大学物理课件 第12章电磁波作业答案

合集下载

大学物理答案第12章

大学物理答案第12章

第十二章 电磁感应 电磁场和电磁波12-1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( )(A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向(C ) 线圈中感应电流为逆时针方向(D ) 线圈中感应电流方向无法确定题 12-1 图分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).12-2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流(B ) 铜环中有感应电流,木环中有感应电流(C ) 铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律ti M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 12-4 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).12-5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为(B ).12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为tΦπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势. 分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦNξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势())V (π100cos 51.2d d t tΦN =-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.12-7 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dIΦμ=线圈与两长直导线间的互感为2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为 tI d t I M d d 21ln π2d d 0)(μξ=-=题 12-7 图12-8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12因此,流过导体截面的电量为ii R R NBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 12-9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在 ×10-2s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为×10-2Ω,求通过线圈横截面的感应电荷.题 12-9 图分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为 V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ 12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰lE v 求解. 在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.12-11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 12-11 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是OA 棒与OB 棒上电动势的代数和,如图(b)所示.而E 和E 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则 ()r L BL ωE E E OB OA AB 221--=-= 12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB lo d cos 90sin ⎰=v ()()l θB θωlo d 90cos sin ⎰-=l ()⎰==L L B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.12-13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高题 12-13 图分析 本题可用两种方法求解.方法1:用公式()l B d ⋅⨯=⎰l E v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=. 方法2:用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=S ΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为 11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的导轨上电动势为零,所以V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.12-14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.题 12 -14 图分析 本题亦可用两种方法求解.其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.(2)用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d d l I +=1vl μ由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为 ()ξξμξμ120020ln π2d π21l Il x x Il l +=+=Φ⎰ 相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.12-15 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为 2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 12-15 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域, ⎰⎰⋅-=⋅=SB tl E k d d d d ξ t B r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE l k k PQ -=-==⋅=⎰⎰θξx E 证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势 该如何求解 12-16 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .题 12-16 图分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式I ΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.12-17 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)题 12-17 图分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为 221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 12-18 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).题 12-18 图分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 12-19 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .题 12-19 图分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=,故L IΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.12-20 如图所示,一面积为4.0 cm 2共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A ·s-1 时,线圈A 中感应电动势的大小和方向.题 12-20 图分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21/I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度RI μN B B200=,穿过小线圈A 的磁链近似为 A BA A A A S RI μN N S B N ψ200== 则两线圈的互感为 H 1028.6260-⨯===RS μN N I ψM A B A A (2)线圈A 中感应电动势的大小为 V 1014.3d d 4-⨯=-=t I ME A 互感电动势的方向和线圈B 中的电流方向相同.12-21 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少题 12-21 图解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +==则两线圈的互感为 ()2/3222202πd R R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍.12-22 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 = ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为 ×10-3 C .求:当螺绕环中通有电流I 1时,铁磁质中的B 和铁磁质的相对磁导率μr .题 12-22 图分析 本题与题12-8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===SN Rq I n B C r μμ 相对磁导率 1991102==I n S N Rq C r μμ 12-23 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为 Ω.求:(1) 如把线圈接到电动势E = V 的电池上,电流稳定后,线圈中所储存的磁能有多少 磁能密度是多少*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间分析 单一载流回路所具有的磁能,通常可用两种方法计算:方法 1: 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能. 方法 2: 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布. 上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L . 解 (1) 密绕长直螺线管在忽略端部效应时,其自感l S N L 20μ=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为 J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度m w 处处相等,3m J 17.4-⋅==SLW w m m (2) 自感为L ,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律⎪⎪⎭⎫ ⎝⎛-=-t L R R E I e 1,当电流稳定后,其最大值R E I m = 按题意⎥⎦⎤⎢⎣⎡=22212121m LI LI ,则R E I 22=,将其代入⎪⎪⎭⎫ ⎝⎛-=-t L RR E I e 1中,得 ()s 1056.122ln 221ln 4-⨯=+=⎥⎦⎤⎢⎣⎡--=R L R L t 12-24 未来可能会利用超导线圈中持续大电流建立的磁场来储存能量.要储存1 kW ·h 的能量,利用T的磁场,需要多大体积的磁场 若利用线圈中500 A 的电流储存上述能量,则该线圈的自感系数应该多大解 由磁感强度与磁场能量间的关系可得302m 0.92/==μB W V m 所需线圈的自感系数为H 2922==I W L m 12-25 中子星表面的磁场估计为108T,该处的磁能密度有多大解 由磁场能量密度 21021098.32⨯==μB w m 3m /J 12-26 在真空中,若一均匀电场中的电场能量密度与一 T 的均匀磁场中的磁场能量密度相等,该电场的电场强度为多少解 2021E εw e =,022μB w m =,按题意,当m e w w =时,0220221μB E ε=则 1800m V 1051.1-⋅⨯==μεB E 12-27 设有半径R =0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d =0.50 cm ,以恒定电流I =2.0 A 对电容器充电.求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的).分析 尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场.从这个意义来说,变化电场可视为一种“广义电流”,即位移电流.在本题中,导线内存在着传导电流I c ,而在平行板电容器间存在着位移电流I d ,它们使电路中的电流连续,即c d I I =.解 忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流2πd R j I d Sd d =⋅=⎰S j ,由此得位移电流密度的大小 222m A 9.15ππ-⋅===R I R I j c d d。

