞赛试题)2.已知实数x ,y 满足(2008x y =,则2232332007x y x y -+--=____(全国初中数学联赛试题)3.已知42______1x x x ==++2x 那么. (重庆市竞赛试题)4.a =那么23331a a a ++=_____. (全国初中数学联赛试题)5. a ,b 为有理数,且满足等式14a +=++则a +b =( )A .2B . 4C . 6D . 8(全国初中数学联赛试题)6. 已知1,2a b c ===,那么a ,b ,c 的大小关系是( ).Aa b c << B . b <a <c C . c <b <c D . c <a <b(全国初中数学联赛试题)7.=) A . 1a a -B .1a a - C . 1a a+ D . 不能确定 8. 若[a ]表示实数a 的整数部分,则等于( )A .1B .2C .3D . 4(陕西省竞赛试题)9. 把(1)a - )A .B C. D .(武汉市调考题)10、化简:(1 (“希望杯”邀请赛试题)(210099++(新加坡中学生竞赛试题)(3(山东省竞赛试题)(4 (太原市竞赛试题)11、设01,x << 1≤<.(“五羊杯”竞赛试题)12的最大值.13、已知a , b , c为有理数,证明:222a b c a b c ++++为整数.专题02 从求根公式谈起阅读与思考一元二次方程是解数学问题的重要工具,在因式分解、代数式的化简与求值,应用题,各种代数方程,几何问题、二次函数等方面有广泛的应用.初学一元二次方程,需要注意的是: 1、熟练求解解一般形式的一元二次方程,因式分解法是基础,它体现了“降次求解”的基本设想,公式法具有一般性,是解一元二次方程的主要方法,对于各项系数较大的一元二次方程,可以先从分析方程的各项系数特征入手,通过探求方程的特殊根来求解,常用的两个结论是:① 若0=++c b a ,则方程20(0)ax bx c a ++=≠必有一根为1. ② 若0=+-c b a ,则方程20(0)ax bx c a ++=≠必有一根为1-.2、善于变形解有些与一元二次方程相关的问题时,直接求解常给解题带来诸多不便,若运用整体思想,构造零值多项式,降次变形等相关思想方法,则能使问题获得简解.思想精髓一元二次方程的求根公式为1,22b x a-±=这个公式形式优美,内涵丰富:① 公式展示了数学的抽象性,一般性与简洁美; ② 公式包含了初中阶段所学过的全部六种代数运算;③ 公式本身回答了解一元二次方程的全部的三个问题,方程有没有实数根?有实根时共有几个?如何求出实根?例题与求解例1 阅读下列的例题解方程: 2||20x x --=解:①当x ≥0时,原方程化为220x x --=,解得122,1x x ==-(舍)① 当0<x 时,原方程化为220x x +-=,解得11=x (舍),22-=x 请参照例题解方程:2|3|30x x ---=,则方程的根是____(晋江市中考试题)解题思路:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解.例2 方程2|1|(42)x x -=-+的解的个数为( )A 、1个B 、2个C 、3个D 、4个(全国初中数学联赛试题)解题思路:通过去绝对值,将绝对值方程转化为一元二次方程求解.例3 已知m ,n 是二次方程2199970x x ++=的两个根,求22+19986)(20008)m m n n +++(的值.(“祖冲之杯”邀请赛试题)解题思路:若求出m ,n 值或展开待求式,则计算繁难,由方程根的定义可得关于m ,n 的等式,不妨从变形等式入手.反思:一元二次方程常见的变形方法有:①把20(0)ax bx c a ++=≠变形为2ax bx c =--②把20(0)ax bx c a ++=≠变形为2ax bx c +=-③把20(0)ax bx c a ++=≠变形为cax b x+=- 其中①②体现了“降次”代换的思想;③则是构造倒数关系作等值代换. 例4 解关于x 的方程:2(1)(21)30m x m x m -+-+-=解题思路:因未指明关于x 的方程的类型,故首先分01=-m 及1-m ≠0两种情况,当1-m ≠0时,还考虑就24b ac -的值的三种情况加以讨论.例5 已知三个不同的实数a ,b ,c 满足3=+-c b a ,方程012=++ax x 和02=++c bx x ,有一个相同的实根,方程02=++a x x 和02=++b cx x 也有一个相同的实根,求a ,b ,c 的值.解题思路:这是一个一元二次方程有公共根的问题,可从求公共根入手.方法指导:公共根问题是一元二次方程常见问题,解这类问题的基本方法是: ①若方程便于求出简单形式的根,则利用公共根相等求解. ②设出公共根,设而不求,消去二次项.例6 已知a 是正整数,如果关于x 的方程32(17)(38)560x a x a x +++--=的根都是整数,求a 的值及方程的整数根.(全国初中数学联赛试题) 解题思路:本题有两种解法,由方程系数特点发现1为隐含的根,从而将试题进行降次处理,或变更主元,将原方程整理为关于a 的较低次数的方程.能力训练 A 级1、已知方程062=+-q x x 可以配成()72=-p x 的形式,那么262=+-q x x 可以配成______________的形式.(杭州市中考试题)2、若分式22221x x x x --++的值为0,则x 的值等于____.(天津市中考试题)3、设方程2199319940,x x +-=和2(1994)1993199510x x -⋅-=的较小的根分别为α,β,则βα⋅=___.4、方程2|45|62x x x +-=-的解应是____(上海市竞赛试题) 5、方程23(1)1x x x ++-=的整数解的个数是____.A 、2个B 、3个C 、4个D 、5个(山东省选拔赛试题)6、若关于x 的一元二次方程22(1)5320m x x m m -++-+=的常数项为0,则m 的值等于( ) A 、1 B 、2 C 、1或2 D 、0(德州市中考试题)7、已知a , b 都是负实数,且1110a b a b+-=-,那么ba 的值是( )A 、12+ B 、12- C 、12- D 、12+- (江苏省竞赛试题)8、方程2||10x x --=的解是( )A 、12± B 、12- C 、12±或12- D 、12-± 9、已知a 是方程2199910x x -+=的一个根,求22199919981a a a -++的值.10、已知2410a a ++=且42321322a ma a ma a--=++,求m 的值. (荆州市竞赛试题)11、是否存在某个实数m ,使得方程220x mx ++=和220x x m ++=有且只有一个公共根?如果存在,求出这个实数m 及两方程的公共实根;如果不存在,请说明理由.12、已知关于x 的方程2(4)(8)(8012)320k k x k x ----+=的解都是整数,求整数k 的值.B 级1、已知α、β是方程2(2)10x m x +-+=的两根,则22(1)(1m )m ααββ++++的值为___ 2、若关于x 的方程20x px q ++=与20x qx p ++=只有一个公共根,则1999(p q)+=___3、设a , b 是整数,方程20x ax b ++=,则b a +=_________(全国通讯赛试题)4、用[]x 表示不大于x 的最大整数,则方程22[]30x x --=解的个数为( )A 、1个B 、2个C 、3个D 、4个 5、已知1||1a a-=,那么代数式1||a a +=( )A 、2 B 、2- C 、 D 6、方程||3||20x x x -+=的实根的个数为( )A 、1个B 、2个C 、3个D 、4个7、已知2519910x x --=,则代数式42(2)(1)1(1)(2)x x x x -+----的值为( )A 、1996B 、1997C 、1998D 、19998、已知三个关于x 的一元二次方程2220,0,0ax bx c bx cx a cx ax b ++=++=++=恰有一个公共实根,则222a b c bc ca ab++的值为( ) A 、0 B 、1 C 、2 D 、3(全国初中数学联赛试题)9、已知x =,求4322621823815x x x x x x --++-+的值. (“祖冲之杯”邀请赛试题)10、设方程2|21|40x x ---=,求满足该方程的所有根之和.(重庆市竞赛试题)11、首项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++= ①及222(1)(2)(2)0b x b x b b --+++= ②(其中a , b 为正整数)有一个公共根,求b ab aa b a b --++的值.(全国初中数学联赛试题)12、小明用下面的方法求出方程30=的解,请你仿照他的方法求出下面另外两个方程的解,专题04 根与系数关系阅读与思考根与系数的关系称为韦达定理,其逆定理也成立,是由16世纪的法国数学家韦达所发现的.韦达定 理形式简单而内涵丰富,在数学解题中有着广泛的应用,主要体现在: 1.求方程中字母系数的值或取值范围; 2.求代数式的值;3.结合根的判别式,判断根的符号特征; 4.构造一元二次方程; 5.证明代数等式、不等式.