吸附动力学模型

合集下载

吸附动力学模型的意义

吸附动力学模型的意义

吸附动力学模型的意义吸附动力学模型是研究吸附过程中物质吸附与解吸的速率和动力学特性的数学模型。

它在化学、环境科学、材料科学等领域具有重要的意义。

本文将从不同角度探讨吸附动力学模型的意义。

吸附动力学模型可以帮助我们理解吸附过程中物质的吸附和解吸速率。

吸附是物质在固体表面上附着的过程,通过吸附动力学模型,我们可以了解到吸附速率与吸附剂和吸附物性质、温度、压力等因素的关系。

这对于设计和优化吸附材料、预测吸附行为具有重要的指导意义。

吸附动力学模型可以用来预测吸附过程的平衡时间。

在实际应用中,我们通常需要知道吸附过程达到平衡所需的时间。

通过吸附动力学模型,可以计算出吸附过程的平衡时间,从而指导实际操作和工艺设计。

吸附动力学模型还可以用于评估吸附材料的性能。

吸附材料的性能主要包括吸附容量和吸附速率两个方面。

通过建立吸附动力学模型,可以定量地评估吸附材料的吸附容量和吸附速率,并与其他吸附材料进行比较。

这对于选择最适合的吸附材料具有重要意义。

吸附动力学模型还可以应用于环境监测和废水处理等领域。

通过建立吸附动力学模型,可以预测吸附剂对污染物的去除效果,并优化吸附剂的选择和使用条件,提高废水处理效率。

同时,吸附动力学模型还可以用于评估环境中污染物的迁移和转化过程,为环境保护和污染治理提供科学依据。

吸附动力学模型还可以用于研究吸附机理和表征吸附过程。

通过建立吸附动力学模型,可以揭示吸附过程的背后机制,了解吸附剂和吸附物之间的相互作用。

吸附动力学模型在理解吸附过程、预测吸附行为、评估吸附材料性能以及环境保护等方面具有重要的意义。

通过建立吸附动力学模型,我们可以深入研究吸附过程的动力学特性,为实际应用和科学研究提供有力支持。

吸附动力学分类

吸附动力学分类

吸附动力学分类
吸附动力学主要可以分为以下几种类型:
1. 准静态模型:这是最基本的模型之一,它假设吸附和脱附过程处于平衡状态,即吸附和脱附速率相等。

准静态模型的方程为:Qt = Qeq × (1 - e^(-kt)),其中Qt为t时刻的吸附量,Qeq为平衡吸附量,k为吸附速率常数。

该模型适用于低浓度和低吸附剂负载的情况,假设吸附和脱附过程是相互独立的,不涉及吸附剂和吸附质之间的相互作用。

2. 动态模型:考虑了吸附和脱附过程中的物理过程,如扩散和传质。

动态模型的方程为:Qt = Qeq × (1 - e^(-kt^n)),其中n为动态模型的指数,可以取不同的值来描述不同的物理过程。

该模型适用于高浓度和高压的情况。

3. 随机模型:基于随机行走理论的模型,用于描述吸附和脱附过程中的随机运动。

随机模型的方程为:Qt = Qeq × (1 - e^(-kt^n)),其中n为随机模型的指数,可以取不同的值来描述不同的随机过程。

该模型适用于高浓度和高负载的情况。

4. 表观动力学:采用统一的吸附动力学模型对实验结果进行拟合,描述吸附剂的动态吸附过程,从而通过拟合结果判断该吸附过程受到哪些机制的控制。

表观动力学可分为动力学控制型和扩散控制型。

其中准一级动力学模型、准二级动力学模型、Elovich动力学模型和Bangham动力学模型等模型为动
力学控制型;气膜扩散模型和颗粒内扩散模型等模型为扩散控制型。

以上内容仅供参考,在使用这些模型时,需要了解它们的适用范围和限制,并结合实验数据进行验证和修正。

生物吸附的热力学平衡模型和动力学模型综述

生物吸附的热力学平衡模型和动力学模型综述

生物吸附的热力学平衡模型和动力学模型综

1 吸附动力学模型
生物吸附动力学模型是指根据动力学原理研究生物吸附现象的模型,它主要集中在生物物质吸附层表面上,以及相互作用和热力学物
理条件等问题上。

根据动力学原理,影响生物吸附的因素包括游离能,气体的吸附力,介质的物理性能,液体温度,压力,浓度等。

吸附动
力学模型主要分为三类:比例硬体模型,等幂硬体模型和等温硬体模型,模拟出生物物质吸附过程中的动力学状态和位置分配。

2 热力学平衡模型
生物吸附热力学平衡模型是指研究生物物质吸附过程中热力学方
法描述的模型,主要包括Langmuir态模型,Freundlich态模型,Fruendlich-Petesch态模型等。