《物理学基本教程》课后答案 第十二章 磁介质中的磁场

《物理学基本教程》课后答案 第十二章 磁介质中的磁场

第十二章 磁介质中的磁场12-1 一螺绕环的平均半径为R =0.08m, 其上绕有N =240匝线圈, 电流强度为I=0.30A 时充满管内的铁磁质的相对磁导率µr =5000, 问管内的磁场强度和磁感强度各为多少?分析 螺绕环磁场几乎都集中在环内, 磁场线是一系列圆心在对称轴上的圆.如果圆环的截面积很小,可认为环内各点的磁场强度大小相等,等于以平均半径R 为半径的圆上的磁场强度.解 H=nI A/m 2.143A/m 08.0230.02402=⨯⨯==ππR NI T 90.0T 2.14350001047r 0=⨯⨯⨯===-πμμμH H B12-2 在图12-6所示的实验中,环形螺线管共包含500匝线圈, 平均周长为50cm, 当线圈中的电流强度为2.0A 时, 用冲击电流计测得介质内的磁感强度为2.0T , 求这时(1)待测材料的相对磁导率r μ,(2)磁化面电流线密度s j .分析 磁场强度和磁感强度B 的关系为H H B r 0μμμ==,从而可求出r μ. 解 (1) A/m 2000A/m 5.02500=⨯==L NI nI H7961021040.270r =⨯⨯⨯==-πμμH B (2)由于磁化面电流产生的附加磁感强度为B '=B-B 0,得s 00)(j nI B μμμ=-='则 A /m 1059.1)1(6r 0s ⨯=-=-=nI nI j μμμμ 12-3 将一直径为10cm 的薄铁圆盘放在B 0=0.4×10-4 T 的均匀磁场中, 使磁感线垂直于盘面, 已知盘中心的磁感强度为B c =0.1T, 假设盘被均匀磁化,磁化面电流可视为沿圆盘边缘流动的一圆电流.求(1)磁化面电流大小;(2)盘的轴线上距盘心0.4m 处的磁感强度.分析 铁盘在外磁场B 0中要被磁化, 产生附加磁场.附加磁场与外磁场B 0同向,所以盘中心的磁感强度B c =B 0+B c ˊ.如果将磁化面电流I s 视为沿圆盘边缘流动的圆电流.解 (1)磁化面电流I s 在环心c 处产生的附加磁场的磁感强度为RI B sc20μ='盘中心的总磁感强度为cc B B B '+=0 从已知条件可见,对于铁磁质,有c B B <<0,即cc B B '≈,得 A 1096.72230cs ⨯=='=μμRB B R I c(2)距c 点x 处的磁场可视为外磁场B 0与磁化面电流磁场B ˊ的叠加,即有T 1091.1)(242/32220-⨯=+='x R R I B s μ401031.2-⨯='+=B B B T12-4 半径为R 的载流长直导线,电流强度为I ,外面裹有一层厚度为b 的磁介质,其相对磁导率为r μ,(1)求磁介质中任一点的磁场强度H 和磁感强度B 的大小;(2)若沿磁介质的内外表面流动的磁化面电流方向与轴线平行,试证明二电流等大反向并求其大小.分析 长直载流直导线的磁场线是以轴线为中心的一系列同心圆.应用有磁介质的安培环路定理时只须计算闭合回路所包围的传导电流,而应用真空中的安培环路定理时应计算闭合回路所包围的传导电流和磁化面电流. 解 (1) 介质内rIH B rI H πμμπ2 2===(2) 假设介质为顺磁质,介质内表面磁化面电流I s 方向如图12-4所示,在介质内任一点磁感强度B=B 0+B ’,因rIB πμ2= =0B r I πμ20 r I B πμ2s 0='得rIr I B s πμμπμ2)(200-=='即有 I I )1(r s -=μ设介质外表面磁化面电流为I s ˊ,应用介质中的安培环路定律,可得介质外任一点磁场强度为rI H π2=应用真空中的安培环路定理,介质外有)(d s s 0I I I '++=⋅⎰μl B即 )(2s s 0I I I rB '++=μπrI I I B πμ2)(s s 0'++=又因 B=µ0H=rIπμ20 由以上两式得I I I )1(r s s --=-='μ即介质内外表面磁化面电流大小相等, 方向相反.。