当所要求的或所要证明的代数式中的字母是某个一元二次方程的根时,可先利用根与系数的关系找 到这些字母间的关系,然后再结合已知条件进行求解或求证,这是利用根与系数的关系解题的基本思路,需要注意的是,应用根与系数的关系的前提条件是一元二次方程有两个实数根,所以,应用根与系数的关系解题时,必须满足判别式△≥0.例题与求解【例1】设关于x 的二次方程22(4)(21)10m x m x -+-+=(其中m 为实数)的两个实数根的倒数和为s ,则s 的取值范围是_________.【例2】 如果方程2(1)(2)0x x x m --+=的三个根可以作为一个三角形的三边长,那么,实数m 的取值范围是_________.A .01m ≤≤B .34m ≥C .314m <≤D .314m ≤≤【例3】已知α,β是方程2780x x -+=的两根,且αβ>.不解方程,求223βα+的值.【例4】 设实数,s t 分别满足22199910,99190s s t t ++=++=并且1st ≠,求41st s t++的值.【例5】(1)若实数,a b 满足258a a +=,258b b +=,求代数式1111b a a b --+--的值; (2)关于,,x y z 的方程组32236x y z axy yz zx ++=⎧⎨++=⎩有实数解(,,)x y z ,求正实数a 的最小值;(3)已知,x y 均为实数,且满足17xy x y ++=,2266x y xy +=,求432234x x y x y xy y ++++的值.【例6】 ,,a b c 为实数,0ac <0++=,证明一元二次方程20ax bx c ++=有大于1的根.能力训练A 级1.已知m ,n 为有理数,且方程20x mx n ++=有一个根是52-,那么m n += .2.已知关于x 的方程230x x m -+=的一个根是另一个根的2倍,则m 的值为 . 3.当m = 时,关于x 的方程228(26)210x m m x m -+-+-=的两根互为相反数; 当 时,关于x 的方程22240x mx m -+-=的两根都是正数;当 时,关于m 的方程23280x x m ++-=有两个大于2-的根.4.对于一切不小于2的自然数n .关于x 的一元二次方程22(2)20x n x n -+-=的两根记为,n n a b (2)n ≥则223320072007111(2)(2)(2)(2)(2)(2)a b a b a b +++=------ .5.设12,x x 是方程222(1)(2)0x k x k -+++=的两个实根,且12(1)(1)8x x ++=,则k 的值为( )A .31-或B .3-C .1D .12k ≥的一切实数 6.设12,x x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且1210,30x x x <-<,则 ( ) A .12m n >⎧⎨>⎩ B .12m n >⎧⎨<⎩ C .12m n <⎧⎨>⎩ D .12m n <⎧⎨<⎩7.设12,x x 是方程220x x k +-=的两个不等的实数根,则22122x x +-是( )A .正数B .零C .负数D .不大于零的数8.如图,菱形ABCD 的边长是5,两对角线交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的根,那么m 的值是( )A .3-B .5C .53-或D .53-或9.已知关于x 的方程:22(2)04m x m x --=. (1)求证:无论m 取什么实数值,方程总有两个不相等的实数根;(2)若这个方程的两个根是12,x x ,且满足212,x x =+求m 的值及相应的12,x x .10.已知12,x x 是关于x 的一元二次方程2430kx x +-=的两个不相等的实数根. (1)求k 的取值范围;(2)是否存在这样的实数k ,使12123222x x x x +-=成立?若存在,求k 的值;若不存在,说明理由.11.如图,已知在△ABC 中,∠ACB =90°,过C 点作CD ⊥AB 于D ,设AD =m ,BD =n ,且AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.DBAC12.已知,m n 是正整数,关于x 的方程2()0x mnx m n -++=有正整数解,求,m n 的值.B 级1.设1x ,2x 是二次方程032=-+x x 的两根,则3212419x x -+= .2.已知1ab ≠,且有25199580a a ++=及28199550b b ++=则ab= . 3.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12,x x ,且221224x x +=,则k = .4.已知12,x x 是关于x 的一元二次方程22x ax a ++=的两个实数根,则1221(2)(2)x x x x --的最大值为 .5.如果方程210x px ++=(p >0)的两根之差为1,那么p 等于( )A .2B .4CD 6.已知关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12,x x ,且22127x x +=,则212()x x -的值是 ( )A .1B .12C .13D .257.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是 ( ) A .23 B .25C .5D .2 8.设213a a +=,213b b +=且a b ≠,则代数式2211a b+的值为( ) A .5 B .7 C .9 D .119.已知,a b 为整数,a b >,且方程233()40x a b x ab +++=的两个根,αβ满足关系式(1)(1)(1)(1)ααββαβ+++=++.试求所有整数点对(,)a b .10.若方程2310x x ++=的两根,αβ也是方程620x px q -+=的两根,其中,p q 均为整数,求,p q 的值.11.设,a b 是方程2310x x -+=的两根,c ,d 是方程2420x x -+=的两根,已知a b c dM b c d c d a d a b a b c+++=++++++++.求证:(1)222277a b c d M b c d c d a d a b a b c +++=-++++++++; (2)33334968a b c d M b c d c d a d a b a b c+++=-++++++++.12.设m 是不小于1-的实数,使得关于x 的一元二次方程222(2)310x m x m m +-+-+=有两个不相等实数根12,x x .(1)若22126x x +=,求m 的值;(2)求22121211mx mx x x +--的最大值.13.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.专题06 转化与化归----特殊方程、方程组阅读与思考特殊方程、方程组通常是指高次方程(组)(次数高于两次)、结构巧妙而富有规律性的方程、方程组.降次与消元是解特殊方程、方程组的基本策略,而降次与消元的常用方法是: 1、因式分解; 2、换元; 3、平方; 4、巧取倒数;5、整体叠加、叠乘等.转化是解各类特殊方程、方程组的基本思想,而化归的途径是降次与消元,而化归的方向是一元二次方程,这也可以说是“九九归宗”.例题与求解【例1】已知方程组⎩⎨⎧=+=+233522y x y x 的两组解是),(11y x 与),(22y x ,则1221y x y x +的值是_______ (北京市竞赛题)解题思路:通过消元,将待求式用同一字母的代数式表示,运用根与系数的关系求值.【例2】方程组⎩⎨⎧=+=+2363yz xz yz xy 的正整数解的组数是( )A .1组B .2组C .3组D .4组解题思路:原方程组是三元二次,不易消元降次,不妨从分析常数的特征入手.【例3】 解下列方程:(1) 42)113(1132=+-++-x xx x x x ; (“祖冲之杯”邀请赛试题) (2)121193482232222=+-++-++x x x x x x x x ; (河南省竞赛试题) (3) 1)1998()1999(33=-+-x x ; (山东省竞赛试题) (4) 222222)243()672()43(+-=+-+-+x x x x x x (“祖冲之杯”邀请赛试题) 解题思路:注意到方程左边或右边项与项的结构特点、内在联系,利用换元法求解.【例4】 解下列方程组:(1) ⎪⎪⎩⎪⎪⎨⎧=++=-+-+;612,331y y x y x y x (山东省竞赛试题)(2) ⎩⎨⎧=++=++;2454,144)53)(1(2y x x y x x x (西安市竞赛试题)(3) ⎩⎨⎧+-=+-=.23,23232232y y y x x x x y (全苏数学奥林匹克试题) 解题思路:观察发现方程组中两个方程的特点和联系,用换元法求解或整体处理.【例5】 若关于x 的方程xkx x x x x k 1122+=---只有一个解(相等的解也算一个).试求k 的值与方程的解.(江苏省竞赛试题)【例6】 方程02006322=+++-y x xy x 的正整数解有多少对?解题思路:确定主元,综合利用整除及分解因式等知识进行解题.能力训练A 级1.