聚焦离子束微纳加工技术

合集下载

聚焦离子束加工技术及其应用

聚焦离子束加工技术及其应用

聚焦离子束加工技术及其应用摘要:。

聚焦离子束(FIB)技术是把离子束斑聚焦到亚微米甚至纳米级尺寸,通过偏转系统实现微细束加工的新技术。

文章简述了聚焦离子束工作原理和应用前景等。

关键词:聚焦离子束、刻蚀1.聚焦离子束简介聚焦离子束(focused ion beam,FIB)与聚焦电子束从本质上讲是一样的,都是带电粒子经过电磁场聚焦形成细束。

但聚焦电子束不同于聚焦离子束。

区别在于它们的质量,最轻的离子为氢离子也是电子质量的1 840倍。

离子束不但可以像电子束那样用来曝光,而且重质量的离子也可以直接将固体表面的原子溅射剥离,因此聚焦离子束更广泛地作为一种直接微纳米加工工具。

离子束的应用已经有近百年的历史。

自1910年Thomson建立了气体放电型离子源后,离子束技术主要应用于物质分析、同位素分离与材料改性。

由于早期的等离子体放电式离子源均属于大面积离子源,很难获得微细离子束。

真正的聚焦离子束始于液态金属离子源的出现。

1975年美国阿贡国家实验室开发出液态金属离子源(LMIS),1978年美国加州休斯研究所的R.L.Seliger等人建立了第一台装有Ga LMIS的FIB系统,其束斑直径仅为100nm(目前已可获得只有5nm的束斑直径)。

电流密度为1.5A/cm ,亮度达3.3×10。

A/(cm2.sr)。

这给进行亚微米JJnq-器件的研究极大的鼓舞。

聚焦离子束(FIB)技术就是在电场及磁场的作用下,将离子束聚焦列亚微米甚至纳米量级,通过偏转系统和加速系统控制离子束,实现微细图形的检测分析和纳米结构的无掩模加工。