大学物理课后习题答案(上下册全)武汉大学出版社 第12章 习题解答

大学物理课后习题答案(上下册全)武汉大学出版社 第12章 习题解答

第12章 习题与答案12-1 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为[ ]A. 1.5λ.B. 1.5λ/n .C. 1.5n .D. 3λ. [答案:A ]12-2 平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为[ ]A. 2πn 2e / ( n 1λ1).B. 4πn 1e / ( n 2λ1)] +π.C. 4πn 2e / ( n 1λ1) ]+π.D. 4πn 2e / ( n 1λ1).[答案: C ]12-3 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ]A. 间隔变小,并向棱边方向平移.B. 间隔变大,并向远离棱边方向平移.C. 间隔不变,向棱边方向平移.D.间隔变小,并向远离棱边方向平移. [答案: A ]12-4 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如题12-4图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分[ ]A. 凸起,且高度为4λ.B. 凸起,且高度为2λ.C. 凹陷,且深度为2λ.D. 凹陷,且深度为4λ.[答案: C ]12-5 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]A .中心暗斑变成亮斑. B. 间距变大. C. 间距变小. D. 间距不变. [答案: C ]题12-4图12-6 在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为[ ] A. =3a b . B. =2a b . C. =a b . D. =0.5a b [答案: C ]12-7 对某一定波长的垂直入射光 衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该[ ]A. 换一个光栅常数较小的光栅.B. 换一个光栅常数较大的光栅.C. 将光栅向靠近屏幕的方向移动.D. 将光栅向远离屏幕的方向移动.[答案: B ]12-8如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为[ ]A. I 0 / 8.B. I 0 / 4.C. 3 I 0 / 8.D. 3 I 0 / 4.[答案: A ]12-9一束自然光自空气射向一块平板玻璃(如题12-9图),设入射角等于布儒斯特角i 0,则在上表面的出射光2是[ ]A. 自然光.B. 线偏振光且光矢量的振动方向平行于入射面.C. 线偏振光且光矢量的振动方向垂直于入射面.D. 部分偏振光.[答案: C ]12-10相干光的必要条件为________________________,________________________,________________________。

大学物理第十二章 习题答案

大学物理第十二章 习题答案

第十二章 电磁感应及电磁场基本方程12–1 如图12-1所示,矩形线圈abcd 左半边放在匀强磁场中,右半边在磁场外,当线圈以ab 边为轴向纸外转过60º过程中,线圈中 产生感应电流(填会与不会),原因是 。

解:线圈以ab 边为轴向纸外转过60º过程中,尽管穿过磁感应线的线圈面积发生了变化,但线圈在垂直于磁场方向的投影的面积并未发生变化,因而穿过整个线圈的磁通量并没有发生变化,所以线圈中不会产生感应电流。