平衡模型可以描述生物物质的活性,
计算其反应的吸附能力和吸附常数,而动力学模型则可以用于比较不
同吸附情况下的性能,从而了解生物物质吸附过程发生,变化和发展
的方向和步骤。

生物物质吸附是吸收和固定物质的重要现象,研究其热力学平衡
模型和动力学模型,有助于深入了解生物物质的特性,为其合理有效
地利用资源提供参考。

吸附平衡及动力学模型介绍

吸附平衡及动力学模型介绍

吸附平衡及动力学模型介绍吸附平衡及动力学模型是描述气体或溶质与固体表面之间吸附过程的理论模型。

吸附是指气体或溶质分子通过相互作用力吸附到固体表面上的现象。

吸附平衡和动力学模型可以帮助我们理解和预测吸附过程的特性,对于工业和环境应用具有重要意义。

吸附平衡模型描述了吸附系统在达到平衡时吸附量与吸附剂浓度、温度、压力等参数之间的关系。

常见的吸附平衡模型有等温线性模型、Freundlich模型和Langmuir模型。

等温线性模型是最简单的吸附平衡模型之一,它假设吸附量与溶质浓度成线性关系。

这个模型可以表示为:q=K*C其中,q代表单位质量吸附剂的吸附量,C代表溶质在吸附剂中的浓度,K代表等温吸附系数。

等温线性模型适用于低浓度溶质吸附的情况。

Freundlich模型是更为常用的吸附平衡模型,它相对于等温线性模型具有更广泛的适用范围。

Freundlich模型可以表示为:q=K*C^(1/n)其中,q代表单位质量吸附剂的吸附量,C代表溶质在吸附剂中的浓度,K和n是Freundlich常数,n被称为吸附线性度。

Freundlich模型适用于吸附剂非均匀性很大的情况。

Langmuir模型是吸附平衡模型中应用最广泛的模型之一,适用范围广,能够较准确地描述吸附过程。

Langmuir模型可以表示为:q=(K*C)/(1+K*C)其中,q代表单位质量吸附剂的吸附量,C代表溶质在吸附剂中的浓度,K是Langmuir常数。

Langmuir模型假设吸附位点是有限的且相互独立的,并且吸附的溶质分子在吸附位点上形成一个单层。

吸附动力学模型描述了吸附过程的速率和吸附剂的浓度、温度、时间等参数之间的关系。

常见的吸附动力学模型有假一级动力学模型、伪一级动力学模型和二级动力学模型。

假一级动力学模型是最简单的吸附动力学模型之一,它假设吸附速率与吸附量成线性关系。

这个模型可以表示为:dq/dt = K * (q_t - q)其中,dq/dt代表单位时间内吸附剂的吸附速率,q代表单位质量吸附剂的吸附量,q_t代表达到平衡时的吸附量,K代表动力学常数。

吸附动力学和热力学各模型公式及特点

吸附动力学和热力学各模型公式及特点

吸附动力学和热力学各模型公式及特点1. Langmuir模型:Langmuir模型是最常用的吸附动力学方程之一,它假设吸附物分子只能以单层方式吸附在吸附剂表面。

该模型的方程表示为:dθ/dt = k_ads * (θ_max - θ) * P其中,dθ/dt表示单位时间内吸附量的增加速率,θ表示已吸附的物质分数,θ_max是最大吸附容量,P是气体或溶液中的吸附物质分压或浓度,k_ads是吸附速率常数。

