用一根绳子去量一口井的深度精编版

合集下载

小升初小学数学经典应用题专题练习《盈亏问题》答案详解

小升初小学数学经典应用题专题练习《盈亏问题》答案详解

经典应用题—专题10《盈亏问题》一.选择题(共7小题)1.(2017•长沙)美猴王带着蟠桃回到花果山分给众猴,先分给3只老猴各6个,每只小猴4个,发现还有4只小猴分不到,于是收回重新分,3只老猴各5个,每只小猴3个,可是还剩下12个,那么花果山共有()只猴.A.24B.25C.26D.28【解答】解:设花果山共有x只猴.6×3+(x﹣3)×4﹣4×4=5×3+(x﹣3)×3+1218+4x﹣12﹣16=15+3x﹣9+12x=28答:花果山共有28只猴.故选:D.2.(2017•长沙)甲乙二人买同一种杂志,甲买一本差2角8分,乙买一本差2角6分,而他俩的钱合起来买一本还剩2角6分,那么这种杂志每本价钱是()A.1元B.7角C.8角D.9角【解答】解:2角8分=0.28元,2角6分=0.26元.0.28+0.26+0.26=0.8(元)=8角答:这种杂志每本价钱是0.8元.故选:C.3.(2015•绵阳)有一批同学去划船,他们算了一下,如果增加一条船,正好每船坐6人,如果减少一条船,正好每条船坐9人,则该班有()名同A.32B.36C.40D.48【解答】解:法一:(9+6)÷(9﹣6),=15÷3,=5(条);6×5+6,=36(人).法二:设使用x条船,据题意可得方程:(x+1)×6=(x﹣1)×96x+6=9x﹣93x=15x=5,则班级人数为:(5+1)×6=36(人),答:该班有36人.故选:B.4.(2013•浦东新区模拟)将若干个苹果分给几个小朋友,如果每人分到4个,那么还多12个,如果每人分到6个,那么正好分完.小朋友有几个?根据题意,所列方程或算式错误的是()A.解:设小朋友有x个.4 x+12=6xB.解:设小朋友有x个.6x﹣12=4xC.解:设小朋友有x个.4x+12×4=6xD.12÷(6﹣4)【解答】解:(1)用方程解可列式为:设有小朋友X人,根据题意得①4X+12=6X,12=6X﹣4X,2X=12,X=12÷2,X=6.答:有小朋友6人.②6X﹣12=4X,6X﹣4X=12,2X=12,X=12÷2,X=6.答:有小朋友6人.③6X﹣4X=12,2X=12,X=12÷2,X=6.答:有小朋友6人.(2)用算术法解12÷(6﹣4),=12÷2,=6(人).答:有小朋友6人.故选:C.5.(2012秋•杨浦区期末)小聪用一根绳子来测量一口井的深度,他把绳子的一端放入井底,井口外绳子长9米,小聪把这根绳子对折后,将一端入井底,这时在井口外的绳子还有3米,这口井的深度为()米.A.2B.3C.4D.5【解答】解:9﹣3×2,=9﹣6,=3(米).答:这口井的深度为3米.故选:B.6.用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,绳子长()厘米.A.240B.210C.280【解答】解:树的周长:(30+40)÷(4﹣3)=70÷1=70(厘米)绳长:70×3+30=210+30=240(厘米)答:绳子长240厘米.故选:A.7.小红从家里到县城去上她以每分钟50米的速度走了3分钟,发觉按这个速度走下去就要迟到8分钟,于是立即加快了速度,每分钟多走了10米,结果到学校时,离上课还有5分钟,小红家到学校的路程是()米.A.3900B.4050C.4300【解答】解:50+10=60(米)(8×50+5×60)÷10=700÷10=70(分钟)50×(70+8)=3900(米)3900+50×3=4050(米)答:小红家到学校的路程是4050米.故选:B.二.填空题8.(2019•深圳)有一口枯井,现有一根绳子,对折后垂直放到井底,绳子一端比井口多10米;如果三折后垂到井底,绳子的一端比井口多2米,绳子的长度是48米.【解答】解:绳子长:(10﹣2)÷(﹣)=8=48(米)答:绳子的长度是48米.故答案为:48.9.