FIB技术经过不断发展,离子束已可以在几个平方微米到近lmm 的区域内进行数字光栅扫描,可以实现:①通过微通道极或通道电子倍增器收集二次带电粒子来采集图像。

②通过高能或化学增强溅射来去除不想要的材料。

③淀积金属、碳或类电介质薄膜的亚微米图形。

FIB技术已在掩膜修复、电路修正、失效分析、透射电子显微镜(TEM)试样制作及三维结构直写等多方面获得应用。

聚焦离子束

聚焦离子束

聚焦离子束
离子束技术是一种高精度微加工技术,通过将离子加速到高速并聚焦在微米尺度的小区域进行材料加工和表面改性。

聚焦离子束技术在材料科学、电子工程、生物医学等领域有着广泛的应用前景。

在聚焦离子束技术中,离子束源首先产生并加速离子,然后通过磁透镜等聚焦装置将离子束聚焦到微米尺度。

在加工过程中,离子束的能量和大小可以被调控,从而实现对材料的高精度加工。

离子束技术具有许多优势,比如能够实现高分辨率的加工、几乎无热影响区、对光学透明材料有较好加工效果等。

这些优势使得离子束技术在制造微纳米器件、制备光学元件、表面处理等方面有着独特的应用优势。

聚焦离子束技术在微纳加工领域有着广泛的应用。

比如在芯片制造中,离子束技术可以实现对器件的精细加工和调试,提高了芯片的性能和可靠性。

在生物医学领域,离子束技术可以用于制备生物芯片、药物载体等,为生物医学研究提供了新的手段。

未来,随着人类对微纳加工精度和功能性需求的不断提高,离子束技术将会更加广泛地应用于各个领域。

同时,随着离子束技术的不断发展和创新,离子束技术也将不断地提升其加工精度和效率,为人类创造更多的可能性。

总的来说,聚焦离子束技术作为一种高精度微加工技术,在材料加工、表面改性等领域有着广泛的应用前景。

随着技术的不断发展和创新,离子束技术将会为人类带来更多的技术创新和应用可能性。

聚焦离子束技术介绍

聚焦离子束技术介绍
(SI)以及二次电子(SE)
一、概述
• 发展历史 – Levi-Setti,Orloff 和Swanson等人在1975 年研制出了第一台气体场电离离子源聚焦离 子束设备。 – 1978 年Seliger等人研制出了第一台液体金属离子源的聚焦离子束设备。 – 目前,已经发展成电子束和离子束合二为一的双束系统。
nm。
二、聚焦离子束功能
• 如左图所示,在未喷镀玻璃表面加工同心圆时, 由于玻璃不导电,离子束产生的表面荷电积累导 致无法加工出预定图形结构。
• 此时,如果同时启动电子束镜筒,用200 nA 大电 流扫描加工区域就可以有效地将正电荷中和掉, 从而获得与设计方案完全一致的图形。
• 这种加工模式就是最新的漂移抑制加工技术,电 荷补偿的过程由双束系统自动实现。
二、聚焦离子束功能
• 离子束的切割功能是通过离子束与表面原子之间的碰撞将样品表面原子溅射出来实现的。 • 通过调整透镜系统和光阑可以将镓离子束直径控制到纳米尺度,再使用图形发生器来控制离
子束的扫描轨迹就可以对样品实现精细的微纳加工。 • 目前先进的图形发生器采用了16 位的控制系统,可以将离子束的最小扫描间隔减少至0. 6
三、电子束功能
超低电压超高分辨SEM图像: (a) 800eV下SBA-15介孔SiO2样品,(b) 200eV下碳纳米管样品
四、双束系统的应用
• 任何双束系统的复杂应用均来自于上面介绍的电子和离子束功能的组合,这些复杂的应用逐 渐发展成为比较专业的应用。
• 以下着重介绍三种主要应用:微纳加工、透射电镜制样和电路编辑。
• 该技术解决了传统不导电样品加工的难题,体现 出了双束的技术优势,也扩展了双束的应用领域。
二、聚焦离子束功能
• 离子束的第3种应用是与GIS气体注入系统结合起来实现沉积或者增强刻蚀。 • GIS气体注入系统可以将含有金属的有机前驱物加热成气态通过针管喷到样品表面,当离子或

聚焦离子束技术

聚焦离子束技术

聚焦离子束技术一、简介聚焦离子束技术(Focused Ion Beam,FIB)是一种微电子束技术,它使用液态金属离子源产生离子束,然后通过一组电磁透镜将离子束聚焦到非常小的区域内。