2. Freundlich模型:Freundlich模型是一个经验模型,适用于多层吸附过程。

该模型的方程表示为:q=k_f*C^(1/n)其中,q表示单位质量的吸附物质的吸附量,C是气体或溶液中的吸附物质浓度,k_f和n是实验参数。

3. Temkin模型:Temkin模型假设吸附位点之间存在相互作用,并且随着吸附量的增加,吸附能力会降低。

该模型的方程表示为:q = K * ln(A * P)其中,q表示单位质量的吸附物质的吸附量,P是吸附物质的分压或浓度,K和A是实验参数。

- Langmuir模型适用于单层吸附过程,Freundlich模型适用于多层吸附过程,而Temkin模型考虑了吸附位点之间的相互作用。

- Langmuir模型假设吸附过程是可逆的,而Freundlich模型和Temkin模型则没有这个假设。

-吸附动力学模型通常基于实验数据拟合得出,因此需要大量的实验数据支持。

-吸附动力学模型常用于工业催化剂和废水处理等领域,用于优化吸附过程和预测吸附性能。

吸附热力学模型:1. Gibbs吸附等温方程:Gibbs吸附等温方程描述了吸附过程中的吸附热效应,即吸附热与吸附度的关系。

方程表示为:ΔG = -RTlnK = -ΔH + TΔS其中,ΔG是自由能变化,ΔH是焓变化,T是温度,R是气体常数,K是吸附平衡常数,ΔS是熵变化。

2. Dubinin-Radushkevich方程:Dubinin-Radushkevich方程适用于描述吸附剂对非特异性吸附的情况。

最新吸附动力学和热力学各模型公式及特点资料

最新吸附动力学和热力学各模型公式及特点资料

最新吸附动力学和热力学各模型公式及特点资料吸附动力学和热力学是研究吸附过程的重要领域,关注吸附剂-吸附质系统之间的物质传递和能量传递。

本文将介绍最新的吸附动力学和热力学各模型公式及其特点。

一、吸附动力学模型吸附动力学模型用于描述吸附过程中吸附剂与吸附质之间物质传递的速率。

下面列举几种常见的吸附动力学模型。

1.线性吸附动力学模型(LDF)线性吸附动力学模型假设吸附速率与吸附剂和吸附质的浓度成正比。

其数学表达式为:Q(t)=k·C(t)其中,Q(t)是时间t内吸附质在吸附剂上的吸附量,k是吸附速率常数,C(t)是时间t内吸附质的浓度。

LDF模型的特点是简单直观,适用于低浓度吸附过程。

2.瞬态吸附动力学模型(TDF)瞬态吸附动力学模型考虑了吸附速率与时间变化的关系。

常见的TDF 模型有多项式、指数和幂函数模型。

其中,多项式模型基于多项式函数拟合吸附数据,指数模型假设吸附速率与时间的指数函数相关,幂函数模型假设吸附速率与时间的幂函数相关。

这些模型的特点是灵活性强,适用于各种吸附过程。

3.准二级吸附动力学模型(PAC)准二级吸附动力学模型是一种常用的描述吸附过程的模型。

该模型考虑了表面吸附位点的饱和效应和解离效应。

准二级吸附动力学模型的数学表达式为:Q(t)=(k·C₀)/(1+k'·C₀·t)其中,Q(t)是时间t内吸附质在吸附剂上的吸附量,C₀是初始浓度,k和k'是吸附速率常数。

PAC模型的特点是与实际吸附过程拟合效果较好。

二、吸附热力学模型吸附热力学模型用于描述吸附过程中吸附剂和吸附质之间能量传递的情况。

下面介绍几种常见的吸附热力学模型。

1. Langmuir吸附热力学模型Langmuir吸附热力学模型是最简单的吸附热力学模型之一,假设吸附位点只能容纳一层吸附质。

其数学表达式为:θ=K·C/(1+K·C)其中,θ是吸附度,K是平衡常数,C是吸附质浓度。

几种吸附动力学模型简介讲义

几种吸附动力学模型简介讲义
1、是研究各种因素对化学反应速率影响的规律; 2、研究化学反应过程经历的具体步骤即所谓反应机理; 3、是探索将热力学计算得到的可能性变为现实性; 4、将实验测定的化学反应系统宏观量间的关系通过经验 公式关联起来。
动力学模型: 以动力学为理论基础,结合具体的实际或者 虚拟的课题而作的有形或者是无形的模型。
固体吸附剂对溶液中溶质的吸附动力学过程可 用准一级、准二级、韦伯-莫里斯内扩散模型和班 厄姆孔隙扩散模型来进行描述。
准一级动力学模型
基于固体吸附量的Lagergren(拉格尔格伦)一级速率方程是最为常见的,应用 于液相的吸附动力学方程,模型公式如下:
q e(mg· g-1)表示平衡吸附量,q t 表示时间为t时的吸附量, K f表示一级吸附速率常数。
表示时间为t时的吸附根据线性拟合判定系数r2判断是否符合wm动力学模型morris模型常用来分析反应中的控制步骤求出吸附剂的颗粒内扩散速率常数c是涉及到厚度边界层的常数
几种吸附动力学模型简介
报告内容
基本概念 准一级动力学模型
准二级动力学模型
W-M动力学模型 Bangham 孔道扩散模型
基本概念
动力学:
根据线性拟合判定系数R2 判断是否符合
W-M动力学模型
Weber and Morris模型常用来分析反应中的控制步骤,求出吸 附剂的颗粒内扩散速率常数。
C是涉及到厚度、边界层的常数。kip是内扩散率常数。qt对t1/2 作图是直线且经过原点,说明内扩散由单一速率控制。
材料的吸附过程分为吸附剂表面吸附和孔道缓慢扩散两个吸附过程; 直线都不经过原点,说明内扩散不是控制吸附过程的唯一步骤。
Bangham 孔道扩散模型
在吸附过程中Bangham(班厄姆)方程常被用来描述孔道扩散 机理。