(2019•长沙)若干个同学去划船,若每船4人,则多5人;若每船5人,则船上有4个空位,有41名同【解答】解:船的数量:(5+4)÷(5﹣4)=9÷1=9(条),共有学生:4×9+5=41(人)或:5×9﹣4=41(人),答:共有41个同故答案为:41.10.(2019•郑州)某公司给职工发奖金,每人发250元则缺180元,每人发200元则余220元,那么平均每人能发奖金227.5元.【解答】解:设员工共x人,则250x﹣180=200x+220250x﹣200x=220+18050x=400x=8每人发250元则缺180元,所以奖金总数:250×8﹣180=2000﹣180=1820(元),那平均每人发的奖金数就是:1820÷8=227.5(元),答:平均每人能发奖金227.5元.故答案为:227.5.11.(2019•广州模拟)一次数学考试共有20道题.规定答对一题得2分,答错一题扣1分,未答的题不得分.小明得了23分,已知他未答的题目数是偶数.那么他答错了3道.【解答】解:因为得了23分,所以小明至少答对了12题即2×12=24>23分那么小明答错的和没答的是20﹣12=8道又因为没答的题是偶数,而小明的得分是奇数,所以依此类推小明至少答对的题目数应该是奇数13、15、17、19假设小明答了全部的题那么得分如下:(1)2×13﹣7=19(2)2×15﹣5=25>23(3)2×17﹣3=31>23(4)2×19﹣1=37>23因此可以判定(2)、(3)、(4)不满足题意要求所以小明答对了13,答错的题:13×2﹣23=3(道)未答的题:20﹣13﹣3=4(道)符合题意.故小明答错了3题,有4道题没有答.答:小明答错了3道题.12.(2018•金湖县)小明步行上如果每分钟步行40米,就会迟到2分钟;如果每分钟步行60米,就提前2分钟到校.小明家到学校有480米.【解答】解:(60×2+40×2)÷(60﹣40)=200÷20=10(分钟)40×(10+2)=40×12=480(米)答:小明家到学校有480米.故答案为:480.13.(2018•长沙)学校安排学生到会议室听报告,如果每3人坐一条长椅,则剩下36人没有座位;如果每5人坐一条长椅,则刚好空出2条长椅,参加会议室的学生有105人.【解答】解:(36+5×2)÷(5﹣3)=(36+10)÷2=46÷2=23(条),23×3+36=69+36=105(人).答:参加会议室的学生有105人;故答案为:105.14.(2015秋•达州月考)学校给学生分配宿舍,每间屋住3人则多出20人,每间屋住5人,恰好够住.学校宿舍10间,学生50人.【解答】解:设有宿舍x间,由题意得:2x=20x=10则学生有:10×5=50(人)答:学校宿舍有10间,学生有50人.故答案为:10,50.15.(2013春•武侯区校级期末)一批小朋友去买东西,若每人出10元则多8元;若每人出7元则少4元.问:有4个小朋友,东西的价格是32元.【解答】解:小朋友:(8+4)÷(10﹣7)=12÷3=4(人)东西的价格:10×4﹣8=32(元)答:有4个小朋友,东西的价格是32元.故答案为:4;32.16.(2013秋•江南区月考)托儿所买一车梨.按计划吃的天数计算一下,如果每天吃40个,那么剩下480个;如果每天吃60个,那么还少80个.买回这车梨有1600个,托儿所计划吃28天.【解答】解:天数:(480+80)÷(60﹣40),=560÷20,=28(天);个数:28×40+480=1600(个);答:买回这车梨有1600个,托儿所计划吃28天.故答案为:1600,28.17.(2013春•江南区月考)小虹借了一本科幻书,必须按期归还.小虹若每天读35页,则读完全书比规定日期迟一天;如果每天读40页,则最后一天要少读5页;这本科幻书共有315页,规定日期是8天,如果他每天读39页,最后一天要读42页才能按期读完.【解答】解:(35+5)÷(40﹣35),=8(天),8×35+35,=280+35,=315(页).315﹣39×7,=315﹣273,=42(页).答:这本科幻书共有315页,规定日期是8天,如里他每天读39页,最后一天要读42页才能按期读完.故答案为:315,8,42.三.