电子元件封装
元件封装的种类及辨识

元件封装的种类及辨识元件封装是指将电子元件或器件包装成具有一定外观尺寸和形状的外壳材料,以便于插入电路板或其他设备中,起到保护元件,方便组装和焊接的作用。
根据不同的要求和应用,元件封装有多种不同的类型和辨识方式。
下面将介绍一些常见的元件封装类型及其辨识方法。
1. DIP封装(Dual in-line package)DIP封装是一种常见的传统封装类型,多用于集成电路、模拟电路和线性电路等元件中。
辨识DIP封装的方法是通过外形尺寸和引脚数目来判断,通常为2至64个引脚,基本呈矩形形状。
2. SOP封装(Small Outline Package)SOP封装是一种比DIP更小巧且外形扁平的封装类型,常用于集成电路和数字电路等元件中。
辨识SOP封装的方法是通过外形尺寸和引脚数目来判断,通常为8至64个引脚,外形为长方形。
3. QFP封装(Quad Flat Package)QFP封装是一种大规模引脚密集的表面贴装封装类型,通常用于集成电路和微处理器等元件中。
辨识QFP封装的方法是通过外形尺寸和引脚数目来判断,通常为32至256个引脚,外形为正方形或长方形。
4. BGA封装(Ball Grid Array)BGA封装是一种与QFP相似的封装类型,其引脚位于封装底部,通过焊球连接到电路板上。
BGA封装常用于高密度和高频率电路中,例如芯片组、微处理器和图形处理器等元件。
辨识BGA封装的方法是通过外形尺寸和焊球排列布局来判断,外形通常为正方形。
5. SMD封装(Surface Mount Device)SMD封装是一种直接表面贴装的封装类型,用于电子元件直接焊接到电路板的表面。
SMD封装主要分为无源SMD和有源SMD两大类。
其中无源SMD封装包括贴片电阻、贴片电容等元件,有源SMD封装则包括晶体管、三极管等元件。
辨识SMD封装的方法是通过外形尺寸、标识代码和引脚间距来判断。
6. COB封装(Chip-On-Board)COB封装是指将芯片直接粘贴在电路板上,通常不使用封装外壳。
电子元件封装大全及封装常识

修改者:林子木电子元件封装大全及封装常识一、什么叫封装封装,就是指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连接.封装形式是指安装半导体集成电路芯片用的外壳。
它不仅起着安装、固定、密封、保护芯片及增强电热性能等方面的作用,而且还通过芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连接,从而实现内部芯片与外部电路的连接。
因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能下降。
另一方面,封装后的芯片也更便于安装和运输。
由于封装技术的好坏还直接影响到芯片自身性能的发挥和与之连接的PCB(印制电路板)的设计和制造,因此它是至关重要的。
衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1 越好。
封装时主要考虑的因素:1、芯片面积与封装面积之比为提高封装效率,尽量接近1:1;2、引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高性能;3、基于散热的要求,封装越薄越好。
封装主要分为DIP 双列直插和SMD 贴片封装两种。
从结构方面,封装经历了最早期的晶体管TO(如TO-89、TO92)封装发展到了双列直插封装,随后由PHILIP公司开发出了SOP 小外型封装,以后逐渐派生出SOJ(J 型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。
从材料介质方面,包括金属、陶瓷、塑料、塑料,目前很多高强度工作条件需求的电路如军工和宇航级别仍有大量的金属封装。
封装大致经过了如下发展进程:结构方面:TO->DIP->PLCC->QFP->BGA ->CSP;材料方面:金属、陶瓷->陶瓷、塑料->塑料;引脚形状:长引线直插->短引线或无引线贴装->球状凸点;装配方式:通孔插装->表面组装->直接安装二、具体的封装形式1、SOP/SOIC 封装SOP 是英文Small Outline Package 的缩写,即小外形封装。
电子行业常见电子元件的封装

电子行业常见电子元件的封装引言在电子行业中,常用的电子元件可以分为许多不同的类型,它们在电子产品的设计与制造中起着至关重要的作用。