方程1)1(3)1(222=+-+xx x x 的实数根是_____________. 2.()()()22222224367243+-=+-+-+x xx x x x ,这个方程的解为x =_________________.3.实数z y x ,,满足⎩⎨⎧=+-+-=,0223,362z xy y x y x 则zy x +2的值为_______________.(上海市竞赛题) 4. 设方程组⎪⎩⎪⎨⎧=++=++=++0,0,01222b ax x a x bx bx ax 有实数解,则.________1=++b a(武汉市选拔赛试题)5.使得()()()()7823142222+-++=--x x x x x x 成立的x 的值得个数为( )A .4个B .3个C .2个D .1个(“五羊杯”竞赛试题)6.已知方程组⎩⎨⎧=-=+1,22z xy y x 有实数根,那么它有( )A .一组解B .二组解C .三组解D .无数组解(“祖冲之杯”邀请赛试题) 7.设a a 312=+,b b 312=+且b a ≠,则代数式2211b a +的值为( )A .5B .7C .9D .11 8.已知实数y x ,满足20,922=+=++xy y x y x xy ,则22y x +的值为( )A .6B .17C .1D .6或179.已知关于y x ,的方程组⎩⎨⎧=-+=-222)(3,p y x p xy p y x 有整数解()y x ,,求满足条件的质数p .10.已知方程组⎩⎨⎧=+-=++-01,022y x a y x 的两个解为⎩⎨⎧==,,11y y x x ⎩⎨⎧==,,22y y x x 且21,x x 是两个不等的正数.(1)求a 的取值范围;(2)若116832212221--=-+a a x x x x ,试求a 的值.(南通市中考试题)11.已知b a ,是方程012=--t t 的两个实根,解方程组⎪⎩⎪⎨⎧+=++=+.1,1y ayb x x b ya x(“祖冲之杯”邀请赛试题)12.已知某二次项系数为1的一元二次方程的两个实数根为q p ,,且满足关系式()⎩⎨⎧=+=++,6,5122pq q p p q p 试求这个一元二次方程.(杭州市中考试题)B 级1.方程组⎪⎩⎪⎨⎧==++++=++43251z y x z y x z y x 的解是___________________.2.已知x x x x x 71357139722=+-+++,则x 的值为______________.(全国初中数学联赛试题)3.已知实数00,y x 是方程组⎪⎩⎪⎨⎧+==11x y xy 的解,则._________00=+y x (全国初中数学联赛试题)4.方程组⎪⎩⎪⎨⎧=+=3411,9y xxy 的解是_________________. (“希望杯”邀请赛试题)5.若二元二次方程组()⎩⎨⎧+-==-12,122x k y y x 有唯一解,则k 的所有可能取值为______________. (《学习报》公开赛试题)6.正数654321,,,,,x x x x x x 同时满足1165432=x x x x x x ,2265431=x x x x x x ,3365421=x xx x x x ,4465321=x x x x x x ,6564321=x x x x x x ,9654321=x xx x x x . 则654321x x x x x x +++++的值为________.(上海市竞赛试题)7.方程06623=+--x x x 的所有根的积是()A .3B .-3C .4D .-6E .以上全不对(美国犹他州竞赛试题)8.设y x ,为实数,且满足()()()()⎩⎨⎧=-+--=-+-,1119991,111999133y y x x 则=+y x ( ) A .1 B .-1 C .2 D .-2(武汉市选拔赛试题)9.已知⎪⎩⎪⎨⎧=++=++=,3,2,1222z y x z y x xyz 则111111-++-++-+y zx x yz z xy 的值为( )A .1B .21-C .2D .32-10.对于实数a ,只有一个实数值x 满足等式012211112=-++++-+-+x a x x x x x ,试求所有这样的实数a 的和.(江苏省竞赛试题)11.解方程a x x x x =--+-+1212,其中0>a ,并就正数a 的取值,讨论此方程解的情况.(陕西省竞赛试题)12.已知c b a ,,三数满足方程组⎩⎨⎧=+-=+,4828,82c c ab b a 试求方程02=-+a cx bx 的根. (全国初中数学联赛试题)13.解下列方程(组):(1)()1639322=-+x x x ; (武汉市竞赛试题)(2)()()()6143762=+++x x x ;(湖北省竞赛试题)(3)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+,414,414,414222222x z z z y y y x x (加拿大数学奥林匹克竞赛试题)专题08 二次函数阅读与思考二次函数是初中代数的重要内容,既有着应用非常广泛的丰富性质,又是进一步学习的基础,主要知识与方法有:1.二次函数解析式c bx ax y ++=2的系数符号,确定图象的大致位置.2.二次函数的图象是一条抛物线,抛物线的形状仅仅与a 有关,a b 2-与(ab2-,a b ac 442-)决定抛物线对称轴与顶点的位置.3.二次函数的解析式通常有下列三种形式: ①一般式:c bx ax y ++=2; ②顶点式n m x a y +-=2)(:;③交点式:))((21x x x x a y --=,其中1x ,2x 为方程02=++c bx ax 的两个实根. 用待定系数法求二次函数解析式,根据不同条件采用不同的设法,可使解题过程简捷.例题与求解【例1】 二次函数c bx ax y ++=2的图象如图所示,现有以下结论:①0>abc ;②c a b +<;③024>++c b a ;④b c 32<;⑤()()1≠+>+m b am m b a .其中正确的结论有( )A . 1个B . 2个C . 3个D . 4个 (天津市中考试题)解题思路:由抛物线的位置确定a ,b ,c 的符号,解题关键是对相关代数式的意义从函数角度理解并能综合推理.【例2】 若二次函数c bx ax y ++=2(a ≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),则c b a S ++=的值的变化范围是( )A .0<S <1B . 0<S <2C . 1<S <2D . -1<S <1 (陕西省竞赛试题) 解题思路:设法将S 表示为只含一个字母的代数式,求出相应字母的取值范围,进而确定S 的值的变化范围.【例3】 某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件). 在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面3210米,入水处距池边的距离为4米,同时,运动员在距水面高度5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为533米.此次跳水会不会失误?并通过计算说明理由. (河北省中考试题) 解题思路:对于(2),判断此次跳水会不会失误,关键时求出距池边的水平距离为533米时,该运动员与跳台的垂直距离.【例4】 如图,在直角坐标xOy 中,二次函数图象的顶点坐标为C (4,3-),且在x 轴上截得的线段AB 的长为6.(1)求二次函数的解析式;(2)在y 轴上求作一点P (不写作法),使PA +PC 最小,并求P 点坐标;(3)在x 轴的上方的抛物线上,是否存在点Q ,使得以Q ,A ,B 三点为顶点的三角形与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由. (泰州市中考试题) 解题思路:对于(1)、(2),运用对称方法求出A ,B ,P 点坐标;对于(3),由于未指明对应关系,需分类讨论.【例5】 如图,已知边长为4的正方形截去一个角后成为五边形ABCDE ,其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积. (辽宁省中考试题) 解题思路:设DN =PM =x ,矩形PNDM 的面积为y ,建立y 与x 的函数关系式. 解题的关键是:最值点不一定是抛物线的顶点,应注意自变量的取值范围.PMF E DNCBA【例6】 将抛物线33:211+-=x y c 沿x 轴翻折,得抛物线2c ,如图所示.(1)请直接写出抛物线2c 的表达式.(2)现将抛物线1c 向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线2c 向右也平移移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴的交点从左到右依次为D ,E .①当B ,D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由. (江西省中考试题) 解题思路:把相应点的坐标用m 的代数式表示,由图形性质建立m 的方程. 因m 值不确定,故解题的关键是分类讨论.能力训练A 级1.