应用题18.(2018秋•娄底期末)妈妈带一些钱去买布.买2米布后还剩下1.80元;如果买同样的布4米则差2.40元.问:妈妈带了多少钱?【解答】解:(2.40+1.80)÷(4﹣2)=4.2÷2=2.1(元/米)2.1×2+1.8=4.2+1.8=6(元)答:妈妈带了6元.19.(2019秋•深圳月考)某班学生要栽一批树苗.若每个人分配k棵树苗,则剩下38棵;若每个学生分配9棵树苗,则还差3棵.那么k是多少棵树苗?【解答】解:41÷(9﹣k)表示分配人数因为分配人数是整数所以9﹣k=41或者9﹣k=1k=﹣32(舍)或k=8答:k是8棵树苗.20.(2019春•普陀区校级期中)学校安排寝室,如果每间13人就正好住满,如果每间10人,还缺三间寝室,学校有几间寝室?【解答】解:(10×3)÷(13﹣10)=10(间)答:学校有10间寝室.21.(2018春•水富县校级月考)妈妈带了一些钱去买肉.如果买4千克牛肉,还剩20元;如果买7千克猪肉,还差10元.已知牛肉比猪肉每千克贵15元,妈妈带了多少钱?【解答】解:买4千克猪肉要余出:15×4=60(元):剩余:60+20=80(元);每千克猪肉的价格为:(80+10)÷(7﹣4)=30(元);妈妈共带了:7×30﹣10=200(元);答:妈妈带了200元钱.22.(2018秋•福田区校级月考)手工课上,王老师带了一些彩纸分给学生.若每组分3张彩纸,则剩下18张,如每组分7张彩纸,则还差2张.王老师一共带了多少张彩纸?【解答】解:设一共有x组,3x+18=7x﹣24x=20x=53×5+18=15+18=33(张)答:王老师一共带了33张彩纸.23.(2018•玄武区)一小和二小有同样多的同学参加某项比赛.学校用汽车把学生运往赛场.一小用的汽车每车坐15人,二小用的汽车每车坐13人,结果是二小比一小多派1辆车.后来每校各增加一人参加比赛,这样两校需要的汽车就一样多了.最后学校又决定每校增加一人参加比赛,二小又比一小多派1辆车.问两校共有多少人参加比赛?【解答】解:由于:6×15+1=7×13,所以每校原来参加人数为:6×15=90(人),两校共有:90×2+4=184(人).答:最后两校共有184人参加竞赛.24.(2016•徐州)同学们集体买一件商品,每人付6元,就会多48元,每人付5元,就会少3元,问这件商品多少元?一共有多少人?【解答】解:(48+3)÷(6﹣5)=51(人)6×51﹣48=258(元)答:这件商品258元,一共有51人.25.有一些自行车辐条,安装4辆自行车后,还剩66根辐条;若安装5辆自行车,则少了14根辐条.现在一共有多少根辐条?【解答】解:设每辆自行车安装x根辐条,4x+66=5x﹣144x+66﹣4x=5x﹣14﹣4xx﹣14=66x﹣14+14=66+14x=804×80+66=386(根)答:现在一共有386根辐条.26.一群小朋友分苹果.若每人分14个,则还多出11个;若一位小朋友只拿10个,则其余小朋友都能拿到17个.这些苹果共有多少个?【解答】解:(11+17﹣10)÷(17﹣14)=18÷3=6(人)6×14+11=95(个)答:这些苹果共有95个.27.小明家与学校相距6千米,每天小明都以一定的速度骑自行车去学校,恰好在上课前5分钟赶到.这天,小明比平时晚出发了10分钟,于是他提速骑车,结果在上课前1分钟赶到学校.已知小明提速后的速度是平时的1.5倍.小明平时骑车的速度是每小时多少千米?【解答】10﹣(5﹣1)=10﹣4=6(分钟)6分钟=0.1小时设小明平时骑车速度为x,可得方程:﹣=0.1.=0.1×1.5x=0.1×1.5x3=0.15x3÷0.15=0.15x÷0.15x=20答:平时小明平时骑车的速度是每小时20千米.28.王老师把买来的一箱橙子分给幼儿园的小朋友,如果其中2人每人分4个,其余每人分2个,则多出4个橙子;如果其中1人分6个,其余每人分4个,则又缺12个.王老师买了多少个橙子?一共分给多少个小朋友?【解答】解:(4﹣2)×2+4=8(个)12﹣(6﹣4)=10(个)(10+8)÷(4﹣2)=18÷2=9(个)4×2+(9﹣2)×2+4=26(个)答:王老师买了26个橙子.