因而应填“不会”;“通过线圈的磁通量没有发生变化”。

12–2 产生动生电动势的非静电力是 力,产生感生电动势的非静电力是 力。

解:洛仑兹力;涡旋电场力(变化磁场激发的电场的电场力)。

12–3 用绝缘导线绕一圆环,环内有一用同样材料导线折成的内接正方形线框,如图12-2所示,把它们放在磁感应强度为B 的匀强磁场中,磁场方向与线框平面垂直,当匀强磁场均匀减弱时,圆环中与正方形线框中感应电流大小之比为___________。

解:设圆环的半径为a,圆环中的感应电动势1E 大小为2111d d d πd d d ΦB BS a t t t===E 同理,正方形线框中的感应电动势2E 大小为2212d d d 2d d d ΦB BS a t t t===E而同材料的圆环与正方形导线的电阻之比为12R R ==。

所以圆环与正方形线框中的感应电流之比为122I I a ==12–4 如图12-3所示,半径为R 的3/4圆周的弧形刚性导线在垂直于均匀磁感强度B 的平面内以速度v 平动,则导线上的动生电动势E = ,方向为 。

图12–5图12–4abdc图12–1Ba图12–2图12–3解:方法一:用动生电动势公式()d l =⨯⋅⎰B l v E 求解。

选积分路径l 的绕行方向为顺时针方向,建立如图12-4所示的坐标系,在导体上任意处取导体元d l ,d l 上的动生电动势为d ()d cos d B R θθ=⨯⋅B l =v v E所以导线上的动生电动势为3π3πd cos d 0BRBR θθ-===>⎰⎰v E E由于ε>0,所以动生电动势的方向为顺时方向,即bca 方向。

大学物理作业-电磁波解答

大学物理作业-电磁波解答

矢量网络分析仪
功率计
干涉仪
用于测量和分析电磁波 的幅度、相位、极化等
参数。
用于测量电磁波的功率。
用于测量电磁波的波长、 波长变化等参数。来自07总结与展望
总结
• 电磁波的特性:电磁波在空间中传播,具有振荡的电场和磁场,其传播速度等 于光速。电磁波的频率范围非常广泛,从极低频到极高频,包括无线电波、微 波、红外线、可见光、紫外线、X射线和伽马射线等。
• 电磁波的发射与接收:电磁波的发射需要源,如天线或激光器等,将振荡的电 场和磁场辐射到空间中。电磁波的接收需要接收器,如天线或光电探测器等, 将接收到的电磁波转换为可处理的信息。
展望
新技术的探索
随着科技的发展,未来将有 更多的新技术应用于电磁波 的研究和应用中。例如,量 子通信和量子雷达等新型技 术将为电磁波的应用带来新 的机遇和挑战。
电磁波谱
电磁波谱是按照电磁波的频率 从低到高(对应波长从长到短 )的顺序排列的电磁波列表。
电磁波的应用
电磁波在通信、雷达、导航、 广播、电视、无线电设备等领 域有广泛应用。
电磁波的重要性
80%
科学基础
电磁波理论是物理学的重要分支 ,是现代通信和电子工程的基础 。
100%
技术应用
电磁波在无线通信、卫星通信、 雷达探测等领域发挥着关键作用 ,对现代科技发展具有重要意义 。
大学物理作业-电磁波解答

CONTENCT

• 引言 • 电磁波的基本概念 • 电磁波的产生与传播 • 电磁波的应用 • 电磁波与物质相互作用 • 电磁波的测量与检测 • 总结与展望
01
引言
主题简介
电磁波
电磁波是电磁场的一种运动形 态,是由同相且互相垂直的电 场与磁场在空间中衍生发射的 震荡粒子波,是以波动的形式 传播的电磁场。

《大学物理学》习题解答(第12章 静电场中的导体和电介质)(1)

《大学物理学》习题解答(第12章 静电场中的导体和电介质)(1)