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,则a 的值为__________.2.已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴正半轴交于B ,C 两点,且BC =2,ABC S ∆=3,则b =____________. (四川省中考试题)3.已知二次函数c bx ax y ++=2的图象如图所示. (1)这个二次函数的解析式是y =_________; (2)当x =________时,3=y ;(3)根据图象回答,当x _______时,0>y . (常州市中考试题) 4.已知二次函数的图象经过原点及点(21-,41-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为_______________. (安徽省中考试题) 5.二次函数c bx ax y ++=2与一次函数c ax y +=在同一坐标系中的图象大致是( )A B C D6.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数c bx x y ++=2的图象过点(1,0)……求证:这个二次函数的图象关于直线2=x 对称,根据现有信息,题中的二次函数图象不具有的性质是( )A .过点(3,0)B .顶点是(2,-2)C .在x 轴上截得的线段长度是2D .与y 轴的交点是(0,3) (盐城市中考试题) 7.如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A ,B ,E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系式不能总成立的是( ) (大连市中考试题)A .0=bB . 2c S ABE =∆ C .1-=ac D .0=+c a第7题图 第8题图 8.如图,某中学的校门是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地面4米处高各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,则校门的高为(精确到0.1米,水泥建筑物厚度忽略不计)( )A .9.2米B .9.1米C .9米D .5.1米 (吉林省中考试题)9.如图,是某防空部队进行射击训练时在平面直角坐标系中的示意图. 在地面O ,A 两个观测点测得空中固定目标C 的仰角分别为α和β,OA =1千米,tan α=289, tan β=83,位于O 点正上方35千米D点处的直升机向目标C 发射防空导弹,该导弹运行到达距地面最大高度3千米时,相应的水平距离为4千米(即图中E 点).(1)若导弹运行为一抛物线,求抛物线的解析式;(2)说明按(1)中轨道运行的导弹能否击中目标的理由.(河北省中考试题)10.如图,已知△ABC 为正三角形,D ,E 分别是边AC 、BC 上的点(不在顶点),∠BDE =60°. (1)求证:△DEC ∽△BDA ;(2)若正三角形ABC 的边长为6,并设DC =x ,BE =y ,试求出y 与x 的函数关系式,并求BE 最短时,△BDE 的面积.CEDBA11.如图,在平面直角坐标系中,OB ⊥OA 且OB =2OA ,点A 的坐标是(-1,2). (1)求点B 的坐标;(2)求过点A ,O ,B 的抛物线的解析式;(3)连结AB ,在(2)中的抛物线上求出点P ,使ABO ABP S S ∆∆=.(陕西省中考试题)12.如图,在平面直角坐标系中,抛物线n mx x y ++=2经过点A (3,0),B (0,-3)两点,点P 是直线AB 上一动点,过点P 作x 轴的垂线交抛物线于点M .设点P 的横坐标为t ;(1)分别求直线AB 和这条抛物线的解析式;(2)若点P 在第四象限,连结BM ,AM ,当线段PM 最长时,求△ABM 的面积;(3)是否存在这样的点P ,使得以点P ,M ,B ,O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由. (南宁市中考试题)B 级1.已知二次函数c x x y +-=62的图象顶点与坐标原点的距离为5,则c =________.2.如图,四边形ABCD 是矩形,A ,B 两点在x 的正半轴上,C ,D 两点在抛物线x x y 62+-=上.设OA 的长为m (0<m <3).矩形ABCD 的周长为l ,则l 与m 的函数解析式为__________________.(昆明市中考试题)第2题图 第3题图 第4题图3.如图,在⊙O 的内接△ABC 中,AB +AC =12,AD ⊥BC ,垂足为D (点D 在边BC 上),且AD =3,当AB 的长等于________时, ⊙O 的面积最大,最大面积为___________.4.如图,已知二次函数)0(21≠++=a c bx ax y 与一次函数)0(2≠+=k m kx y 的图象相交于点A (-2,4),B (8,2),则能使21y y >成立的x 的取值范围时______________. (杭州市中考试题) 5.已知函数c bx ax y ++=2的图象如下图所示,则函数c ax y +=的图象只可能是( )(重庆市中考试题)A B C D6.已知二次函数c bx ax y ++=2的图象如图所示,则下列6个代数式:ab ,ac ,c b a ++,c b a +-,b a +2,b a -2中,其值为正的式子个数为 ( )A .2个B .3个C .4个D .4个以上 (全国初中数学联赛试题)7.已知抛物线c bx ax y ++=2(a ≠0)的对称轴是2=x ,且经过点P (3,0)则c b a ++的值为( ) A .-1 B .0 C .1 D .2 8.已知二次函数c bx ax y ++=2(0>a )的对称轴是2=x ,且当0,,2321===x x x π时,二次函数y 的值分别时321,,y y y ,那么321,,y y y 的大小关系是( )A . 321y y y >>B . 321y y y <<C . 312y y y <<D . 312y y y >>9.已知抛物线4)343(2++-=x m mx y 与x 轴交于两点A ,B ,与y 轴交于C 点,若△ABC 是等腰三角形,求抛物线的解析式. (“新世纪杯”初中数学竞赛试题) 10.如图,已知点M ,N 的坐标分别为(0,1),(0,-1),点P 是抛物线241x y =上的一个动点. (1)判断以点P 为圆心,PM 为半径的圆与直线1-=y 的位置关系; (2)设直线PM 与抛物线241x y =的另一个交点为Q ,连结NP ,NQ ,求证:∠PNM =∠QNM . (全国初中数学竞赛试题)11.已知函数122--=x x y 的图象与x 轴相交于相异两点A ,B ,另一抛物线c bx ax y ++=2过点A ,B ,顶点为P ,且△APB 是等腰直角三角形,求a ,b ,c 的值. (天津市竞赛试题)12.如图1,点P 是直线22:--=x y l 上的点,过点P 的另一条直线m 交抛物线2x y =于A ,B 两点.(1)若直线m 的解析式为2321+-=x y ,求A ,B 两点的坐标; (2)如图2,①若点P 的坐标为(-2,t ),当PA =AB 时,请直接写出点A 的坐标;②试证明:对于。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级讲义目录专题01 二次根式的化简与求值阅读与思考二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧.有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是:1、直接代入直接将已知条件代入待化简求值的式子. 2、变形代入适当地变条件、适当地变结论,同时变条件与结论,再代入求值.数学思想:数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展.=x , y , n 都是正整数)例题与求解【例1】 当x =时,代数式32003(420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、20032-(绍兴市竞赛试题)【例2】 化简(1(ba b ab b -÷-- (黄冈市中考试题)(2(五城市联赛试题)(3(北京市竞赛试题)(4(陕西省竞赛试题)解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解.思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度.【例3】比6大的最小整数是多少?(西安交大少年班入学试题)解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y==想一想:设x=求432326218237515x x x xx x x--++-++的值. (“祖冲之杯”邀请赛试题)的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.【例4】 设实数x ,y 满足(1x y =,求x +y 的值.(“宗泸杯”竞赛试题)解题思路:从化简条件等式入手,而化简的基本方法是有理化.