吸附平衡与动力学研究常用模型介绍

吸附平衡与动力学研究常用模型介绍

吸附平衡与动力学研究常用模型介绍吸附平衡和动力学研究是化学领域中的重要研究方向之一、在实际应用中,吸附平衡和动力学的研究可以用来解决环境污染、催化剂设计等相关问题。

本文将介绍吸附平衡和动力学研究常用的模型及其原理。

一、吸附平衡模型吸附平衡模型是研究吸附过程中物质在吸附剂表面上的分布情况和吸附平衡的定量描述。

常见的吸附平衡模型有等温吸附方程、Langmuir模型和Freundlich模型。

1.等温吸附方程:等温吸附方程是描述吸附物质在吸附剂表面上的分布的一般方程。

在等温吸附方程中,吸附物质浓度和吸附剂表面上的吸附量之间存在一种函数关系。

常见的等温吸附方程有线性方程、Langmuir 方程和Freundlich方程等。

ngmuir模型:Langmuir模型是描述吸附平衡的常用模型之一、该模型假设吸附位点之间不存在相互作用,且吸附速率与吸附态分子浓度无关。

Langmuir模型可以通过一定的实验参数来确定吸附平衡的常数,从而定量描述吸附过程。

3.Freundlich模型:Freundlich模型也是描述吸附平衡的常用模型之一、该模型假设吸附物与吸附剂表面之间的相互作用是非均匀分布的,并且吸附速率与吸附态分子浓度相关。