这种技术在材料科学、半导体工程、生命科学和纳米科技等领域有着广泛的应用。

二、聚焦离子束技术的工作原理1. 离子源:聚焦离子束系统的核心是一个离子源,通常使用的是液态金属离子源。

液态金属离子源中的金属被加热到高温,使其蒸发并形成等离子体。

2. 离子提取:从等离子体中提取出金属离子,并将其加速到高速度。

3. 聚焦:通过一组电磁透镜将离子束聚焦到一个非常小的区域内。

电磁透镜可以是静电透镜或磁透镜,也可以是两者的组合。

4. 样品处理:聚焦的离子束可以用于切割、蚀刻、沉积和焊接样品。

离子束与样品的相互作用会产生二次粒子和溅射物质,这些二次粒子和溅射物质可以被用于分析样品的性质。

三、聚焦离子束技术的应用领域1. 半导体工程:聚焦离子束技术可以用于制造和修复半导体设备。

例如,可以使用FIB来切割芯片,或者修复集成电路中的缺陷。

2. 材料科学:聚焦离子束技术可以用于分析和处理各种材料。

例如,可以使用FIB来切割样品并进行元素分析,或者使用FIB来制造纳米结构和纳米器件。

3. 生命科学:聚焦离子束技术可以用于研究和操作生物样本。

例如,可以使用FIB来切割细胞或组织样本,或者使用FIB来制造纳米级的药物输送系统。

4. 纳米科技:聚焦离子束技术是纳米科技的重要工具。

它可以用于制造纳米结构和纳米器件,也可以用于研究纳米材料的性质。

5. 故障分析:FIB可以用于故障分析,通过在器件表面进行切割、刻蚀和显微观察,帮助确定电子器件中的故障位置和原因。

四、聚焦离子束技术的挑战和未来发展尽管聚焦离子束技术在许多领域都有广泛的应用,但它也面临着一些挑战。

例如,离子束与样品的相互作用会产生大量的二次粒子和溅射物质,这些二次粒子和溅射物质可能会污染样品和设备。

聚焦离子束fib测试用途以及注意事项

聚焦离子束fib测试用途以及注意事项

聚焦离子束fib测试用途以及注意事项全文共四篇示例,供读者参考第一篇示例:聚焦离子束(Focused Ion Beam,简称FIB)是一种现代化的分析仪器,它利用离子束对材料表面进行切割、雕刻和离子注入等操作,可用于材料性能分析、纳米加工以及器件结构调制等方面。

在科学研究和工程应用中,FIB技术被广泛应用于半导体、材料科学、生物医药等领域。

本文将重点介绍聚焦离子束FIB的测试用途以及注意事项。

一、FIB的测试用途1. 样品切割:FIB技术可以通过离子束切割样品,制备出不同几何形状和大小的样品切片,用于透射电镜、扫描电镜等进一步的显微分析。

这对于研究材料的微观结构和性能具有重要意义。

2. 纳米加工:FIB技术可以对样品表面进行精确的纳米加工,包括雕刻、刻蚀和注入等操作。

通过控制离子束的能量和位置,可以实现微米和纳米尺度的结构制备和调控,为纳米器件的制备和研究提供了重要手段。

3. 局部分析:FIB技术可以结合光学显微镜、扫描电子显微镜等设备,对样品表面进行定位并进行局部分析。

通过离子束的照射,可以实现对材料的表面成分、结构和形貌等信息的获取,为材料性能和组成分析提供了便利。

4. 器件修复:FIB技术可用于器件的故障分析和修复,通过对器件进行切割、磨蚀和掺杂等操作,可以找到故障点并进行修复,提高器件的可靠性和性能。

5. 原位实验:FIB技术可以在扫描电子显微镜或透射电镜平台上实现原位实验,对材料进行局部处理和观察。

这种原位实验可以实现对材料反应、相变和结构演化等过程的实时监测和控制,具有重要的研究意义。

二、FIB的注意事项1. 样品准备:在进行FIB实验前,应对样品进行充分的处理和准备工作。

样品表面应平整干净,避免有氧化物、污渍和尘埃等杂质,以确保离子束对样品的照射效果。

2. 参数设置:在使用FIB进行实验时,需要根据样品的性质和需要进行离子束的能量、电流和面积等参数进行合理的设置。

过小的能量和电流会导致处理效率低,而过大可能会损伤样品。

离子束微纳加工

离子束微纳加工

离子束微纳加工
离子束微纳加工(Ion Beam Micro/Nano Fabrication)是一种高精度、高品质的微纳加工技术,其基本原理是利用高能离子束对材料进行加
工和改性。