其中一个重要的方面就是元件的封装,即将电子元件嵌入到适当的封装中,以便于安装、使用和维护。
本文将介绍几种电子行业中常见的电子元件的封装类型,并说明它们的特点和应用场景。
1. DIP封装(Dual Inline Package)DIP封装是电子行业中最基本和最常见的封装类型之一。
它是一种通过两个平行的排针将元件与电路板连接的封装形式。
DIP封装通常用于集成电路(IC)和二极管等小型元件上,其较大的封装尺寸使得它易于手动安装和维修。
DIP封装的主要特点是易于制造和低成本,但其体积较大,不适用于高密度的电路板设计。
2. SMD封装(Surface Mount Device)SMD封装是一种在电子行业中越来越流行的封装类型。
相比于DIP封装,SMD封装更小巧、体积更小,适用于高密度电路板的设计。
SMD封装使用焊盘来连结元件和电路板,减少了排针的使用,因此可以实现更高的集成度和更好的电路性能。
SMD封装的另一个优点是它可以通过自动化设备进行快速的贴片焊接,提高了生产效率。
SMD封装有许多不同的类型,其中最常见的包括:•SOP封装(Small Outline Package):SOP封装是一种带有平行引脚的表面贴装元件封装。
SOP封装广泛应用于各种集成电路和传感器上。
它的特点是小型尺寸和较低的体积,适合于紧凑型电路板设计。
•QFP封装(Quad Flat Package):QFP封装是一种四边平行引脚的表面贴装封装,广泛应用于计算机和通信设备等高密度电子产品中。
QFP封装具有较高的引脚密度和较小的封装间距,可实现更高的集成度和更好的电路性能。
•BGA封装(Ball Grid Array):BGA封装是一种使用焊球连接元件和电路板的表面贴装封装。
BGA封装具有更高的引脚密度和更好的热性能,适用于需求更高性能和更高可靠性的电子产品。
元器件封装定义及分类

元器件封装定义及分类
元器件封装是指将电子元器件放置在特定的封装材料中,以保护元器件并使其更易于安装和使用的过程。
根据元器件的不同类型和功能,元器件封装被分为多种类型和分类。
以下是常见的元器件封装类型和分类:
一、贴片封装
贴片封装是将电子元器件直接粘贴在PCB板上的一种封装方式。
它可以大大缩小电路板的体积,提高电路板的集成度,同时也可以提高生产效率。
二、插件式封装
插件式封装是指将元器件通过引线插入到PCB板上的一种封装
方式。
它适用于高功率元器件,如变压器、继电器等。
三、球栅阵列封装
球栅阵列封装是一种新型的封装方式,它将电子元器件集成在小型芯片上,并将这些芯片封装在球栅阵列封装中。
它适用于高速和多功能的电路板。
四、双列直插封装
双列直插封装是将元器件通过引脚插入到PCB板上的一种封装
方式。
它适用于高密度的电路板。
五、表面贴装封装
表面贴装封装是将电子元器件粘贴在PCB板的表面上的一种封
装方式。
它适用于小型和轻量级电路板。
六、无人机封装
无人机封装是一种针对飞行器领域设计的封装方式。
它包括多种类型的封装,如航空插件、光电封装、防水封装等。
它旨在提供高质量的保护和可靠性。
以上是一些常见的元器件封装类型和分类,每种封装方式都有其独特的优点和应用场景。
在设计和生产电子设备时,应根据实际需求和要求选择最适合的封装方式。
电子元器件封装介绍

电子元器件封装介绍电阻:RES1,RES2,RES3,RES4;封装属性为AXIAL系列无极性电容:CAP;封装属性为RAD-0.1到RAD-0.4电解电容:ELECTROI;封装属性为RB.2/.4到RB.5/1.0电位器:POT1,POT2;封装属性为VR-1到VR-5二极管:封装属性为DIODE-0.4(小功率)DIODE-0.7(大功率)三极管:常见的封装属性为TO-18(普通三极管)TO-22(大功率三极管)TO-3(大功率达林顿管)电源稳压块有78和79系列;78系列如7805,7812,7820等79系列有7905,7912,7920等常见的封装属性有TO126H和TO126V整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46)电阻:AXIAL0.3-AXIAL0.7 其中0.3-0.7指电阻的长度,一般用AXIAL0.3瓷片电容:RAD0.1-RAD0.3。
其中0.1-0.3指电容大小,一般用RAD0.1电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小。