一共分给9个小朋友.29.小明步行上如果每分钟步行80米,就会迟到3分钟,如果每分钟步行100米,就会提前3分钟到校.小明家到学校有多少米?【解答】解:小明准时到达用的时间:(80×3+100×3)÷(100﹣80)=540÷20=27(分钟)小明家到校的路程80×(27+3)=80×30=2400(米)答:小明家离学校有2400米.四.解答题30.(2019春•嘉定区校级月考)朱老师为参加军训的学生安排宿舍.如果每间宿舍住8人,那么这些宿舍正好住满;如果每间宿舍住6人,那么正好缺4间宿舍.学生宿舍有多少间?参加军训的学生有多少人?【解答】解:(6×4)÷(8﹣6)=24÷2=12(间)12×8=96(人)答:学生宿舍有12间,参加军训的学生有96人.31.(2019春•普陀区期中)“六一”儿童节,学校向每个班级分发气球布置教室.如果每个班分20个气球,则多了130个;如果每个班分25个气球,则正好分完.一共有几个班级?一共有几个气球?【解答】解:130÷(25﹣20)=130÷5=26(个)20×26+130=650(个)答:一共有26个班级,共用650个气球.32.(2019•江西模拟)全班同学站队排成若干行,若每行14人则多5人,若每行17人则少4人.共有多少名同排成几行?【解答】解:(5+4)÷(17﹣14)=9÷3=3(行),14×3+5=47(人),答:共有47名同排成3行.33.(2018•雨花区)育才小学学生乘汽车去春游,如果每车坐65人,则有15人不能乘车.如果每车多坐5人,恰好多余一辆车.有多少个学生去春游?【解答】解(15+65+5)÷5=85÷5=17(辆)65×17+15=1105+15=1120(人)答:一共有1120个学生去春游.34.(2018秋•绿园区月考)聪聪打算读一本故事书,如果每天读10页,还少28页;如果每天读6页,还多20页没读完,你能算出全书共有多少页吗?【解答】解:(28+20)÷(10﹣6)=48÷4,=12(天).12×10﹣28=120﹣28,=92(页).答:共有92页.35.(2018秋•通川区期中)小明去体育用品专卖店买乒乓球,买10个还差8.9元,买5个还剩1.6元,小明有多少钱?【解答】解:单价:(8.9+1.6)÷(10﹣5),=10.5÷5,=2.1(元);共有:2.1×10﹣8.9=12.1(元);答:小明有12.1元.36.(2019秋•广饶县期末)学校为新生分配宿舍,每个房间住3人,则有23人安排不进去,如果每个房间住5人,则空出3个房间.学校现有多少间宿舍?【解答】解:(23+5×3)÷(5﹣3)=(23+15)÷2=38÷2=19(间)答:学校有19间宿舍.37.(2019•衡水模拟)一种商品随季节出售,如果按现价降低10%,每件仍可盈利200元;如果按现价降低20%,则每件亏损220元.这种商品每件的进价是多少元?【解答】解:(200+220)÷(20%﹣10%)=420÷10%=4200(元)4200×(1﹣10%)﹣200=4200×90%﹣200=3780﹣200=3580(元)答:这种商品每件的进价是3580元.38.(2019•天津模拟)学校分配寝室.如果每间住6人,还有20人没有床位,如果每间住8人,正好住满.学生宿舍有多少间寝室?【解答】解:20÷(8﹣6)=20÷2=10(间)答:学生宿舍有10间寝室.39.(2019•江西模拟)神童幼儿园里买来一些玩具,如果每班分8个玩具,就多出2个玩具,如果每班分10个玩具,就少12个玩具,幼儿园里有多少个班?【解答】解:(2+12)÷(10﹣8),=14÷2,=7(个),答:幼儿园有7个班.40.(2019•北京模拟)李师傅做一批零件,如果他平均每天做24个,将比计划推迟一天完成,如果他平均每天做40个,将比计划提前一天完成,为了按计划完成,他平均每天要做多少个零件?【解答】解:①规定时间为(24×1+40×1)÷(40﹣24),=64÷16,=4(天);②按时完成每天做24×(4+1)÷4,=120÷4,=30(个).答:他平均每天要做30个零件.。