【例5】 (1的最小值.(2的最小值.(“希望杯”邀请赛试题)解题思路:对于(1)的几何意义是直角边为a ,b 的直角三角形的斜边长,从构造几何图形入手,对于(2),设y =,设A (x ,0),B (4,5),C (2,3)相当于求AB +AC 的最小值,以下可用对称分析法解决.方法精髓:解决根式问题的基本思路是有理化,有理化的主要途径是乘方、配方、换元和乘有理化因式.【例6】 设2)m a =≤≤,求1098747m m m m m +++++-的值.解题思路:配方法是化简复合二次根式的常用方法,配方后再考虑用换元法求对应式子的值.能力训练A级1.化简:7()3“希望杯”邀请赛试题)2.若x y x y+=-=,则xy=_____(北京市竞赛试题)3.+(“希望杯”邀请赛试题)4.若满足0<x<y=x,y)是_______(上海市竞赛试题)5.2x-3,则x的取值范围是()A.x≤1B. x≥2C. 1≤x≤2D. x>06)A.1B C. D. 5(全国初中数学联赛试题)7.a,b,c为有理数,且等式a+=成立,则2a+999b+1001c的值是()A.1999 B. 2000 C. 2001D. 不能确定(全国初中数学联赛试题)8、有下列三个命题甲:若α,β是不相等的无理数,则αβαβ+-是无理数;乙:若α,β是不相等的无理数,则αβαβ-+是无理数;丙:若α,β其中正确命题的个数是()A.0个B.1个C.2个D.3个(全国初中数学联赛试题)9、化简:(1(2(3(4(天津市竞赛试题)(5(“希望杯”邀请赛试题)10、设52x=,求代数式(1)(2)(3)(4)x x x x++++的值.(“希望杯”邀请赛试题)117x=,求x的值.12、设x x ==(n 为自然数),当n 为何值,代数式221912319x xy y ++的 值为1985?B 级1.已知3312________________x y x xy y ==++=则. (四川省竞赛试题)2.已知实数x ,y 满足(2008x y =,则2232332007x y x y -+--=____(全国初中数学联赛试题)3.已知42______1x x x ==++2x 那么. (重庆市竞赛试题)4.a =那么23331a a a ++=_____. (全国初中数学联赛试题)5. a ,b 为有理数,且满足等式14a +=++则a +b =( )A .2B . 4C . 6D . 8(全国初中数学联赛试题)6. 已知1,2a b c ===,那么a ,b ,c 的大小关系是( ).Aa b c << B . b <a <c C . c <b <c D . c <a <b(全国初中数学联赛试题)7.=) A . 1a a -B .1a a - C . 1a a+ D . 不能确定 8. 若[a ]表示实数a 的整数部分,则等于( )A .1B .2C .3D . 4(陕西省竞赛试题)9. 把(1)a - )A .B C. D .(武汉市调考题)10、化简:(1 (“希望杯”邀请赛试题)(210099++(新加坡中学生竞赛试题)(3(山东省竞赛试题)(4 (太原市竞赛试题)11、设01,x << 1≤<.(“五羊杯”竞赛试题)12的最大值.13、已知a , b , c为有理数,证明:222a b c a b c ++++为整数.专题02 从求根公式谈起阅读与思考一元二次方程是解数学问题的重要工具,在因式分解、代数式的化简与求值,应用题,各种代数方程,几何问题、二次函数等方面有广泛的应用.初学一元二次方程,需要注意的是: 1、熟练求解解一般形式的一元二次方程,因式分解法是基础,它体现了“降次求解”的基本设想,公式法具有一般性,是解一元二次方程的主要方法,对于各项系数较大的一元二次方程,可以先从分析方程的各项系数特征入手,通过探求方程的特殊根来求解,常用的两个结论是:① 若0=++c b a ,则方程20(0)ax bx c a ++=≠必有一根为1. ② 若0=+-c b a ,则方程20(0)ax bx c a ++=≠必有一根为1-.2、善于变形解有些与一元二次方程相关的问题时,直接求解常给解题带来诸多不便,若运用整体思想,构造零值多项式,降次变形等相关思想方法,则能使问题获得简解.思想精髓一元二次方程的求根公式为1,22b x a-±=这个公式形式优美,内涵丰富:① 公式展示了数学的抽象性,一般性与简洁美; ② 公式包含了初中阶段所学过的全部六种代数运算;③ 公式本身回答了解一元二次方程的全部的三个问题,方程有没有实数根?有实根时共有几个?如何求出实根?例题与求解例1 阅读下列的例题解方程: 2||20x x --=解:①当x ≥0时,原方程化为220x x --=,解得122,1x x ==-(舍)① 当0<x 时,原方程化为220x x +-=,解得11=x (舍),22-=x 请参照例题解方程:2|3|30x x ---=,则方程的根是____(晋江市中考试题)解题思路:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解.例2 方程2|1|(42)x x -=-+的解的个数为( )A 、1个B 、2个C 、3个D 、4个(全国初中数学联赛试题)解题思路:通过去绝对值,将绝对值方程转化为一元二次方程求解.例3 已知m ,n 是二次方程2199970x x ++=的两个根,求22+19986)(20008)m m n n +++(的值.(“祖冲之杯”邀请赛试题)解题思路:若求出m ,n 值或展开待求式,则计算繁难,由方程根的定义可得关于m ,n 的等式,不妨从变形等式入手.反思:一元二次方程常见的变形方法有:①把20(0)ax bx c a ++=≠变形为2ax bx c =--②把20(0)ax bx c a ++=≠变形为2ax bx c +=-③把20(0)ax bx c a ++=≠变形为cax b x+=- 其中①②体现了“降次”代换的思想;③则是构造倒数关系作等值代换. 例4 解关于x 的方程:2(1)(21)30m x m x m -+-+-=解题思路:因未指明关于x 的方程的类型,故首先分01=-m 及1-m ≠0两种情况,当1-m ≠0时,还考虑就24b ac -的值的三种情况加以讨论.例5 已知三个不同的实数a ,b ,c 满足3=+-c b a ,方程012=++ax x 和02=++c bx x ,有一个相同的实根,方程02=++a x x 和02=++b cx x 也有一个相同的实根,求a ,b ,c 的值.解题思路:这是一个一元二次方程有公共根的问题,可从求公共根入手.方法指导:公共根问题是一元二次方程常见问题,解这类问题的基本方法是: ①若方程便于求出简单形式的根,则利用公共根相等求解. ②设出公共根,设而不求,消去二次项.例6 已知a 是正整数,如果关于x 的方程32(17)(38)560x a x a x +++--=的根都是整数,求a 的值及方程的整数根.(全国初中数学联赛试题) 解题思路:本题有两种解法,由方程系数特点发现1为隐含的根,从而将试题进行降次处理,或变更主元,将原方程整理为关于a 的较低次数的方程.能力训练 A 级1、已知方程062=+-q x x 可以配成()72=-p x 的形式,那么262=+-q x x 可以配成______________的形式.(杭州市中考试题)2、若分式22221x x x x --++的值为0,则x 的值等于____.(天津市中考试题)3、设方程2199319940,x x +-=和2(1994)1993199510x x -⋅-=的较小的根分别为α,β,则βα⋅=___.4、方程2|45|62x x x +-=-的解应是____(上海市竞赛试题) 5、方程23(1)1x x x ++-=的整数解的个数是____.A 、2个B 、3个C 、4个D 、5个(山东省选拔赛试题)6、若关于x 的一元二次方程22(1)5320m x x m m -++-+=的常数项为0,则m 的值等于( ) A 、1 B 、2 C 、1或2 D 、0(德州市中考试题)7、已知a , b 都是负实数,且1110a b a b+-=-,那么ba 的值是( )A 、12+ B 、12- C 、12- D 、12+- (江苏省竞赛试题)8、方程2||10x x --=的解是( )A 、12± B 、12- C 、12±或12- D 、12-± 9、已知a 是方程2199910x x -+=的一个根,求22199919981a a a -++的值.10、已知2410a a ++=且42321322a ma a ma a--=++,求m 的值. (荆州市竞赛试题)11、是否存在某个实数m ,使得方程220x mx ++=和220x x m ++=有且只有一个公共根?