离子束微纳加工具有加工精度高、表面光洁度好、加工速度快、适用性广等优点,在微电子、光电子、生物医学等领域得到广泛应用。

离子束微纳加工的主要工艺包括掩模制作、离子注入、刻蚀、沉积、
表面粗化等。

其中,掩模制作是离子束微纳加工的核心技术之一,其目的
是在材料表面制作出所需的微纳结构,包括线条、点、孔洞等。

离子束注
入则是将高能离子束注入到材料表面,利用离子束的能量和束流密度对材
料进行改性和处理。

刻蚀和沉积则是通过离子束的能量和的化学反应来实
现对材料表面的加工和改性。

此外,表面粗化技术可以通过控制离子注入
能量和注入时间来实现对材料表面粗糙度、摩擦系数、润湿性等性质的改变。

离子束微纳加工技术可以广泛应用于集成电路、传感器、微加工等领域,在纳米电子学、生物医学、能源等领域也有很大的应用前景。

对于微
纳加工领域来说,离子束微纳加工技术是一种高效、稳定的加工技术,有
望推动微纳加工技术的发展和应用。

微纳米级精密加工技术最新进展

微纳米级精密加工技术最新进展

微纳米级精密加工技术最新进展微纳米级精密加工技术是当代科技发展的关键技术之一,它在信息技术、生物医疗、航空航天、光学制造等领域发挥着至关重要的作用。

随着科学技术的飞速进步,微纳米级精密加工技术不断取得突破,推动着相关产业的创新与升级。

以下是该领域最新进展的六个核心要点:一、超精密光刻技术的新突破超精密光刻技术作为微纳加工的核心技术,在半导体芯片制造中占据主导地位。

近年来,极紫外光刻(EUV)技术取得了重大进展,其波长缩短至13.5纳米,极大提高了图案分辨率,使得芯片上的元件尺寸进一步缩小,推动了摩尔定律的延续。

同时,多重曝光技术和计算光刻技术的结合应用,进一步提高了光刻精度,为实现更小特征尺寸的集成电路铺平了道路。

二、聚焦离子束加工技术的精细化聚焦离子束(FIB)技术以其高精度、灵活性强的特点,在微纳米结构的直接写入、修改及分析方面展现出了巨大潜力。

最近,通过优化离子源和束流控制系统,FIB技术实现了亚纳米级别的加工精度,为纳米器件的制备、纳米电路的修复及三维纳米结构的构建提供了强有力的技术支持。

此外,双束系统(FIB-SEM)的集成,即在同一平台上集成了聚焦离子束与扫描电子显微镜,大大提高了加工的准确性和效率。

三、激光微纳加工技术的创新应用激光加工技术在微纳米尺度上展现出了新的应用潜力,尤其是超短脉冲激光技术的出现,如飞秒激光,能够在材料表面进行无热影响区的精确加工,适用于复杂三维结构的制造。

通过调控激光参数,如脉冲宽度、能量密度和重复频率,可实现从材料表面改性到内部结构雕刻的广泛加工能力,被广泛应用于生物医疗植入物、微光学元件及微流控芯片的制造中。

四、化学气相沉积与电化学加工的精细化化学气相沉积(CVD)作为一种薄膜沉积技术,近年来在微纳米材料合成方面取得了显著进展,特别是在石墨烯、二维材料及其异质结构的可控生长方面。