初中数学浙教版七年级上册第5章 一元一次方程5.4 一元一次方程的应用-章节测试习题(7)

初中数学浙教版七年级上册第5章 一元一次方程5.4 一元一次方程的应用-章节测试习题(7)

章节测试题1.【题文】用一根绳子测量井的深度,第一种方案:将绳子折成三折(相当于绳子全长的三分之一)测量,绳子在井外余2m;第二种方案:将绳子折成四折(相当于绳子全长的四分之一)测量,绳子在井外余1m.试求出绳子的长度和井深.(1)解法一:设绳子长xm,根据题意填写下表:可列方程:______.(2)解法二:设井深为ym,根据题意填写下表:可列方程:______.解得:绳长______m,井深______m.【答案】(1)可列方程:.(2)可列方程:3(y+2)=4(y+1).解得:绳长12m,井深2m.【分析】【解答】2.【答题】某车间28名工人生产螺栓或螺母,每人平均每天生产12个螺栓或18个螺母,现有x名工人生产螺栓,其他人生产螺母,恰好每天生产的螺栓和螺母按1:2配成套,为求x所列方程为()A. 12=18(28-x)B. 2×12x=18(28-x)C. 2×18x=12(28-x)D. 12x=2×18(28-x)【答案】B【分析】【解答】3.【答题】小文同学买了1元邮票和2元邮票共12枚,花了20元钱,求该同学买的1元邮票和2元邮票各多少枚?在解决这个问题时,若设小文同学买了1元邮票x 枚,列出下列方程,其中错误的是()A. x+2(12-x)=20B. 2(12-x)-20=xC. 2(12-x)=20-xD. x=20-2(12-x)【答案】B【分析】【解答】4.【答题】某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5m栽1棵,则树苗缺21棵;如果每隔6m栽1棵,则树苗正好用完,设原有树苗x棵,则根据题意列出方程正确的是()A. 5(x+21-1)=6(x-1)B. 5(x+21)=6(x-1)C. 5(x+21-1)=6xD. 5(x+21)=6x【答案】A【分析】【解答】5.【答题】某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲.使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为()A. 54+x=80%×108B. 54+x=80%(108-x)C. 54-x=80%(108+x)D. 108-x=80%(54+x)【答案】B【分析】【解答】6.【答题】小亮用129元买了甲种书和乙种书共10本,单价分别为15元、8元,则小亮买了甲种书本,乙种书______本.【答案】73【分析】【解答】7.【答题】湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完,设敬老院有x位老人,依题意可列方程为______.【答案】2x+16=3x【分析】【解答】8.【题文】学校要把1800元发给在市科技创新比赛活动中获奖的8名学生,其中一等奖每人300元,二等奖每人200元,这次比赛共有多少人获得一等奖,多少人获得二等奖?【答案】解:设获得一等奖的有x人.300x+(8-x)×200=1800,x=2,8-x=6.因此,2人获得一等奖,6人获得二等奖.【分析】【解答】9.【题文】某公司计划向甲、乙两学校捐赠电脑42台,已知甲校现有电脑98台,乙校现有电脑76台,怎样分配,才能使甲、乙两校的电脑数相等?【答案】解:设该公司向甲校捐赠电脑x台.98+x=76+(42-x),x=10,42-x=32.因此,赠给甲校10台电脑,乙校32台电脑.【分析】【解答】10.【题文】果汁店中的A种果汁比B种果汁贵1元,小彬和同学要了3杯B种果汁、2杯A种果汁,一共花了16元.A种果汁、B种果汁的单价分别是多少元?【答案】解:设A种果汁的单价为x元.2x+3(x-1)=16,x=3.8,x-1=2.8.因此,A种果汁单价3.8元,B种果汁单价2.8元.【分析】【解答】11.【题文】甲、乙两个课外兴趣小组共有学生63人,若从乙组抽调6人到甲组,则甲组的人数是乙组人数的2倍,求甲、乙两组的人数.【答案】解:设甲组有x人.2(63-x-6)=x+6,x=36,63-x=27.因此,甲组有36人,乙组有27人.【分析】【解答】12.【题文】某商场计划拨款9万元从厂家购进50台电视机.已知该厂生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进两种不同型号的电视机50台,恰好用去9万元,请你写出商场的进货方案;(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在同时购进两种不同型号电视机的方案中,为使获利最多,你将选择哪种进货方案?【答案】解:(1)方案一:设甲型号购进x台.1500x+(50-x)×2100=90000,x=25,50-x=25,即购进甲型号25台,乙型号25台.方案二:设购进甲型号x台,丙型号(50-x)台.1500x+2500(50-x)=90000,x=35,50-x=15,即购进甲型号35台,丙型号15台.方案三:设购进乙型号x台,丙型号(50-x)台.2100x+2500(50-x)=90000,x=87.5,不合题意.(2)方案一获利:150×25+200×25=8750(元).方案二获利:150×35+250×15=9000(元).因此,为获利最多,应选择方案二.【分析】【解答】13.【答题】甲、乙二人分别从相距700m的东西两村出发,相向而行.已知甲每分钟走70m,乙每分钟走50m.若乙出发2min后甲才出发,求甲出发后多少分钟二人相遇.解:设甲出发x分钟后二人相遇,列方程,得______,解得x=______.【答案】70x+50(x+2)=700,5【分析】【解答】14.【答题】甲、乙两人由相距60km的两地同时出发相向而行,甲步行每小时走5km,乙骑自行车,3h后两人相遇,则乙的速度为每小时()A. 5kmB. 10kmC. 15kmD. 20km【答案】C【分析】【解答】15.【答题】一队学生去校外郊游,他们以5km/h的速度行进,经过一段时间后,学校要将一紧急通知传给队长.通讯员骑自行车从学校出发,以14km/h的速度按原路追上去,用了10min追上学生队伍,求通讯员出发前,学生队伍走了多长时间.解:设通讯员出发前学生队伍走了xh,根据下图列方程:______.解得x=______.【答案】,【分析】【解答】16.【答题】甲、乙两人练习赛跑,甲每秒钟跑7m,乙每秒钟跑6.5m,甲让乙先跑5m,设xs后,甲可追上乙,则下列方程中不正确的是()A. 7x=6.5x+5B. 7x-5=6.5C. (7-6.5)x=5D. 6.5x=7x-5【答案】B【分析】【解答】17.【题文】甲、乙两人在400m环形跑道上练习跑步,甲每秒跑5.5m,乙每秒跑4.5m.甲与乙同地、同向出发,要多长时间两人再次相遇?【答案】见解答【分析】环形跑道上的行程问题与直路上的问题类似,这个问题中甲、乙两人再次相遇时,甲比乙多跑了一圈(相当于乙在甲前面400m).【解答】设x秒后两人再次相遇,画线段图如下:根据题意,得5.5x-4.5x=400.解得x=400.因此,再过400s,甲、乙两人再次相遇.18.【答题】某人上山的速度是v1,后又沿原路线下山,速度是v2,那么这个人上山和下山的平均速度是()A. B.C. D.【答案】D【分析】【解答】19.【答题】甲、乙两人完成一项工作,甲独做需4h完成,乙独做需6h完成,甲、乙合作,完成这项工作需()A. 5hB. 10hC. 2.4hD. 3.2h【答案】C【分析】【解答】20.【答题】甲、乙两人骑着自行车同时从相距65km的两地相向而行,2h后相遇,若甲比乙每小时多骑2.5km,则乙每小时骑()A. 12.5kmB. 15kmC. 17.5kmD. 20km【答案】B【分析】【解答】。