E1 0 , (r R1 ) ; E2

Q1er (Q Q2 )er , ( R1 r R2 ) ; E3 1 , ( R2 r ) ; 2 4 0 r 4 0 r 2
Q1 Q2 4 0 R2
外球面的电势
VR2
R2
E
3
dr
R2
内外球面电势差
6 5 6
根据球形电容器的电容公式,得:
C 4 0
R1 R2 4.58 102 F R2 R1
解得: q (4 0V0
Q ) R1 R2 E1 [ R1V0 R1Q ]er 2 4 0 R2 r 2 r
( R1 r R2 )
所以,球外壳内电场
壳外电场
E2 [
R1V0 ( R2 R1 )Q ]er 4 0 R2 r 2 r2
R2
( R2 r )
qBR d1 qCL d 2 0; 0S 0S d1Q d1 d 2
解上面的方程组得:
qBR q AL Q d1d 2 ; 0 S d1 d 2
qCL q AR Q d1d 2 0 S d1 d 2
故有
U BA
【12.5】 如图所示,在真空中将半径为 R 的金属球接地,在与球 O 相距为 r(r>R)处放置一点电荷 q,不计 接地导线上电荷的影响,求金属球表面上的感应电荷总量。 R 【12.5 解】金属球表面以及球内各点电势相同,等于 0,这是点电荷 q 和金属 q 球表面各处的感应电荷 dq ' 共同激发的。 选取一个特殊点——球心, 该点的电 势为
E1
qer ( q Q )er , ( R1 r R2 ) ; E 2 , ( R2 r ) 2 4 0 r 4 0 r 2

物理学第三版 刘克哲12章习题解答

[物理学12章习题解答]12-7 在磁感应强度大小为b = 0.50 t的匀强磁场中,有一长度为l = 1.5 m的导体棒垂直于磁场方向放置,如图12-11所示。

如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v向右运动,则在导体棒中将产生动生电动势。

若棒的运动速率v = 4.0 m⋅s-1 ,试求:(1)导体棒内的非静电性电场k;(2)导体棒内的静电场e;(3)导体棒内的动生电动势ε的大小和方向;(4)导体棒两端的电势差。

解(1)根据动生电动势的表达式,由于()的方向沿棒向上,所以上式的积分可取沿棒向上图12-11的方向,也就是d l的方向取沿棒向上的方向。

于是可得.另外,动生电动势可以用非静电性电场表示为.以上两式联立可解得导体棒内的非静电性电场,为,方向沿棒由下向上。

(2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即,所以,e的方向沿棒由上向下,大小为.(3)上面已经得到,方向沿棒由下向上。

(4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即,棒的上端为正,下端为负。

12-8如图12-12所表示,处于匀强磁场中的导体回路abcd,其边ab可以滑动。

若磁感应强度的大小为b = 0.5 t,电阻为r = 0.2 ω,ab边长为l = 0.5 m,ab边向右平移的速率为v= 4 m⋅s-1 ,求:(1)作用于ab边上的外力;图12-12(2)外力所消耗的功率;(3)感应电流消耗在电阻r上的功率。