通过精确调控反应条件,如温度、压力和气体配比,实现了单层或多层纳米薄膜的高质量沉积,为纳米电子学、能源存储及传感技术的发展提供了关键材料。

聚焦离子束加工

聚焦离子束加工

聚焦离子束加工离子束加工是一种先进的材料加工技术,它通过利用离子束对材料进行加工和改性。

离子束加工具有高精度、高效率、无环境污染等优点,被广泛应用于微电子、光电子、材料科学等领域。

本文将聚焦于离子束加工的原理、应用和未来发展方向,以及它对人类社会的意义。

一、离子束加工的原理离子束加工是利用高能离子束对材料表面进行物理或化学作用,从而改变材料的性质和形状的一种加工技术。

离子束加工主要包括离子束刻蚀、离子束沉积和离子束混杂等过程。

其中,离子束刻蚀是将高能离子束直接轰击材料表面,使表面原子或分子脱离材料,达到刻蚀的目的。

离子束沉积是将高能离子束轰击到材料表面上,使离子束中的原子或分子与材料表面的原子或分子发生反应,形成新的材料层。

离子束混杂是将高能离子束注入材料内部,改变材料的物理和化学性质。

二、离子束加工的应用离子束加工在微电子领域有着广泛的应用。

它可以用于制造微电子器件中的细小结构和通道,提高器件的性能和稳定性。

同时,离子束加工还可以用于修复集成电路中的缺陷,并改善器件的可靠性。

此外,离子束加工还可以用于制备纳米材料、光学器件和生物芯片等领域。

在材料科学领域,离子束加工也发挥着重要的作用。

它可以用于改变材料的表面形貌和性质,提高材料的硬度、耐磨性和耐腐蚀性。

离子束加工还可以用于制备具有特殊功能的材料,如防反射膜、光学薄膜和超疏水薄膜等。

此外,离子束加工还可以用于材料的改性和合金化,提高材料的性能和应用范围。

三、离子束加工的未来发展方向随着科学技术的不断发展,离子束加工也在不断创新和改进。

未来离子束加工的发展方向主要包括以下几个方面:1. 提高加工精度和效率:通过改进离子束的发射、聚焦和控制技术,提高离子束加工的精度和效率,实现更加精细的加工和更高的加工速度。

2. 开发新的加工方法和工艺:通过研究和开发新的加工方法和工艺,如离子束刻蚀、离子束沉积和离子束混杂等,实现对材料的多功能加工和多层次加工。

3. 探索新的应用领域:开拓离子束加工的新应用领域,如生物医学、能源材料和环境保护等,为人类社会的发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 图形发生器的功能是编制要制作的图形或接 受用户的图形数据,形成FIB系统能识别的图 形数据;根据图形加工要求对图形数据晶型 处理和编制图形加工过程;控制束偏转器、 束闸和X-Y工件台进行图形加工。
• 束偏转器有静电偏转器和磁偏转器。其主要 作用是使离子束发生小角度偏转。
• 束闸通常是通过偏转离子束使其偏离安装在 交叉斑附近的束闸光阑,达到截止离子束的 目的。
束描画系统
• 聚焦离子束加工中是利用电子束曝光中常用 的“十”字检测标记凹槽,台阶处的二次电 子远比平面上逸出多的原理来进行对准操作。
X-Y工件台
• 聚焦离子束在扫描标记成像时会腐蚀标记, 在电子束曝光系统上是不存在的。标记的腐 蚀会影响后续图形加工的套刻对准精度。
信号采信集号处采理集单处元理单元
+M1
• X-Y电机驱动工件台 灵活方便,价格低廉,便于自动控制,实 验室用。
• 激光定位精密工件台 精度高,能进行图形拼接和多层图形套刻, 能够进行大面积图形加工。
聚焦离子束系统
离子源
离子光学柱
• 对大部分双束FIB而言,扫描电子束和聚焦离 子束都能形成二次电子像。但前者成像较清 晰,后者成像对比度更优。
+M2
5~10μm 槽深2μm
+M3
+M4 套刻对准用的“十”字标记
100~200μm
FIB扫描标记的脉冲波 形
FIB扫描标记的二次电子标记图像
聚焦离子束与固体材料表面的相互作用
3;
+ +
+ +
+
二次电子发射 二次离子发射 X射线发射 光子发射
材料结晶变化
反弹注入
离子注入
聚焦离子束与固体材料表面的相互作用
入射离子注入 反反冲冲注注入入 入射离子背散射 二次离子发射 二次电子发射
• 入射离子把能量和动量传 递给固体表面或表层原子, 使后者进入表层或表层深 处。例如,通过惰性气体 离子对表面或表层的轰击, 使表面待掺杂原子进入深 层材料内,实现原子混合 注入。
光子发射 材料溅射 辐射损伤 化学变化 材料加热
聚焦离子束系统
离子源 离子光学柱 束描画系统 X-YX工-Y件工台件台 信号采集处理单元
X-Y工件台作用:承载需要加工的镜片;移动 镜片实现扫描场的图形拼接;移动晶片实现 整个晶片上的图形描画;进行标记检测,实 现多层图形对准套刻;利用激光波长对图形 尺寸进行校正。
• 五自由度手动工件台 灵活方便,价格低廉,实验室用。
由聚焦状态的离子探针对加工表面的点状轰击来达到加工目 的的,轰击面的直径在纳米量级或微米量级。在需要形成图 形结构的场合,必须由计算机控制束扫描器和束闸来实现
• 常规离子束加工用离子源
• 1.热阴极大电流离子源 • 2.冷阴极放电离子源 • 3.高频放电离子源 • 4.双等离子体离子源 • 5.微波阴极离子源 • 6.电子束激励离子源
聚焦离子束系统
离离子子源源 离子光学柱 束描画系统 X-Y工件台 信号采集处理单元
衡量标准:1.亮度 2.虚拟源尺寸 3.能散 4.工 作稳定性
• 双等离子体离子源 亮度约为10A/(cm2·sr),源典型尺寸为 50μm,广泛应用于微细加工领域。
• 液态金属离子源 亮度高达106A/(cm2·sr),源典型尺寸为 50~100nm,发射稳定,满足亚微米量级 要求
主要应用在:离子束刻蚀、离子束沉积、离子束诱 导沉积、离子束注入、离子束曝光和离子束材料改 性等方面。
聚焦离子束vs.常规离子束
常规离子 束技术
聚焦离子 束技术
由定向或不定向的离子流对工件表面的面状轰击来达到加工 目的的,轰击面直径可以从几毫米到几十厘米,在需要形成 图形结构的场合,常规离子束技术必须采用掩膜。
• 聚焦离子束加工用离子源
• 1.双等离子体离子源 • 2.气体场发射离子源 • 3.液态金属离子源
离子源 引出极 聚焦透镜 质量分析器
束闸 束对中
物镜 X-Y偏转器 气体注入口 X-Y工件台
注入系统 电子检测 移动控制 真空系统
计算机控制 系统
真空泵
聚焦离子束系统