Freundlich模型可以用于描述非理想吸附的情况。

二、吸附动力学模型吸附动力学模型是研究吸附过程中物质在吸附剂表面上的吸附速率的一种定量描述。

常见的吸附动力学模型有反应速率方程、扩散模型和化学反应动力学模型等。

1.反应速率方程:反应速率方程是描述吸附速率与吸附物质浓度之间的关系的一种常用模型。

反应速率方程可以通过实验参数来确定相关的动力学参数,从而定量描述吸附速率的快慢。

2.扩散模型:扩散模型是描述吸附物质在吸附剂表面上扩散过程的一种模型。

扩散模型涉及到扩散速率、扩散系数和浓度梯度等参数,可以用来定量描述吸附物质在吸附剂表面上的扩散行为。

3.化学反应动力学模型:化学反应动力学模型是描述吸附过程中化学反应速率与吸附物质浓度之间关系的一种模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
朗缪尔单分子层吸附理论及吸附等温式
整理得
1 = a + ⋅ a a p V Vm bVm
1
1
1
以该式的直线关系作图, 由直线斜率及截距可求得 b 与Vam. 转换为 nam , 若已知每个被吸附分子的截面积 am, 则可计算 吸附剂的比表面: as = nam L am 朗缪尔等温式可较好地解释前述 I 型吸附等温线的特征: • 压力很低或吸附较弱时, bp<<1, Va=bVam p, 呈直线段. • 当压力很高或吸附较强时, bp>>1, Va=Vam , 呈水平段. • 在中压或中强吸附时, 吸附等温线呈曲线. 但有很多实验结果是朗缪尔吸附等温式所不能解释的. 原 因是朗缪尔理论的假设与实际情况有出入. 但该理论的基本模 型为吸附理论的发展起了奠基的作用. 9
a 由直线的斜率和截距可 求得常数 c和 Vm . BET公式能较好地表达全部五种类型吸附等温线的中间 部分, 以 p/p* = 0.05 ~ 0.35间为最佳. 其改进还需考虑表面不 均匀性、同层吸附分子间的相互作用, 以及毛细凝结现象等. 最重要的应用是测定吸附剂的比表面.常采用低温吸附气 体作为吸附质. 当第一层吸附热远大于吸附质的凝结热时, c >>1, 简化为所谓一点法公式: Va ≈ 1 a 12 Vm 1 − ( p / p*)
吸附热
因 ∆ adsV = Va − Vg ≈ −Vg ≈ −nRT / p ∆ ads H ∆ ads H ⎛ ∂p ⎞ =− ⎜ ⎟ = nRT 2 / p ⎝ ∂T ⎠ na T∆ adsV
∆ ads H m ⎛ ∂lnp ⎞ ⎜ ⎟ =− RT 2 ⎝ ∂T ⎠ na p2 ∆ ads H m ⎛ 1 1⎞ ⎜ − ⎟ ln = ⎜T T ⎟ p1 R 1⎠ ⎝ 2 RT2T1 p2 ln ∆ ads H m = T1 − T2 p1 由恒吸附量下的两组平衡温度压力数据, 可求摩尔吸附焓. 吸附热一般会随吸附量的增加而下降, 表明固体表面的 能量是不均匀的. 吸附总是首先发生在能量较高、 活性较大 的位轩, 然后依次发生在能量较低、活性较小的位置上. 14
• 多分子层吸附示意图
Va c( p / p*) BET吸附公式: = a Vm (1 − p / p*){1 + (c − 1) p / p*}
11
多分子层吸附理论——BET公式
式中Va 为压力p下的吸附量; Vam 为单分子层的饱和吸附量; p* 为吸附温度下吸附质的饱和蒸气压; c 为与吸附热有关的常数. 上式亦称二常数BET公式. 整理成直线关系式: p 1 c −1 p = + ⋅ a a a p* V ( p * − p ) cVm cVm
• CO在椰子壳炭上的吸附6
朗缪尔单分子层吸附理论及吸附等温式
• • • • 1916年朗缪尔提出单分子层吸附理论. 基本假设如下: 单分子层吸附: 固体表面上每个吸附位只能吸附一个分子, 气体分子只有碰撞到固体的空白表面上才能被吸附; 固体表面是均匀的: 表面上各个晶格位置的吸附能力相同; 被吸附的气体分子间无相互作用力: 吸附或脱附的难易与 邻近有无吸附分子无关; 吸附平衡是动态平衡: 达吸附平衡时, 吸附和脱附过程同时 进行, 且速率相同. 考虑吸附过程: k1 A(g) + M(表面) AM(吸附相) k−1 k1 和 k−1分别代表吸附与脱附速率常数. 覆盖率: 任一瞬间固体表面被覆盖的面积分数. (1−θ )则代 表固体空白表面的分数. 7
Va Va Va Va Va
p / p* p / p* (IV) (V)
4
p / p*
N2在活性炭上的 吸附(−195 ℃)
p / p*
N2在硅胶上的 吸附(−195 ℃)
p / p*
Br2在硅胶上 的吸附(79 ℃)
苯在氧化铁凝胶 水气在活性碳上 上的吸附(50 ℃) 的吸附(100 ℃)
(I)
(II)
吸附热