解(1)当将ab向右拉动时,ab中会有电流通过,流向为从b到a。

ab中一旦出现电流,就将受到安培力f的作用,安培力的方向为由右向左。

所以,要使ab向右移动,必须。

对ab施加由左向右的力的作用,这就是外力f外在被拉动时,ab中产生的动生电动势为,电流为.ab所受安培力的大小为,安培力的方向为由右向左。

外力的大小为,外力的方向为由左向右。

(2)外力所消耗的功率为.(3)感应电流消耗在电阻r上的功率为.可见,外力对电路消耗的能量全部以热能的方式释放出来。

[VIP专享]大学物理第12章课后习题


Qq 4πε0r 2
E2 r
r>R2 时,
q 4πε0r 2
int level(BinTreeNodlesevt}r*Beutsl,icnBt(rtrTuiontrcaoTetgtert,_eyapNnpetg)oy;oeN_pddinoeeodtd;fde*esreafc*ttrphsB*au{l)ti;cilrn/duh/tT;ciB/lr/tdo1eiTt;u1ea//NcnrNgoto_loiu(fdn(dtnbe*oetpivdlt{(roe(e}TbidpEititrcfrl(ero!-pbmu>tintrTvritgaey-l(>hlpbulteeie,rtrf=xdt)e,=apr{xkextta,)rt;ru{;k,kr)sd+n;tra+;u1t;ac}0txyBpieTNxv},ooidi{ndet&m*lkac)hi}nil(de)}l;s/e/ js+tr}+uj;cBf+BtoB.+Bid.r.L(;+adikTe+taanN=;t[agojB]e[tdkh=l.se+L+eA1e*+]nr.i;dfc=g(d.-[d;{aiB]1a/it;f/a.;t(dkaA[}ia[]>.kBtdB<}=a];aii.T[BLjt+;aNke.+d[Loni;-]aed-g>t)netahg,B[jt*]+h.)wBd+]{avhi;T=otilareiAedi[n(Be.i{dtm;.<Laive=etAoarngi.0[dLgie],e;jt2Ch=n(o{Sg-0ut9q1h,n/kAL])/t)/iL/[;2s1/e1AtA…aABBmf"…,.S(h+Bq"mniLT6m+irsnet8]e&mhBTen),amidn+dtn&a2Ot*acx(7o10u)n+t)0x{11*ixf=0( nT+o1)d*{ex2i_1f c(+(o!uT2/xn/-*10>tx+l2+cxh=1il;+dnx)o&2/d/h&e=tt_(pn!c:To0o//-duw>1enrw*_c2t/wchx-oi0.1ldu;xon)/)1c*t;cinx6o42.1ucleonfmtt+d/+5ap;t-a5//r7iLg9Cihs4ot8lNuet5nmof9ttdreLp4iegme.=h*ap3tMfAmBol(a[aTrTlit]ex(-;(><i2)nAlccetl[ha0i]}ise=l=ds1,0}A…Tc;[yoine2pu<-nT6ein=-yH>12tp)(]Te;v;enn[Co1-A-ti1o3m1d[u]nA)pHin-[/;in(tv-kL21]ene;]1reyais=A+)nef=[+(t-nm(k1Ta])eAT-p){y>nyA;r-p%c2eh…1iAld3e[2,1]3c,2e1oi20Vn0(u3e=bt×n4i{)n3t1a5)B0);,5b20A}{7,B(2ce[2a150,(l0)ds0cn(a20e,a)]×ie[13j1)1cnr2,a17Af2e0A4,i58g2jtB]b1u(B03}(a5r4,21[En)]06a1B;=07A51([}{0]b937S<A/3)56/HaL([06C0c,sT1b3)]uo[A.>81A0c5u,493]cBn<B0.]=taC5H[L8(0,A1De(4g]k/,Aa5>2EBef0,[)Fy,<]*4C[G)G]b[=2B1,,DHk)g+[]e>,I1AEJy,/[<(,81%C1c]-[8,a5bD1)]C>3C]B,D1<[D1]2Bd62,GFc3E>=41A,V5</1I5EdH475,Gf1231>01+0*J5,91<420G4+0e*30G241,7W1d+*787>13P031,4*9<1L74=41f=0+,515a24953>**/546,17<5+15=0g37413,2*0c5572>/4+517,5<6451*g524,0d+3>956,*5<0315f9+2,3e5W12>14P,12*<3L157g+=56,52f13053>105*693}64*1,{73+80217+9596510*77046873+1*71249264+*9503182+79012*176208590=*2092+8123169831731237*793}W2+531P352L5*0313173+s3T3125158*,21T2052=5,2…915W063…303P5,LTS Tini k1i(2i={a1b,2c,d…e…fg}S0)1,1k10in1i011k11k10n+1kk1Pn21>r+0ikm…00…11+1k0s1=0n11+n21K…ru…snkas1l ns,s=nk,nk a11a121a02K1)aru2s2kaa=2l203*:9(a1i+03/1jA2-03aB(3a131+Aa12=3B+42[…0+]3A…+a3aij1+n3inn149-+iH10-41au+jnfi84+fnm4+16a5B8n+58F1544):52=5706305306.986,2T76:0150,D811:00148110683171,F10ST6:06D413S024H515,1H12:007412101402H*1291u60+22f{f7m4*63a2+n58307*71836+21102*72306+722774*0674128+493}*()4+86*312=513219 5:13/5671(130+7822+6261+p03a1+341352+401143,41)p0=83,21a.8425,913,,p66331:121,0A1a24B13G,,CP4pJ9AD3KG21EHD12AFDaJ3GBH,EPaDHKBApGIBM3J2HEKIF1AJMCKCAEFCMFIIM