专题08:《数的应用—典型应用题(三)》小升初数学专题讲练(解析版)通用版

专题08:《数的应用—典型应用题(三)》小升初数学专题讲练(解析版)通用版

2019-2020学年通用版数学小升初总复习专题汇编讲练专题08 数的应用—典型应用题(三)(1)盈亏问题:是在等分除法的基础上发展起来的。

他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。

解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。

解题规律:总差额÷每人差额=人数总差额的求法可以分为以下四种情况:第一次多余,第二次不足,总差额=多余+ 不足第一次正好,第二次多余或不足,总差额=多余或不足第一次多余,第二次也多余,总差额=大多余-小多余第一次不足,第二次也不足,总差额= 大不足-小不足例参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。

求每人分得几支?共有多少支色铅笔?分析:每个同学分到的色笔相等。

这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支, 2 个人多出 20 支,一个人分得 10 支。

列式为( 25-5 )÷( 12-10 )=10 (支) 10 × 12+5=125 (支)。

(2)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。

解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。

例父亲 48 岁,儿子 21 岁。

问几年前父亲的年龄是儿子的 4 倍?分析:父子的年龄差为 48-21=27 (岁)。

由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。

一根绳放井里井外绳长15一米类似的题目

一根绳放井里井外绳长15一米类似的题目

一根绳放井里井外绳长15一米类似的题目
摘要:
1.题目描述
2.绳子长度的计算方法
3.实际应用举例
正文:
一道数学题目中,涉及到了一根绳子被放入井中,井外绳子的长度为15 米。

此类题目常常被用来考察人们对于绳子长度计算的理解和掌握。

对于这类题目,我们首先需要理解的是,绳子的长度实际上是由两部分组成的,一部分是井内的绳子长度,另一部分是井外的绳子长度。

因此,当我们在计算绳子的总长度时,需要将这两部分的长度相加。

例如,如果井内的绳子长度为5 米,井外的绳子长度为10 米,那么绳子的总长度就是15 米。

这是因为,无论是井内的绳子还是井外的绳子,它们都是这根绳子的一部分,因此,我们需要将它们的长度相加,才能得到这根绳子的总长度。

在实际生活中,这类题目的应用也非常广泛。

比如说,如果我们需要测量一条河流的深度,我们可以将绳子放入河流中,然后测量出绳子在河流中的长度,再加上绳子在河流外的长度,就可以得到绳子的总长度,从而准确地测量出河流的深度。

长绳测井深

长绳测井深

长绳测井深“长绳测井深”是一道好题。

近20年来它经常出现在各种小学数学竞赛试卷及数学思维训练的辅导书中,过去它还曾入选国家教育部审定的初中一年级的代数教科书。

张奠宙教授在其所著的《数学教育学》中谈到:数学抽象性的第一个特点在于它研究思想材料,“长绳测井深”就可认为是古代数学中留存下来的宝贵的思想材料。

其实,早在四百多年前,“长绳测井深‟就被我国明朝数学家程大位写进了他的著作《算法统宗》中:假如井不知深,先将绳三折入井,绳长四尺,后将绳四折入井,亦长一尺,问井深及绳长各若干。

