第三章电力线载波通信

合集下载

电力线载波通信汇总

电力线载波通信汇总

电力线载波通信汇总第一章绪论●架空明线实用传输频带最高频率可达300 kHz●对称电缆可达600 kHz●同轴电缆可达60MHz●电力线高频通道可达500kHz●频带平移:上边带话音三角形与调制器输入调制信号的话音三角形方向一致频带倒置:下边带的话音三角形的方向与输入调制信号话音三角形的方向相反载波通信的基本过程:一变二分三还原变,就是用调制器把话音频带变换到高频频带;分,就是频率分割,即在收信端用滤波器把各路信号从群信号中分割出来;还原,就是利用解调器把高频频带还原成话音频带。

载波机中必须包括以下几种基本部件:●(1)调制器(或解调器):实现频率变换。

●(2)载波振荡器:产生载频信号。

●(3)滤波器:完成选频与频率分割作用。

●(4)放大器:提高信号电平。

两种现象:解决收后重发添加差接系统:差接系统能把用户方向的二线电路与载波机的收、发信支路的四线电路连接起来,同时能使收信支路与发信支路彼此隔离,切断“收后重发”通路。

这是因为差接系统具有信号在邻端方向传输衰减小,对端衰减大的性能。

解决自发自收用以下两个方案:1、双频带二线制双向通信所谓双带二线制,指的是在一对通信线路的两个方向上,采用两个不同的线路传输频带,利用方向滤波器把收、发两个方向的线路传输频带分开,切断“自发自收”通路,从而实现双向通信。

这种方法主要用在线路传输线对较少的载波通信系统中。

如架空明线、电力线载波通信系统中都采用这种通信方式。

2、单边带四线制双向通信所谓单边带四线制,指的是在线路上收、发信两个传输方向上采用相同的传输频带,而用两对导线(四根导线)来各自传输一个方向的信号,从而切断了“自发自收”通路。

这种方法主要用于对称电缆和同轴电缆载波通信系统。

载波机特点与技术要求发信功率较大有较快调节速度和较大调节范围的自动电平调节系统大多是单路机能适应不同电压等级的电力线通信需要具有自动交换系统,并提供优先权配置方向滤波器:分割收发频带线路滤波器:过滤信号频带,隔离载波通路与音频通路多级变频与标准转接频谱一次变频:把原始信号通过一次变频搬移到线路传输频带多级变频:把原始信号通过多次变频,搬移到线路传输频带通路变频:把音频信号变频为上、下边带或将上、下边带还原成音频群变频:把由若干路边带信号所组成的群信号送到一个变频器进行变频多级变频的优点有利于调制器后带通滤波器的设计与制造减少滤波器和载频种类实现较好的变频方案,减少串扰便于得到标准转接频谱,有利于机型统一和群间转接CCITT建议的标准频谱通路(0~4kHz) 指每路信号允许通过的频率范围,一般取为4kHz.前群(12~24kHz) 由3个话路信号分别经12, 16kHz和20kHz载波变频,取上边带,组成12~24kHz 的3路群信号,称为前群。