12电磁波作业 吉林大学大物答案ppt课件


H
0
cos
(t
r u
)

其振幅 E0 、H0 与平均能留密度S 的关系为()
A: E0 H0 , S E0H0
C: E0
B: E0 H0, S E0H0 D: 0 E0
H0,S
0 H0,
S
1 2
E0 H 0
1 2
E0
H
0
6. 关于电磁波和机械波的性质比较,下列说法不
正确的是()
A:都可以在真空中传播
第十二章 电磁波
(一)选择题
1. 某广播电台的天线可视为隅极辐射,原 发射频率为 ,若将发射频率提高到 4 , 其辐射强度为原来的()倍。
A:16 B:8 C:32 D:256
2. 在某广播电台附近电场强度的最大值 为 E m,则该处磁感应强度最大值为()
A:Em C 2 B:C 2 Em C:Em C D:CEm 1
K
2
0
0 0
K0
cos(t
cos(t
z)
j
c
z c
)i
11
2. 已知在某一各向同性介质中传播的线偏振光,
其电场分量为 式中 E0 0.08V
mE-z1, Ec0为co真s 空1光015速(t 。x 试0.8求c)(V 1m)-1 介质
的折射率;(2)光波的频率;(3)磁场分量的
幅值;(4)平均辐射强度
圆柱截面的直径为2mm,则激光的最大
电场强度为
,最大磁场强度

。[答案见计算题]
P
r 2
I
S
1 2
0 0
E02
8
10. 在真空中传播的平面电磁波,在空间

大学物理学下册答案第12章(推荐文档)

第 12 章电磁感应与电磁场一选择题12-1 一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图12-1),则 [](A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定Iv 习题 12-1 图解:选(B) 。

矩形线圈向下运动,直导线穿过线圈的磁通量减少,根据楞次定律,线圈中感应电流的磁场方向垂直纸面向里,由右手螺旋法则确定线圈中感应电流为顺时针方向。

12-2 尺寸相同的铁环和铜环所包围的面积中,通以相同变化率的磁通量,则环中[](A)感应电动势不同,感应电流不同(B)感应电动势相同,感应电流相同(C)感应电动势不同,感应电流相同(D)感应电动势相同,感应电流不同解:选(D) 。

根据法拉第电磁感应定律,铁环和铜环所包围的面积中,若磁通量变化率相同,则感应电动势相同;但是尺寸相同的铁环和铜环的电阻不同,由欧姆定律I可知,感应电流不同。

R12-3 如图12-3 所示,导线AB 在均匀磁场中作下列四种运动,(1)垂直于磁场作平动;(2)绕固定端 A 作垂直于磁场转动;(3)绕其中心点 O 作垂直于磁场转动;(4)绕通过中心点 O 的水平轴作平行于磁场的转动。

关于导线 AB 的感应电动势哪个结论是错误的? [](A)(1)有感应电动势, A 端为高电势(B)(2)有感应电动势, B 端为高电势(C)(3)无感应电动势(D)(4)无感应电动势B B B B abOv OA A A A d c(1)(2)(3)( 4)习题12-3 图习题 12-4 图解:选 (B)。