答曰:井深八尺,绳长三丈六尺。

下面介绍我给低年级小学生讲这道我国古算趣题的情况。

不惮孤陋,抛砖引玉,以期共勉。

正话反说为激趣每当讲及此题时,我都会先指出它的“荒谬”之处:“唉呀!同学们想想,这太可笑了!我猜古代那个拿绳测井之人不是…大傻帽‟就是个…神经病‟!”同学们听我这样说,有的呆、有的笑,但大家的精神都提起来了,听着我说、看着我表演。

我左手拿个玻璃杯,右手拿把塑料尺,比划着说:“大家看,假如要测这个杯子的深度,人们都是用尺子直接去量一量,就像我这样,把这尺子伸到杯子里去,看一下杯口处尺子的刻度就知道杯子有多深了。

可是那个人拿着一根既无刻度又不知长度的绳,去测一个不知深度的井,能测出来吗?!更加可笑的是,他也不是去量进入井里的那段绳子,反而是去量井外余下的绳长,你说他不是发疯吗!”听我如此一说,学生们都愣住了,越发迷惑了。

我又进一步说:“可是数学家程大位为什么要编这样的题呢?”[评注]美国著名数学家和数学教育家乔治〃波利亚在其所著的《数学的发现》中谈到:教不是一门科学,而是一种艺术。

教学与唱戏显然有不少共同之处。

比如,你要给你这个班去讲一个很熟的证明,在过去多年中你已在同一课程中讲过它多遍了,你对此实际已无多大兴趣——但请千万不要在课堂上显露出来;你要摆出一副兴奋的样子,还要表示出惊奇和得意,你多少应当作些表演,因为有时候候你的学生也许从你的举止中比从你所讲的主题中学学到的更多。

【典型例题系列】六年级数学下册典型例题系列之第三单元解决问题的策略(原卷版)苏教版

【典型例题系列】六年级数学下册典型例题系列之第三单元解决问题的策略(原卷版)苏教版

2021-2022学年六年级数学下册典型例题系列之第三单元解决问题的策略(原卷版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

本专题是第三单元解决问题的策略。

本部分内容主要介绍五种常见的解决问题的策略,即线段法、列表法、转化法、假设法、方程法等,考点和题型综合性较强,建议作为本章重点内容进行讲解,一共划分为五个考点,欢迎使用。

【考点一】策略一:线段法解题。

【方法点拨】稍复杂的分数应用题,为了使量率看起来更直观,往往采用画线段图的方式解决问题。

【典型例题】李伯伯家的苹果园今年收苹果3000千克,今年比去年少收14,去年收苹果多少千克?(画出线段图再列式解答)【对应练习1】李叔叔饲养白兔和黑兔一共400只,白兔只数是黑兔只数的35。

李叔叔饲养白兔和黑兔各多少只?(先将下面的线段图补充完整,再列式解答。

)黑兔:白兔:【对应练习2】松树棵数是柏树棵数的60%,松树比柏树少48棵。

松树和柏树各有多少棵?(补全下面的图形,并填空)松树有()棵,柏树有()棵。

【对应练习3】学校图书馆里科技书比故事书少200册,已知科技书的册数是故事书的35,图书馆里科技书有多少册【对应练习4】聪聪读一本童话故事书,上午读了72页,下午读的页数是上午的89,聪聪这一天共读了多少页?【对应练习5】某车间有工人150名,已知这些工人人数的45,恰好是全厂人数的112,全厂共有工人多少名?【考点二】策略二:列表法解题。

【方法点拨】在解决“鸡兔同笼”问题时,可以使用列表的方式,通过假设各种情况,再列表一一找出符号题目的情况。

【典型例题】一名篮球运动员在一场比赛中一共投中11个球,有2分球,也有3分球。

我教“长绳测井深”(刘治平)