一般<100uF用RB.1/.2,100uF-470uF用RB.2/.4,>470uF用RB.3/.6二极管:DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4发光二极管:RB.1/.2集成块:DIP8-DIP40, 其中8-40指有多少脚,8脚的就是DIP8贴片电阻0603表示的是封装尺寸与具体阻值没有关系,但封装尺寸与功率有关通常来说如下:0201 1/20W0402 1/16W0603 1/10W0805 1/8W1206 1/4W电容电阻外形尺寸与封装的对应关系是:0402=1.0mmx0.5mm0603=1.6mmx0.8mm0805=2.0mmx1.2mm1206=3.2mmx1.6mm1210=3.2mmx2.5mm1812=4.5mmx3.2mm2225=5.6mmx6.5mm零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。
电子元器件封装规范

电子元器件封装规范随着电子科技的迅猛发展,电子元器件作为现代电子产品的重要组成部分,扮演着至关重要的角色。
为了确保电子元器件的可靠性、稳定性和互换性,制定一套科学合理的封装规范势在必行。
本文将对电子元器件封装规范进行详细论述,以期提高电子元器件封装工艺的标准化和规范化。
1. 封装材料规范1.1 封装材料选用封装材料的选用直接关系到产品的质量和性能。
应根据不同元器件的特点和工作环境,选择合适的封装材料。
常用的封装材料包括塑料、陶瓷、金属等。
在选用封装材料时,需要考虑材料的热稳定性、机械性能、导热性能等因素,以确保元器件在不同的工作条件下能够正常工作。
1.2 封装材料质量要求封装材料的质量直接影响元器件的可靠性和寿命。
因此,封装材料的质量要求非常高。
材料应符合相关标准,并经过严格的检测和测试,包括材料的外观、尺寸、强度、导热性能等方面。
同时,材料的质量应有可追溯性,以方便进行质量追踪和问题处理。
2. 封装工艺规范2.1 封装工艺流程封装工艺流程是指将电子元器件引线进行布线、封装、焊接等工艺步骤,最终获取一个封装完好的元器件。
封装工艺流程的规范化对于提高产品的制造效率和质量具有重要意义。
工艺流程的每一步都需要合理设计和严格执行,以确保元器件的封装工艺符合规范。
2.2 封装工艺参数规范封装工艺参数的规范是实现封装工艺标准化的重要保障。
工艺参数包括封装温度、焊接时间、焊接压力、焊接剂量等。
这些参数对于保证焊接质量和组装精度具有重要作用。
因此,在封装过程中,需要根据元器件的尺寸、材料和焊接要求等因素,合理设定和控制封装工艺参数。
3. 封装质量控制规范3.1 封装质量检测方法封装质量的检测是验证封装工艺和材料是否符合规范的重要手段。
常用的质量检测方法包括外观检查、尺寸测量、焊接强度测试等。
通过这些检测方法,可以对封装质量进行全面检测,及时发现和解决封装质量问题。
3.2 封装质量评估标准封装质量评估标准是对封装质量进行客观评价和判定的依据。
常用电子元件封装大全

常用电子元件封装大全电阻:RES1,RES2,RES3,RES4;封装属性为axial系列无极性电容:cap;封装属性为RAD-0.1到rad-0.4电解电容:electroi;封装属性为rb.2/.4到rb.5/1.0电位器:pot1,pot2;封装属性为vr-1到vr-5二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率)三极管:常见的封装属性为to-18(普通三极管)to-22(大功率三极管)to-3(大功率达林顿管)电源稳压块有78和79系列;78系列如7805,7812,7820等79系列有7905,7912,7920等常见的封装属性有to126h和to126v整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46)电阻:AXIAL0.3-AXIAL0.7 其中0.4-0.7指电阻的长度,一般用AXIAL0.4瓷片电容:RAD0.1-RAD0.3。
其中0.1-0.3指电容大小,一般用RAD0.1电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小。