如果存在,求出这个实数m 及两方程的公共实根;如果不存在,请说明理由.12、已知关于x 的方程2(4)(8)(8012)320k k x k x ----+=的解都是整数,求整数k 的值.B 级1、已知α、β是方程2(2)10x m x +-+=的两根,则22(1)(1m )m ααββ++++的值为___ 2、若关于x 的方程20x px q ++=与20x qx p ++=只有一个公共根,则1999(p q)+=___3、设a , b 是整数,方程20x ax b ++=,则b a +=_________(全国通讯赛试题)4、用[]x 表示不大于x 的最大整数,则方程22[]30x x --=解的个数为( )A 、1个B 、2个C 、3个D 、4个 5、已知1||1a a-=,那么代数式1||a a +=( )A 、2 B 、2- C 、 D 6、方程||3||20x x x -+=的实根的个数为( )A 、1个B 、2个C 、3个D 、4个7、已知2519910x x --=,则代数式42(2)(1)1(1)(2)x x x x -+----的值为( )A 、1996B 、1997C 、1998D 、19998、已知三个关于x 的一元二次方程2220,0,0ax bx c bx cx a cx ax b ++=++=++=恰有一个公共实根,则222a b c bc ca ab++的值为( ) A 、0 B 、1 C 、2 D 、3(全国初中数学联赛试题)9、已知x =,求4322621823815x x x x x x --++-+的值. (“祖冲之杯”邀请赛试题)10、设方程2|21|40x x ---=,求满足该方程的所有根之和.(重庆市竞赛试题)11、首项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++= ①及222(1)(2)(2)0b x b x b b --+++= ②(其中a , b 为正整数)有一个公共根,求b ab aa b a b --++的值.(全国初中数学联赛试题)12、小明用下面的方法求出方程30=的解,请你仿照他的方法求出下面另外两个方程的解,专题04 根与系数关系阅读与思考根与系数的关系称为韦达定理,其逆定理也成立,是由16世纪的法国数学家韦达所发现的.韦达定 理形式简单而内涵丰富,在数学解题中有着广泛的应用,主要体现在: 1.求方程中字母系数的值或取值范围; 2.求代数式的值;3.结合根的判别式,判断根的符号特征; 4.构造一元二次方程; 5.证明代数等式、不等式.当所要求的或所要证明的代数式中的字母是某个一元二次方程的根时,可先利用根与系数的关系找 到这些字母间的关系,然后再结合已知条件进行求解或求证,这是利用根与系数的关系解题的基本思路,需要注意的是,应用根与系数的关系的前提条件是一元二次方程有两个实数根,所以,应用根与系数的关系解题时,必须满足判别式△≥0.例题与求解【例1】设关于x 的二次方程22(4)(21)10m x m x -+-+=(其中m 为实数)的两个实数根的倒数和为s ,则s 的取值范围是_________.【例2】 如果方程2(1)(2)0x x x m --+=的三个根可以作为一个三角形的三边长,那么,实数m 的取值范围是_________.A .01m ≤≤B .34m ≥C .314m <≤D .314m ≤≤【例3】已知α,β是方程2780x x -+=的两根,且αβ>.不解方程,求223βα+的值.【例4】 设实数,s t 分别满足22199910,99190s s t t ++=++=并且1st ≠,求41st s t++的值.【例5】(1)若实数,a b 满足258a a +=,258b b +=,求代数式1111b a a b --+--的值; (2)关于,,x y z 的方程组32236x y z axy yz zx ++=⎧⎨++=⎩有实数解(,,)x y z ,求正实数a 的最小值;(3)已知,x y 均为实数,且满足17xy x y ++=,2266x y xy +=,求432234x x y x y xy y ++++的值.【例6】 ,,a b c 为实数,0ac <0++=,证明一元二次方程20ax bx c ++=有大于1的根.能力训练A 级1.已知m ,n 为有理数,且方程20x mx n ++=有一个根是52-,那么m n += .2.已知关于x 的方程230x x m -+=的一个根是另一个根的2倍,则m 的值为 . 3.当m = 时,关于x 的方程228(26)210x m m x m -+-+-=的两根互为相反数; 当 时,关于x 的方程22240x mx m -+-=的两根都是正数;当 时,关于m 的方程23280x x m ++-=有两个大于2-的根.4.对于一切不小于2的自然数n .关于x 的一元二次方程22(2)20x n x n -+-=的两根记为,n n a b (2)n ≥则223320072007111(2)(2)(2)(2)(2)(2)a b a b a b +++=------ .5.设12,x x 是方程222(1)(2)0x k x k -+++=的两个实根,且12(1)(1)8x x ++=,则k 的值为( )A .31-或B .3-C .1D .12k ≥的一切实数 6.设12,x x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且1210,30x x x <-<,则 ( ) A .12m n >⎧⎨>⎩ B .12m n >⎧⎨<⎩ C .12m n <⎧⎨>⎩ D .12m n <⎧⎨<⎩7.设12,x x 是方程220x x k +-=的两个不等的实数根,则22122x x +-是( )A .正数B .零C .负数D .不大于零的数8.如图,菱形ABCD 的边长是5,两对角线交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的根,那么m 的值是( )A .3-B .5C .53-或D .53-或9.已知关于x 的方程:22(2)04m x m x --=. (1)求证:无论m 取什么实数值,方程总有两个不相等的实数根;(2)若这个方程的两个根是12,x x ,且满足212,x x =+求m 的值及相应的12,x x .10.已知12,x x 是关于x 的一元二次方程2430kx x +-=的两个不相等的实数根. (1)求k 的取值范围;(2)是否存在这样的实数k ,使12123222x x x x +-=成立?若存在,求k 的值;若不存在,说明理由.11.如图,已知在△ABC 中,∠ACB =90°,过C 点作CD ⊥AB 于D ,设AD =m ,BD =n ,且AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.DBAC12.已知,m n 是正整数,关于x 的方程2()0x mnx m n -++=有正整数解,求,m n 的值.B 级1.设1x ,2x 是二次方程032=-+x x 的两根,则3212419x x -+= .2.已知1ab ≠,且有25199580a a ++=及28199550b b ++=则ab= . 3.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12,x x ,且221224x x +=,则k = .4.已知12,x x 是关于x 的一元二次方程22x ax a ++=的两个实数根,则1221(2)(2)x x x x --的最大值为 .5.如果方程210x px ++=(p >0)的两根之差为1,那么p 等于( )A .2B .4CD 6.已知关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12,x x ,且22127x x +=,则212()x x -的值是 ( )A .1B .12C .13D .257.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是 ( ) A .23 B .25C .5D .2 8.设213a a +=,213b b +=且a b ≠,则代数式2211a b+的值为( ) A .5 B .7 C .9 D .119.已知,a b 为整数,a b >,且方程233()40x a b x ab +++=的两个根,αβ满足关系式(1)(1)(1)(1)ααββαβ+++=++.试求所有整数点对(,)a b .10.若方程2310x x ++=的两根,αβ也是方程620x px q -+=的两根,其中,p q 均为整数,求,p q 的值.11.设,a b 是方程2310x x -+=的两根,c ,d 是方程2420x x -+=的两根,已知a b c dM b c d c d a d a b a b c+++=++++++++.求证:(1)222277a b c d M b c d c d a d a b a b c +++=-++++++++; (2)33334968a b c d M b c d c d a d a b a b c+++=-++++++++.12.设m 是不小于1-的实数,使得关于x 的一元二次方程222(2)310x m x m m +-+-+=有两个不相等实数根12,x x .(1)若22126x x +=,求m 的值;(2)求22121211mx mx x x +--的最大值.13.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.专题06 转化与化归----特殊方程、方程组阅读与思考特殊方程、方程组通常是指高次方程(组)(次数高于两次)、结构巧妙而富有规律性的方程、方程组.降次与消元是解特殊方程、方程组的基本策略,而降次与消元的常用方法是: 1、因式分解; 2、换元; 3、平方; 4、巧取倒数;5、整体叠加、叠乘等.转化是解各类特殊方程、方程组的基本思想,而化归的途径是降次与消元,而化归的方向是一元二次方程,这也可以说是“九九归宗”.