双束单光柱FIB-SEM
双束双光柱FIB-SEM
• 对于合金液态金属离子源系统,必须安装离 子质量分析器,用来选择所需要的的离子, 而将不需要的元素离子阻挡掉。常用的是 E×B离子质量分析器。
N E×B 离子质量分析器工作原理
聚焦离子束系统
离子源 离子光学柱 束描束画描系画统系统 X-Y工件台 信号采集处理单元
束描画系统由图形发生器、束偏转器和束闸 组成。
• 气态场发射离子源 亮度高达109A/(cm2·sr),源典型尺寸为 1nm,要求超高真空和低温环境。
双等离子体离子源 液态金属离子源
气态场发射离子源
聚焦离子束系统
离子源
离子离光子学光柱学柱 束描画系统 X-Y工件台 信号采集处理单元
• 离子源发射离子束进入到离子光学柱,经过 整形、质量分析,最后聚焦到工件表面。离 子光学柱中的主要部件有:静电透镜、消像 散器、束对中单元、质量分析器、静电偏转 闸和束偏转器。离子光学柱中还设置一系列 限束光阑,用来阻挡离轴较远的离子。
聚焦离子束与固体材料表面的相互作用
入射离子注入
反冲注入
入射入离射子离背子散背射散射 二次离子发射 二次电子发射
• 入射离子通过与固体材料 中的原子发生弹性碰撞, 被反射出来,称为背散射 离子。某些离子在发生弹 性碰撞散射前后,也可能 经历一定的能量损失。
聚焦离子束与固体材料表面的相互作用
入射入离射子离注子入注入
反冲注入 入射离子背散射 二次离子发射 二次电子发射
• 入射离子在与材料中的电 子和原子的不断碰撞中, 逐渐丧失能量并被固体中 的电子中和,最后镶嵌在 固体材料中。镶嵌到固体 材料中的原子改变了固体 材料的材料的性质,这种 现象叫注入。
光子发射 材料溅射 辐射损伤 化学变化 材料加热
集成电路制造中的三束技术
电子束技术 光子束技术 离子束技术
具有极高的分辨率,可制作最细线宽5~8nm的图形, 不能用于器件的批量生产,主要应用在掩膜的制造 和器件的直接光刻方面。
主要包括紫外光刻(0.5~0.8μm器件)、准分子激光 光刻(0.18~0.13μm器件)、极紫外光刻 (35~65nm器件)、激光图形发射器(0.2μm线宽)和 X射线光刻(90nm器件)等。
相关文档
最新文档