由b B) d l 可知,(1)(2)有感应电动势,(3)OA、OB(va两段导线的感应电动势相互抵消,无感应电动势,( 4)无感应电动势, (C)、(D)正确;而的方向与 v B 的方向相同,(1)(2)电动势的方向均由B A,A端为高电势, (A) 正确, (B) 错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.在电磁波的传播空间中,任一点的E和H的方向及波的 传播方向之间的关系 三者相互垂直,或右手螺旋定则
天道酬勤
4
7.坡印廷矢量
S
的物理意义是:
,其定义式为
S
E
H
单位时间内通过垂直传播方向单位面积的辐射能
8.一电磁波在空气中通过某点时,该点某一时刻的电场 强度E=100V/m,则同时刻的磁场强度H= 0.265A.m-1;电 磁能密度w=8.85 10 8 J m 3,能流密度的大小S=26.5W.m-2
)
D
Ex
0
0
H
0
cos(t
z c
)
5. 在均匀媒质中,沿 r方向传播的平面电磁波的方程
为 H0与E 平均E0 能cos流(t密 度ur )
、H H0 cos(t S 的关系为()
r) u
,则其振幅E0、
A E0 H0; S E0H0
C
E0
H0;S
1 2
E0 H0
B
D
天道酬勤
E0 H0; S E0H0
3
4.一列电磁波在真空中沿Z轴传播,设某点的电场强度: VA..mm--1E1H,。x y则902该0.3c点9osc(o的2s(磁2t场6t )强6度) 表达式为 5.有一氦氖激光器发出功率为10mW的激光,设发出的 激光为圆柱形光束,圆柱横截面的直径为2mm,则激光
束的坡印廷矢量的平均值为 3 .1 8 1 0 3 W m 2。
2.一广播电台的平均辐射功率20kW,假定辐射的能量均 与分布在以电台为球心的半球面上,那么距离电台为
10km处的电磁波的平均辐射强度为 3 .1 8 1 0 5 W m 2
3.一列电磁波的波长为0.03m,电场强度幅值E0=30V.m1,则该电磁波的频率为 Hz,1其010磁感应强度B的幅值
为 ,平10均7辐射强度为 天道酬勤W.1m.1-29。
9. 有一氦氖激光器,它所发射的激光功率为10mW,

发射的激光为圆柱形光束1 .5,5 圆1柱0 3 V截面m的1 直径为2mm,则
激光4 .1的3 最A 大m 电1 场强度为


IS
P
1 d 2
12,E0最H 0大磁2E场020c强度
4天道酬勤
5
天道酬勤
6
三、计算题
(2) 设
(3)
天道酬勤
1.某广播电台的天线可视为偶极辐射,原发射频率为 v
若将发射频率提高到 4v ,其辐射强度为原来的()倍
A. 16 B. 8 C. 32 D. 256 2.在某广播电台附近电场强度的最大值为Em,则该处磁 感应强度最大值为()
A. Em/c2 B. c2Em C. Em/c D. cEm
3. 一功率为P的无线电台,A点距电台为rA,B点距电台 为rB,且rB =2 rA ,若电台各方向作等同辐射,则场强 幅值EA:EB为()
A. 2:1 B. 4:1 C. 8:1 D. 16:1
天道酬勤
1
4. 设在真空中沿着Z轴负方向传播的平面电磁波其磁场强
度的波的表达式为 的表达式为()
Hx
H0
cos(t
z ) ,则电场强度的波
c
A Ey
0
0
H0
cos(t
z c
)
B
Ex
0
0H0Βιβλιοθήκη cos(tz c)
C
Ey
0
0
H
0
cos(t
z c
7
2. 已知在某一各向同性介质中传播的线偏振光,其电场
分量为 Ez E0 cos 真空光束。试求:(1)
介10质15 (的t 折0(.x8射cS)率I单;位()2)
E0 0.08Vcm为 光波的频率;
(3)磁场分量的幅值;(4)平均辐射强度。
解: (1) 由u=0.8c, n c c 1.25 u 0.8c
0 E0
0 H0;S
1 2 E0 H0
2
6.关于电磁波和机械波的性质比较,下列说法不正确的是
A. 都可以在真空中传播 B. 都可以产生衍射、干涉现象 C. 能量由近及远向外传播 D. 都可以产生反、折射现象
二、填空题 1.一列平1 面电磁波,在真空中传播,则它是横波;波 速相互c=垂直0;0 ;相空位间相某同一。点的电场强度和磁场强度的方向
(2) 由 2 1 0 15 得, 5 10 14 H Z
(3)
H0
E0
E0
u (4)S
1 0.8c
H
1 2
E0H0
0 4π 0 2.65 10
1.06 天道1酬0勤5
107 4 A /m W/m 2
H
/m
8
相关文档
最新文档