例题与求解【例1】已知方程组⎩⎨⎧=+=+233522y x y x 的两组解是),(11y x 与),(22y x ,则1221y x y x +的值是_______ (北京市竞赛题)解题思路:通过消元,将待求式用同一字母的代数式表示,运用根与系数的关系求值.【例2】方程组⎩⎨⎧=+=+2363yz xz yz xy 的正整数解的组数是( )A .1组B .2组C .3组D .4组解题思路:原方程组是三元二次,不易消元降次,不妨从分析常数的特征入手.【例3】 解下列方程:(1) 42)113(1132=+-++-x xx x x x ; (“祖冲之杯”邀请赛试题) (2)121193482232222=+-++-++x x x x x x x x ; (河南省竞赛试题) (3) 1)1998()1999(33=-+-x x ; (山东省竞赛试题) (4) 222222)243()672()43(+-=+-+-+x x x x x x (“祖冲之杯”邀请赛试题) 解题思路:注意到方程左边或右边项与项的结构特点、内在联系,利用换元法求解.【例4】 解下列方程组:(1) ⎪⎪⎩⎪⎪⎨⎧=++=-+-+;612,331y y x y x y x (山东省竞赛试题)(2) ⎩⎨⎧=++=++;2454,144)53)(1(2y x x y x x x (西安市竞赛试题)(3) ⎩⎨⎧+-=+-=.23,23232232y y y x x x x y (全苏数学奥林匹克试题) 解题思路:观察发现方程组中两个方程的特点和联系,用换元法求解或整体处理.【例5】 若关于x 的方程xkx x x x x k 1122+=---只有一个解(相等的解也算一个).试求k 的值与方程的解.(江苏省竞赛试题)【例6】 方程02006322=+++-y x xy x 的正整数解有多少对?解题思路:确定主元,综合利用整除及分解因式等知识进行解题.能力训练A 级1.方程1)1(3)1(222=+-+xx x x 的实数根是_____________. 2.()()()22222224367243+-=+-+-+x xx x x x ,这个方程的解为x =_________________.3.实数z y x ,,满足⎩⎨⎧=+-+-=,0223,362z xy y x y x 则zy x +2的值为_______________.(上海市竞赛题) 4. 设方程组⎪⎩⎪⎨⎧=++=++=++0,0,01222b ax x a x bx bx ax 有实数解,则.________1=++b a(武汉市选拔赛试题)5.使得()()()()7823142222+-++=--x x x x x x 成立的x 的值得个数为( )A .4个B .3个C .2个D .1个(“五羊杯”竞赛试题)6.已知方程组⎩⎨⎧=-=+1,22z xy y x 有实数根,那么它有( )A .一组解B .二组解C .三组解D .无数组解(“祖冲之杯”邀请赛试题) 7.设a a 312=+,b b 312=+且b a ≠,则代数式2211b a +的值为( )A .5B .7C .9D .11 8.已知实数y x ,满足20,922=+=++xy y x y x xy ,则22y x +的值为( )A .6B .17C .1D .6或179.已知关于y x ,的方程组⎩⎨⎧=-+=-222)(3,p y x p xy p y x 有整数解()y x ,,求满足条件的质数p .10.已知方程组⎩⎨⎧=+-=++-01,022y x a y x 的两个解为⎩⎨⎧==,,11y y x x ⎩⎨⎧==,,22y y x x 且21,x x 是两个不等的正数.(1)求a 的取值范围;(2)若116832212221--=-+a a x x x x ,试求a 的值.(南通市中考试题)11.已知b a ,是方程012=--t t 的两个实根,解方程组⎪⎩⎪⎨⎧+=++=+.1,1y ayb x x b ya x(“祖冲之杯”邀请赛试题)12.已知某二次项系数为1的一元二次方程的两个实数根为q p ,,且满足关系式()⎩⎨⎧=+=++,6,5122pq q p p q p 试求这个一元二次方程.(杭州市中考试题)B 级1.方程组⎪⎩⎪⎨⎧==++++=++43251z y x z y x z y x 的解是___________________.2.已知x x x x x 71357139722=+-+++,则x 的值为______________.(全国初中数学联赛试题)3.已知实数00,y x 是方程组⎪⎩⎪⎨⎧+==11x y xy 的解,则._________00=+y x (全国初中数学联赛试题)4.方程组⎪⎩⎪⎨⎧=+=3411,9y xxy 的解是_________________. (“希望杯”邀请赛试题)5.若二元二次方程组()⎩⎨⎧+-==-12,122x k y y x 有唯一解,则k 的所有可能取值为______________. (《学习报》公开赛试题)6.正数654321,,,,,x x x x x x 同时满足1165432=x x x x x x ,2265431=x x x x x x ,3365421=x xx x x x ,4465321=x x x x x x ,6564321=x x x x x x ,9654321=x xx x x x . 则654321x x x x x x +++++的值为________.(上海市竞赛试题)7.方程06623=+--x x x 的所有根的积是()A .3B .-3C .4D .-6E .以上全不对(美国犹他州竞赛试题)8.设y x ,为实数,且满足()()()()⎩⎨⎧=-+--=-+-,1119991,111999133y y x x 则=+y x ( ) A .1 B .-1 C .2 D .-2(武汉市选拔赛试题)9.已知⎪⎩⎪⎨⎧=++=++=,3,2,1222z y x z y x xyz 则111111-++-++-+y zx x yz z xy 的值为( )A .1B .21-C .2D .32-10.对于实数a ,只有一个实数值x 满足等式012211112=-++++-+-+x a x x x x x ,试求所有这样的实数a 的和.(江苏省竞赛试题)11.解方程a x x x x =--+-+1212,其中0>a ,并就正数a 的取值,讨论此方程解的情况.(陕西省竞赛试题)12.已知c b a ,,三数满足方程组⎩⎨⎧=+-=+,4828,82c c ab b a 试求方程02=-+a cx bx 的根. (全国初中数学联赛试题)13.解下列方程(组):(1)()1639322=-+x x x ; (武汉市竞赛试题)(2)()()()6143762=+++x x x ;(湖北省竞赛试题)(3)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+,414,414,414222222x z z z y y y x x (加拿大数学奥林匹克竞赛试题)专题08 二次函数阅读与思考二次函数是初中代数的重要内容,既有着应用非常广泛的丰富性质,又是进一步学习的基础,主要知识与方法有:1.二次函数解析式c bx ax y ++=2的系数符号,确定图象的大致位置.2.二次函数的图象是一条抛物线,抛物线的形状仅仅与a 有关,a b 2-与(ab2-,a b ac 442-)决定抛物线对称轴与顶点的位置.3.二次函数的解析式通常有下列三种形式: ①一般式:c bx ax y ++=2; ②顶点式n m x a y +-=2)(:;③交点式:))((21x x x x a y --=,其中1x ,2x 为方程02=++c bx ax 的两个实根. 用待定系数法求二次函数解析式,根据不同条件采用不同的设法,可使解题过程简捷.例题与求解【例1】 二次函数c bx ax y ++=2的图象如图所示,现有以下结论:①0>abc ;②c a b +<;③024>++c b a ;④b c 32<;⑤()()1≠+>+m b am m b a .其中正确的结论有( )A . 1个B . 2个C . 3个D . 4个 (天津市中考试题)解题思路:由抛物线的位置确定a ,b ,c 的符号,解题关键是对相关代数式的意义从函数角度理解并能综合推理.【例2】 若二次函数c bx ax y ++=2(a ≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),则c b a S ++=的值的变化范围是( )A .0<S <1B . 0<S <2C . 1<S <2D . -1<S <1 (陕西省竞赛试题) 解题思路:设法将S 表示为只含一个字母的代数式,求出相应字母的取值范围,进而确定S 的值的变化范围.【例3】 某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件). 在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面3210米,入水处距池边的距离为4米,同时,运动员在距水面高度5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为533米.此次跳水会不会失误?并通过计算说明理由. (河北省中考试题) 解题思路:对于(2),判断此次跳水会不会失误,关键时求出距池边的水平距离为533米时,该运动员与跳台的垂直距离.