一般<100uF用RB.1/.2,100uF-470uF用RB.2/.4,>470uF用RB.3/.6二极管:DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4发光二极管:RB.1/.2集成块:DIP8-DIP40, 其中8-40指有多少脚,8脚的就是DIP8 贴片电阻0603表示的是封装尺寸与具体阻值没有关系,但封装尺寸与功率有关通常来说如下:0201 1/20W0402 1/16W0603 1/10W0805 1/8W1206 1/4W电容电阻外形尺寸与封装的对应关系是:0402=1.0mmx0.5mm0603=1.6mmx0.8mm0805=2.0mmx1.2mm1206=3.2mmx1.6mm1210=3.2mmx2.5mm1812=4.5mmx3.2mm2225=5.6mmx6.5mm零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。
电子元器件的封装与封装技术进展

电子元器件的封装与封装技术进展随着电子科技的不断发展,电子元器件在现代社会中起着关键的作用。
而电子元器件的封装和封装技术则是保证其正常运行和长期可靠性的重要环节。
本文将介绍电子元器件封装的概念、封装技术的发展以及未来的趋势。
一、电子元器件封装的概念电子元器件封装是指将裸露的电子器件(如芯片、晶体管等)进行包装,并加入保护层,以充分保护元器件的性能、提高连接可靠性,并便于安装和维护。
合理的封装设计能够保护电子器件不受外界环境的影响,同时提高电子器件在电磁环境中的工作稳定性。
二、封装技术的进展随着电子技术的不断创新和发展,电子元器件的封装技术也在不断进步。
以下是一些主要的封装技术进展:1. 芯片封装技术芯片封装技术是将芯片包装在塑料、陶瓷或金属封装中。
近年来,微型封装技术的发展使得芯片的封装更加紧凑,能够将更多的功能集成在一个芯片中,从而提高了元器件的性能和可靠性。
2. 表面贴装技术(SMT)表面贴装技术是指将元器件直接通过焊接或贴合等方式固定在印刷电路板表面的技术。
与传统的插针连接方式相比,SMT可以提高元器件的连接可靠性,同时减小了电路板的尺寸。
3. 多芯片封装(MCP)多芯片封装是将多个芯片封装在同一个封装体中。
通过这种方式,可以将不同功能的芯片集成在一个封装中,同时减少了电路板上元器件的数量,提高了整体系统的紧凑性和可靠性。
4. 三维封装技术三维封装技术是将多个芯片层叠在一起,并通过微连接技术进行连接。
这种封装方式大大提高了元器件的集成度和性能,同时减小了系统的体积。
三、未来的趋势随着电子技术的不断发展,电子元器件封装技术也将朝着以下几个方向发展:1. 进一步集成化未来的电子元器件封装技术将会更加注重集成化,将更多的功能集成在一个封装中。
这样可以提高整体系统的紧凑性,减小系统的体积,并提供更高性能的元器件。
2. 更高的可靠性和稳定性未来的封装技术将注重提高元器件的可靠性和稳定性。
通过采用先进的封装材料和工艺,可以提高元器件在极端环境下的工作性能,如高温、高湿等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用电子元件封装电阻:RES1,RES2,RES3,RES4;封装属性为axial系列无极性电容:cap;封装属性为RAD-0.1到rad-0.4电解电容:electroi;封装属性为rb.2/.4到rb.5/1.0电位器:pot1,pot2;封装属性为vr-1到vr-5二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率)三极管:常见的封装属性为to-18(普通三极管)to-22(大功率三极管)to-3(大功率达林顿管)电源稳压块有78和79系列;78系列如7805,7812,7820等79系列有7905,7912,7920等常见的封装属性有to126h和to126v整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46)电阻:AXIAL0.3-AXIAL0.7 其中0.4-0.7指电阻的长度,一般用AXIAL0.4瓷片电容:RAD0.1-RAD0.3。
其中0.1-0.3指电容大小,一般用RAD0.1电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小。