我教“长绳测井深”(刘治平)
我赶紧画了示意图,把他的话大声重述了一遍后问大家:“他说的对不对?”“对!”同学们大声回答,我带头鼓掌,于是全班同学都鼓起掌来!我意识到,今天的讲课大大地成功了。
二年级:教会猜测
“教会猜测”是波利亚对数学老师的明确要求和恳切呼吁。他在名著《数学与猜想》中说:“只要数学的学习过程稍能反映出数学的发明过程的话,那就应当让猜测、合情推理占有适当的位置。”“要成为一个好的数学家……你必须首先是一个好的猜想家。”他在《数学的发现》中文说:“让我们尽一切努力去教会证明,同时也教会猜想。”他甚至说:“我希望你不要在‘要让他们学习猜测’这个问题上贻误了你的学生。”看到他把话说到了这个份上,我为主动容,下决心要认真地落实他的这种要求。
我教“长绳测井深”(刘治平)
其实,早在四百多年前,“长绳测井深’就被我国明朝数学家程大位写进了他的著作《算法统宗》中:
假如井不知深,先将绳三折入井,绳长四尺,后将绳四折入井,亦长一尺,问井深及绳长各若干。答曰:井深八尺,绳长三丈六尺。
下面介绍我给低年级小学生讲这道我国古算趣题的情况。不惮孤陋,抛砖引玉,以期共勉。
我又重新画了图,并做了标记,然后就指着图讲:
“同学们,大家看!我猜他是这样看出来的:当小明把绳子对折后再放入井中时,”此时我在图上做了个对折的动作,“绳的一半就等于3-1=2米,也就是说,虚线的长是2米,显然放入井里边那段长2-1=1米,即井深1米。”
讲完我问大家:“听懂了吗?”“懂了。”学生齐声回答。
一年级:诱发“顿悟”
记得十几年前,我首次选这个题目是给海淀区西苑小学的一年级暑期班的孩子们讲。一天,我无意中看到了华罗庚数学学校招二年级新生的入学试卷上有“长绳测井深”的题,先是惊讶,继而就想大着胆子试着讲一讲。当然我事先做了适当的教学处理,简化数据、边说边画示意图﹙如右图﹚:

专题08:《数的应用—典型应用题(三)》小升初数学专题讲练(原卷版)通用版

专题08:《数的应用—典型应用题(三)》小升初数学专题讲练(原卷版)通用版

2019-2020学年通用版数学小升初总复习专题汇编讲练专题08 数的应用—典型应用题(三)(1)盈亏问题:是在等分除法的基础上发展起来的。

他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。

解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。

解题规律:总差额÷每人差额=人数总差额的求法可以分为以下四种情况:第一次多余,第二次不足,总差额=多余+ 不足第一次正好,第二次多余或不足,总差额=多余或不足第一次多余,第二次也多余,总差额=大多余-小多余第一次不足,第二次也不足,总差额= 大不足-小不足例参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。

求每人分得几支?共有多少支色铅笔?分析:每个同学分到的色笔相等。

这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支, 2 个人多出 20 支,一个人分得 10 支。

列式为( 25-5 )÷( 12-10 )=10 (支) 10 × 12+5=125 (支)。

(2)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。

解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。

例父亲 48 岁,儿子 21 岁。

问几年前父亲的年龄是儿子的 4 倍?分析:父子的年龄差为 48-21=27 (岁)。

由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用一根绳子去量一口井的深度,第一次用单股绳子量得:一端绳子到井底另一端在井口上还有6米;第二次将绳子折成三股量得:一端绳子到井底另一端在井口上还有1.2米。

问这口井有多深?测量井用的绳子有多长?
以下有三种解法如下:
○1用二元一次方程解
设:井深为X 绳长为Y
列方程X=Y-6
Y=3X+3×1.2
解方程(方程2代入方程1求得井深)
X=3X+3×1.2-6
X-3X=3.6-65
-2X=-2.4
X=1.2
X=1.2(代入方程2求得绳长)
Y=3×1.2+3×1.2
Y=7.2
○2用一元一次方程解
设:井深为X
列方程3X+3×1.2=X+6
解方程3X-X=6-3×1.2
2X=2.4
X=1.2
将井深1.2米加上第一次单绳量得在井口上的6米
得1.2+6=7.2米为绳长
○3用小学加减乘除法计算
列算式:利用两次测量在井上绳长之差再除以股数之差来列算式求得井深
(6-3×1.2)÷(3-1)
=2.4÷2
=1.2(米)
将井深1.2米加上第一次单绳量得在井口上的6米
得1.2+6=7.2米为绳长
1.小聪用一根绳子来测量一口井的深度,他把绳子的一端放入井底,井口外绳长9米;把绳对折后再放入井底,井外余3米。

求井深。

2.用绳子测量井深,把绳子三折来量,井外余2尺;把绳子四折来量,绳子上端距井口还有1尺。

求绳子长多少尺。

3.用绳测量井深,绳子三折后投入井里余8米;四折后投入井里余3米。

井深和绳子各多少米?
4.以绳测水深,四折而入则余3米;把绳剪去6米后三折而入则余4米。

求水深和绳子各多少。

5.用绳子测游泳池水深,绳子两折时,多余60厘米;绳子三折时,还差40厘米,求绳长和水深。

6.某人欲测一枯井,以绳四折而下垂,尚多3尺;五折而下垂,尚多1尺。

求井深及绳长。

相关文档
最新文档