【例4】 如图,在直角坐标xOy 中,二次函数图象的顶点坐标为C (4,3-),且在x 轴上截得的线段AB 的长为6.(1)求二次函数的解析式;(2)在y 轴上求作一点P (不写作法),使PA +PC 最小,并求P 点坐标;(3)在x 轴的上方的抛物线上,是否存在点Q ,使得以Q ,A ,B 三点为顶点的三角形与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由. (泰州市中考试题) 解题思路:对于(1)、(2),运用对称方法求出A ,B ,P 点坐标;对于(3),由于未指明对应关系,需分类讨论.【例5】 如图,已知边长为4的正方形截去一个角后成为五边形ABCDE ,其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积. (辽宁省中考试题) 解题思路:设DN =PM =x ,矩形PNDM 的面积为y ,建立y 与x 的函数关系式. 解题的关键是:最值点不一定是抛物线的顶点,应注意自变量的取值范围.PMF E DNCBA【例6】 将抛物线33:211+-=x y c 沿x 轴翻折,得抛物线2c ,如图所示.(1)请直接写出抛物线2c 的表达式.(2)现将抛物线1c 向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线2c 向右也平移移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴的交点从左到右依次为D ,E .①当B ,D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由. (江西省中考试题) 解题思路:把相应点的坐标用m 的代数式表示,由图形性质建立m 的方程. 因m 值不确定,故解题的关键是分类讨论.能力训练A 级1.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,则a 的值为__________.2.已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴正半轴交于B ,C 两点,且BC =2,ABC S ∆=3,则b =____________. (四川省中考试题)3.已知二次函数c bx ax y ++=2的图象如图所示. (1)这个二次函数的解析式是y =_________; (2)当x =________时,3=y ;(3)根据图象回答,当x _______时,0>y . (常州市中考试题) 4.已知二次函数的图象经过原点及点(21-,41-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为_______________. (安徽省中考试题) 5.二次函数c bx ax y ++=2与一次函数c ax y +=在同一坐标系中的图象大致是( )A B C D6.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数c bx x y ++=2的图象过点(1,0)……求证:这个二次函数的图象关于直线2=x 对称,根据现有信息,题中的二次函数图象不具有的性质是( )A .过点(3,0)B .顶点是(2,-2)C .在x 轴上截得的线段长度是2D .与y 轴的交点是(0,3) (盐城市中考试题) 7.如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A ,B ,E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系式不能总成立的是( ) (大连市中考试题)A .0=bB . 2c S ABE =∆ C .1-=ac D .0=+c a第7题图 第8题图 8.如图,某中学的校门是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地面4米处高各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,则校门的高为(精确到0.1米,水泥建筑物厚度忽略不计)( )A .9.2米B .9.1米C .9米D .5.1米 (吉林省中考试题)9.如图,是某防空部队进行射击训练时在平面直角坐标系中的示意图. 在地面O ,A 两个观测点测得空中固定目标C 的仰角分别为α和β,OA =1千米,tan α=289, tan β=83,位于O 点正上方35千米D点处的直升机向目标C 发射防空导弹,该导弹运行到达距地面最大高度3千米时,相应的水平距离为4千米(即图中E 点).(1)若导弹运行为一抛物线,求抛物线的解析式;(2)说明按(1)中轨道运行的导弹能否击中目标的理由.(河北省中考试题)10.如图,已知△ABC 为正三角形,D ,E 分别是边AC 、BC 上的点(不在顶点),∠BDE =60°. (1)求证:△DEC ∽△BDA ;(2)若正三角形ABC 的边长为6,并设DC =x ,BE =y ,试求出y 与x 的函数关系式,并求BE 最短时,△BDE 的面积.CEDBA11.如图,在平面直角坐标系中,OB ⊥OA 且OB =2OA ,点A 的坐标是(-1,2). (1)求点B 的坐标;(2)求过点A ,O ,B 的抛物线的解析式;(3)连结AB ,在(2)中的抛物线上求出点P ,使ABO ABP S S ∆∆=.(陕西省中考试题)12.如图,在平面直角坐标系中,抛物线n mx x y ++=2经过点A (3,0),B (0,-3)两点,点P 是直线AB 上一动点,过点P 作x 轴的垂线交抛物线于点M .设点P 的横坐标为t ;(1)分别求直线AB 和这条抛物线的解析式;(2)若点P 在第四象限,连结BM ,AM ,当线段PM 最长时,求△ABM 的面积;(3)是否存在这样的点P ,使得以点P ,M ,B ,O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由. (南宁市中考试题)B 级1.已知二次函数c x x y +-=62的图象顶点与坐标原点的距离为5,则c =________.2.如图,四边形ABCD 是矩形,A ,B 两点在x 的正半轴上,C ,D 两点在抛物线x x y 62+-=上.设OA 的长为m (0<m <3).矩形ABCD 的周长为l ,则l 与m 的函数解析式为__________________.(昆明市中考试题)第2题图 第3题图 第4题图3.如图,在⊙O 的内接△ABC 中,AB +AC =12,AD ⊥BC ,垂足为D (点D 在边BC 上),且AD =3,当AB 的长等于________时, ⊙O 的面积最大,最大面积为___________.4.如图,已知二次函数)0(21≠++=a c bx ax y 与一次函数)0(2≠+=k m kx y 的图象相交于点A (-2,4),B (8,2),则能使21y y >成立的x 的取值范围时______________. (杭州市中考试题) 5.已知函数c bx ax y ++=2的图象如下图所示,则函数c ax y +=的图象只可能是( )(重庆市中考试题)A B C D6.已知二次函数c bx ax y ++=2的图象如图所示,则下列6个代数式:ab ,ac ,c b a ++,c b a +-,b a +2,b a -2中,其值为正的式子个数为 ( )A .2个B .3个C .4个D .4个以上 (全国初中数学联赛试题)7.已知抛物线c bx ax y ++=2(a ≠0)的对称轴是2=x ,且经过点P (3,0)则c b a ++的值为( ) A .-1 B .0 C .1 D .2 8.已知二次函数c bx ax y ++=2(0>a )的对称轴是2=x ,且当0,,2321===x x x π时,二次函数y 的值分别时321,,y y y ,那么321,,y y y 的大小关系是( )A . 321y y y >>B . 321y y y <<C . 312y y y <<D . 312y y y >>9.已知抛物线4)343(2++-=x m mx y 与x 轴交于两点A ,B ,与y 轴交于C 点,若△ABC 是等腰三角形,求抛物线的解析式. (“新世纪杯”初中数学竞赛试题) 10.如图,已知点M ,N 的坐标分别为(0,1),(0,-1),点P 是抛物线241x y =上的一个动点. (1)判断以点P 为圆心,PM 为半径的圆与直线1-=y 的位置关系; (2)设直线PM 与抛物线241x y =的另一个交点为Q ,连结NP ,NQ ,求证:∠PNM =∠QNM . (全国初中数学竞赛试题)11.已知函数122--=x x y 的图象与x 轴相交于相异两点A ,B ,另一抛物线c bx ax y ++=2过点A ,B ,顶点为P ,且△APB 是等腰直角三角形,求a ,b ,c 的值. (天津市竞赛试题)12.如图1,点P 是直线22:--=x y l 上的点,过点P 的另一条直线m 交抛物线2x y =于A ,B 两点.(1)若直线m 的解析式为2321+-=x y ,求A ,B 两点的坐标; (2)如图2,①若点P 的坐标为(-2,t ),当PA =AB 时,请直接写出点A 的坐标;②试证明:对于。

相关文档
最新文档