一般<100uF用RB.1/.2,100uF-470uF用RB.2/.4,>470uF用RB.3/.6二极管:DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4发光二极管:RB.1/.2集成块:DIP8-DIP40, 其中8-40指有多少脚,8脚的就是DIP8 贴片电阻0603表示的是封装尺寸与具体阻值没有关系,但封装尺寸与功率有关通常来说如下:0201 1/20W0402 1/16W0603 1/10W0805 1/8W1206 1/4W电容电阻外形尺寸与封装的对应关系是:0402=1.0mmx0.5mm0603=1.6mmx0.8mm0805=2.0mmx1.2mm1206=3.2mmx1.6mm1210=3.2mmx2.5mm1812=4.5mmx3.2mm2225=5.6mmx6.5mm零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。
是纯粹的空间概念因此不同的元件可共用同一零件封装,同种元件也可有不同的零件封装。
像电阻,有传统的针插式,这种元件体积较大,电路板必须钻孔才能安置元件,完成钻孔后,插入元件,再过锡炉或喷锡(也可手焊),成本较高,较新的设计都是采用体积小的表面贴片式元件(SMD)这种元件不必钻孔,用钢膜将半熔状锡膏倒入电路板,再把SMD元件放上,即可焊接在电路板上了。
关于零件封装我们在前面说过,除了DEVICE。
LIB库中的元件外,其它库的元件都已经有了固定的元件封装,这是因为这个库中的元件都有多种形式:以晶体管为例说明一下:晶体管是我们常用的的元件之一,在DEVICE。
LIB库中,简简单单的只有NPN与PNP之分,但实际上,如果它是NPN的2N3055那它有可能是铁壳子的TO—3,如果它是NPN的2N3054,则有可能是铁壳的TO-66或TO-5,而学用的CS9013,有TO-92A,TO-92B,还有TO-5,TO-46,TO-52等等,千变万化。
还有一个就是电阻,在DEVICE库中,它也是简单地把它们称为RES1和RES2,不管它是100Ω还是470KΩ都一样,对电路板而言,它与欧姆数根本不相关,完全是按该电阻的功率数来决定的我们选用的1/4W和甚至1/2W的电阻,都可以用AXIAL0.3元件封装,而功率数大一点的话,可用AXIAL0.4,AXIAL0.5等等。
现将常用的元件封装整理如下:电阻类及无极性双端元件AXIAL0.3-AXIAL1.0无极性电容RAD0.1-RAD0.4有极性电容RB.2/.4-RB.5/1.0二极管DIODE0.4及 DIODE0.7石英晶体振荡器XTAL1晶体管、FET、UJT TO-xxx(TO-3,TO-5)可变电阻(POT1、POT2)VR1-VR5当然,我们也可以打开C:\Client98\PCB98\library\advpcb.lib库来查找所用零件的对应封装。
这些常用的元件封装,大家最好能把它背下来,这些元件封装,大家可以把它拆分成两部分来记如电阻AXIAL0.3可拆成AXIAL和0.3,AXIAL翻译成中文就是轴状的,0.3则是该电阻在印刷电路板上的焊盘间的距离也就是300mil(因为在电机领域里,是以英制单位为主的。
同样的,对于无极性的电容,RAD0.1 -RAD0.4也是一样;对有极性的电容如电解电容,其封装为RB.2/.4,RB.3/.6等,其中“.2”为焊盘间距,“.4”为电容圆筒的外径。
对于晶体管,那就直接看它的外形及功率,大功率的晶体管,就用TO—3,中功率的晶体管,如果是扁平的,就用TO-220,如果是金属壳的,就用TO-66,小功率的晶体管,就用TO-5,TO-46,TO-92A等都可以,反正它的管脚也长,弯一下也可以。
对于常用的集成IC电路,有DIPxx,就是双列直插的元件封装,DIP8就是双排,每排有4个引脚,两排间距离是300mil,焊盘间的距离是100mil。
SIPxx就是单排的封装。
等等。
值得我们注意的是晶体管与可变电阻,它们的包装才是最令人头痛的,同样的包装,其管脚可不一定一样。
例如,对于TO-92B之类的包装,通常是1脚为E(发射极),而2脚有可能是B极(基极),也可能是C(集电极);同样的,3脚有可能是C,也有可能是B,具体是那个,只有拿到了元件才能确定。
因此,电路软件不敢硬性定义焊盘名称(管脚名称),同样的,场效应管,MOS管也可以用跟晶体管一样的封装,它可以通用于三个引脚的元件。
Q1-B,在PCB里,加载这种网络表的时候,就会找不到节点(对不上)。
在可变电阻上也同样会出现类似的问题;在原理图中,可变电阻的管脚分别为1、W、及2,所产生的网络表,就是1、2和W,在PCB电路板中,焊盘就是1,2,3。
当电路中有这两种元件时,就要修改PC B与SCH之间的差异最快的方法是在产生网络表后,直接在网络表中,将晶体管管脚改为1,2,3;将可变电阻的改成与电路板元件外形一样的1,2,3即可。