在恒温恒压下自发的化学吸附过程, ∆G < 0, 气体分子由 三维空间被吸附到二维空间, ∆S < 0, 故∆H = ∆G +T ∆S < 0, 吸附一般为放热过程. 下面推导吸附热的热力学公式. 在T, p下达到吸附平衡的系统, ∆GT, p=0, 可知 Ga (吸附质, 吸附相)= Gg ( 吸附质, 气相) 在维持吸附量不变的条件下, 当温度从T 变到T + dT, 为建 立新的平衡, 压力相应地从 p 变到 p + dp . Ga) + dGa=Gg + dGg 显然 dGa=dGg 由热力学基本方程式 dG = −SdT + Vdp 可得 −SadT + Vadp =- SgdT + Vgdp Sa − S g ∆ ads S ∆ ads H ⎛ ∂p ⎞ = = ⎟ = ⎜ ⎝ ∂T ⎠ na Va − Vg ∆ adsV T∆ adsV 式中 ∆adsH 为吸附焓, 在量值上等于吸附热. 13
朗缪尔单分子层吸附理论及吸附等温式
根据朗缪尔理论, 采用同样的推导方法, 可得出如下 两种情况的吸附等温式: 对 A, B 两种气体在同一固体表面上的混合吸附, 有
bA pA θA = 1 + bA pA + bB pB
对解离吸附
bB pB θB = 1 + bA pA + bB pB
A2(g) + 2M(固体表面吸附位)
θ =
层吸附理论——BET公式
布鲁瑙尔(Brunauer), 埃米特(Emmett)和特勒(Teller)3人 在朗缪尔单分子层吸附理论基础上提出多分子层吸附理论, 简称 BET理论. 该理论假设如下: • 固体表面是均匀的; • 吸附靠分子间力, 吸附可以是多分子层的; • 被吸附的气体分子横向之间无相互作用力; • 吸附与脱附建立起动态平衡.
吸附量
1
2
3
2. 由物理吸附主导转向化学 吸附主导, 化学吸附慢, 升 温加快吸附; 3. 化学吸附, 放热, 快速趋向 平衡.
2
−200
0 100 200 t /℃ • Pt 对CO 的吸附等压线
−100
等温吸附
气体分子运动论指出: • 气体碰撞固体表面的频率是很高的, 常温常压下空气在固体 表面上的碰撞数 Z = 3 × 1025cm-2 ⋅ s-1. • 只有那些能很快散失其能量, 转变为基质晶格的热振动的情 况下, 碰撞到固体表面的分子才能被捕集. • 被吸附的分子既可作二维运动, 也可解吸而重回气相. 物理 吸附的气体分子在固体表面上停留时间约为10-8 s. 吸附量: 单位质量吸附剂所吸附的气体的物质的量或其在标 准状况下的体积. def n def V na 或 Va m m
• 物理吸附与化学吸附的比较 物理吸附 吸附力 吸附层数 可逆性 吸附热 吸附速率 吸附选择性 范德华力 多分子层或单分子层 “可逆” 小(近于冷凝热) 快 无或很差 化学吸附 化学键力 单分子层 “不可逆” 大(近于反应热) 慢 有
1
物理吸附与化学吸附
物理吸附和化学吸附往往可以同时发生, 如O2在W上 的吸附. 在不同的温度下, 起主导作用的吸附可以发生变化, 如 CO在Pd上的吸附. 1. 物理吸附, 放热, 快速趋向 平衡;
物理吸附与化学吸附
吸附: 在相界面上某种物质的浓度不同于体相浓度的现象. 固体表面可捕集气相或液相中的分子, 以减小界面分子 受力不对称的程度, 能降低表面吉布斯函数. 吸附剂: 有吸附能力的固体物质, 常制成高比表面的多孔固体. 吸附质: 被吸附的物质. 按吸附作用力的不同,将吸附分为物理吸附和化学吸附.
朗缪尔单分子层吸附理论及吸附等温式
根据单分子层吸附理论, 可知 吸附速率 υ1 = k1(1−θ ) p 脱附速率 υ−1 = k −1 θ 当吸附达平衡时, υ1 = υ− 1, 所以 k1 (1−θ ) p =k −1 θ
bp 朗缪尔吸附等温式: θ = 1 + bp
式中b = k1 / k-1, 称为吸附系数, 单位Pa−1. b 值越大, 吸附作 用越强. 以 Va 和Vam 分别代表覆盖率为 θ 时的平衡吸附量和在 足够高压力下饱和吸附的量, 则有 Va bp θ= a = Vm 1 + bp
(III)
• 5 种类型的吸附等温线
等温吸附
I 型吸附等温线举例: • 等温下, 压力愈高吸附量愈 大. 如−23.5℃时, 低压段吸 附量随压力增大而快速直 线上升; 中压段压力影响 逐渐减弱; 高压段压力几 乎对吸附量无影响, 吸附趋 向饱和. • 若压力一定, 温度愈高吸附 量愈低.
5
•不同温度下氨气在炭粒上的吸附等温线
吸附经验式——弗罗因德利希公式
弗罗因德利希提出如下等温吸附经验式: Vaa= kpnn V = kp 式中 k 和 n 为经验常数, k 一般随温度升高而减小; n 一般 介于 0 ~ 1 之间. 该经验式只适用于中压范围的吸附. 取对数得 lg Va = nlg p + lg k 以lg Va 对lg p 作图, 应得一条 直线, 可由斜率和截距分别求 得常数n 和 k. 上式只能概括地表达一部 分实验事实, 而不能说明吸附 的作用机理.
气体的吸附量与温度和压力有关: Va = f ( T, p )
3
等温吸附
吸附等温线: 恒温下描述吸附量与平衡压力间关系的曲线. Va = f ( p ) 吸附等压线: 恒压下描述吸附量与温度之间关系的曲线. Va = f ( T ) 吸附等量线: 恒吸附量下描述平衡压力与温度间关系的曲线. p=f(T)
相关文档
最新文档