电阻AXIAL无极性电容RAD电解电容RB-电位器VR二极管DIODE三极管TO电源稳压块78和79系列TO-126H和TO-126V场效应管和三极管一样整流桥D-44 D-37 D-46单排多针插座CON SIP双列直插元件DIP晶振XTAL1电阻:RES1,RES2,RES3,RES4;封装属性为axial系列无极性电容:cap;封装属性为RAD-0.1到rad-0.4电解电容:electroi;封装属性为rb.2/.4到rb.5/1.0电位器:pot1,pot2;封装属性为vr-1到vr-5二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率)三极管:常见的封装属性为to-18(普通三极管)to-22(大功率三极管)to-3(大功率达林顿管)电源稳压块有78和79系列;78系列如7805,7812,7820等79系列有7905,7912,7920等常见的封装属性有to126h和to126v整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46)电阻:AXIAL0.3-AXIAL0.7其中0.4-0.7指电阻的长度,一般用AXIAL0.4瓷片电容:RAD0.1-RAD0.3。
其中0.1-0.3指电容大小,一般用RAD0.1电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小。
一般<100uF用RB.1/.2,100uF-470 uF用RB.2/.4,>470uF用RB.3/.6二极管:DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4发光二极管:RB.1/.2集成块:DIP8-DIP40, 其中8-40指有多少脚,8脚的就是DIP8贴片电阻0603表示的是封装尺寸与具体阻值没有关系但封装尺寸与功率有关通常来说0201 1/20W0402 1/16W0603 1/10W0805 1/8W1206 1/4W电容电阻外形尺寸与封装的对应关系是:0402=1.0x0.50603=1.6x0.80805=2.0x1.21206=3.2x1.61210=3.2x2.51812=4.5x3.22225=5.6x6.5关于零件封装我们在前面说过,除了DEVICE。
LIB库中的元件外,其它库的元件都已经有了固定的元件封装,这是因为这个库中的元件都有多种形式:以晶体管为例说明一下:晶体管是我们常用的的元件之一,在DEVICE。
LIB库中,简简单单的只有NPN与PNP之分,但实际上,如果它是NPN的2N3055那它有可能是铁壳子的TO—3,如果它是NPN的2N305 4,则有可能是铁壳的TO-66或TO-5,而学用的CS9013,有TO-92A,TO-92B,还有TO-5,TO-46,TO-52等等,千变万化。
还有一个就是电阻,在DEVICE库中,它也是简单地把它们称为RES1和RES2,不管它是100Ω还是470KΩ都一样,对电路板而言,它与欧姆数根本不相关,完全是按该电阻的功率数来决定的我们选用的1/4W和甚至1/2W的电阻,都可以用AXI AL0.3元件封装,而功率数大一点的话,可用AXIAL0.4,AXIAL0.5等等。
现将常用的元件封装整理如下:电阻类及无极性双端元件AXIAL0.3-AXIAL1.0无极性电容RAD0.1-RAD0.4有极性电容RB.2/.4-RB.5/1.0二极管DIODE0.4及DIODE0.7石英晶体振荡器XTAL1晶体管、FET、UJT TO-xxx(TO-3,TO-5)可变电阻(POT1、POT2)VR1-VR5当然,我们也可以打开C:\Client98\PCB98\library\advpcb.lib库来查找所用零件的对应封装。
这些常用的元件封装,大家最好能把它背下来,这些元件封装,大家可以把它拆分成两部分来记如电阻AXIAL0.3可拆成AXIAL和0.3,AXIAL翻译成中文就是轴状的,0.3则是该电阻在印刷电路板上的焊盘间的距离也就是300mil(因为在电机领域里,是以英制单位为主的。
同样的,对于无极性的电容,RAD0.1-RAD0.4也是一样;对有极性的电容如电解电容,其封装为RB.2/. 4,RB.3/.6等,其中“.2”为焊盘间距,“.4”为电容圆筒的外径。
对于晶体管,那就直接看它的外形及功率,大功率的晶体管,就用TO—3,中功率的晶体管,如果是扁平的,就用TO-220,如果是金属壳的,就用TO-66,小功率的晶体管,就用TO-5,TO-46,TO-92A等都可以,反正它的管脚也长,弯一下也可以。