电力系统中的电力线载波通信技术

电力系统中的电力线载波通信技术

电力系统中的电力线载波通信技术引言电力通信被普遍应用在电力系统中,其主要目的是实现电力信息传输、监测和控制。

而电力线载波通信技术作为其中一种重要的通信手段,具有广泛的应用前景。

本文将探讨电力线载波通信技术在电力系统中的原理、应用和发展趋势,为读者提供更深入的了解。

一、电力线载波通信技术的原理电力线载波通信技术利用电力线作为传输介质,通过将高频信号耦合到输电线路上,实现信息传输的目的。

其原理基于电力线的双重工作特性,即输电和通信,并通过频分复用技术使其同时进行。

首先,信号的耦合。

在电力线输电过程中,由于电力系统的特性,存在着一定的电压和电流波动。

电力线载波通信技术利用这种波动作为信号传输的载体,通过改变电流和电压的幅度和频率来传递信息。

这种耦合不仅能提高信息传输的可靠性,还能减少系统对外部环境的干扰。

其次,频分复用技术。

电力线系统中,除了电力信号外,还有其他频率的干扰信号存在。

为了有效地区分不同信号,电力线载波通信技术引入了频分复用技术。

通过将不同频段的信号分配给不同的用户或功能,实现数据的同时传输和分离。

二、电力线载波通信技术的应用1. 电力数据传输电力线载波通信技术在电力系统中最常见的应用就是实现电力数据的传输。

通过将监测仪器、数据采集设备等连接到电力线上,可以将实时电力数据传输到中央控制中心,实现对电力系统的远程监测和管理。

这种应用不仅提高了电力系统的运行效率,还能预防和处理电力故障。

2. 智能电网随着电力系统的现代化发展,智能电网的建设成为当今的热点。

电力线载波通信技术在智能电网中起到了重要的作用。

通过将智能设备与电力线相连,可以实现对电力负荷、电能质量和安全等参数的实时监测和管理。

并且通过数据的传输和处理,可以实现电力系统的智能化运营和优化调度。

3. 家庭电力信息管理电力线载波通信技术还可以应用于家庭电力信息管理。

通过在家庭电力表中集成通信模块,可以实现对电力用量、功率因数等信息的实时监测和统计。

第3章__电力线载波通信..

第3章__电力线载波通信..

第二节 电力线载波通信系统
一、电力线载波通信系统构成
电力线载波通信系统主要由电力线载波机、电力线路和耦合设 备构成,如图3-1 。其中耦合装置包括线路阻波器GZ、耦合电容 器C、结合滤波器JL(又称结合设备)和高频电缆HFC,与电力线 路一起组成电力线高频通道。
耦合装置 电力线路 耦合装置
G
发电机 变压器 GZ C JL HFC 载 波 机 A JL HFC GZ 变压器
一、电力线载波通信的特点(续)
2. 线路频谱安排的特殊性 电力线载波通信能使用的频谱由三个因素决定: (1)电力线路本身的高频特性。 (2)避免50Hz工频的干扰。 (3)考虑载波信号的辐射对无线电广播及无线 通信的影响。 我国统一规定电力线载波通信使用的频率范围为 40—500KHz。
一、电力线载波通信的特点(续)
图3-9
(二)电力线载波通信的转接方式

电力线载波通信中,为了组成以调度所为中心 的通信网,经常需要进行电路转接。常用的转 接方式有两种:话音、远动通路同时转接和话 音通路单独转接方式。当话音、远动同时转接 时,可采用中频转接或低频转接;当话音通路 单独转接时,应采用音频转接。各种转接的原 理及特点如下。
1.定频通信方式

定频通信方式如图3-7 所示,这种方式应用最普遍。一 对一的定频通信方式又是定点通信,传输稳定,电路 工作比较可靠。
图3-7
2.中央通信方式

为实现图3-7中A站与B、C两站通话需要,也可采用中 央通信方式(见图3-8)。采用这种方式,在A、B、C三 站或更多站间通信可只使用一对频率,节约了载波频 谱也节约了设备数量。但这种方式只限A站与B、C两 站或更多外围站分别通话。各外围站之间不能通话。 因此,这种方式只宜在通话量少的简单通信网中使用, 如集中控制站对无人值守变电所的通信。

电力线载波通信详解..

电力线载波通信详解..



1、电力线载波通信系统的构成
高压电力线、阻波器、耦合电容器、结合滤波器、载波机 和高频电缆组成
变电站 A
阻波器
变电站 B 高压线
阻波器
CC/CVT
结合滤波器 电力线载波机 结合滤波器
CC/CVT
电力线载波机
传输数据、电话和护信号
耦合设备
2、电力载波机 载波机发送功率较大(1-100W) 为集中利用发送功率,一般使用单路载波机 具备有较好的自动电平调节系统,接收信号电平 变化在30dB变化范围内时,音频信号输出电平 变化<1dB 主要传输调度电话、自动化信息、电力线路保护 信号
结合滤波器与耦合电容器一起组成结合设备,在电力线和 高频电缆之间传输载波信号,实现线路侧和载波侧的阻抗匹配
结合滤波器样例: MCD80
结合滤波器原理图
设计耦合系统采用的线路阻抗值一般是: 单根导线:相地耦合为400Ω。相相耦合为600Ω; 分裂导线:相地耦合为300Ω,相相耦合为500Ω。 电缆侧(载波侧)一般为75Ω。
允许传送和判别的时间很短,发送信号的次数极少(每年 仅数次),没有预定的发送时间,而且要求保护装置正确 动作的概率很高(安全性很高)和丢失命令的概很低(可依 靠性很高) 与话音交替复用 (AMP)
二、电力线载波机的体系结构
(一)电力线载波机的特点与技术要求




(1)电力线高频通道杂音大,线路直通距离长,衰减大,为保证收 信端有足够的信噪比,要求电力线载波机的发信功率较大。 (2)电力线载波机确保在电力线路故障或系统操作,造成高频通道 衰减突然增大很多时,仍能维持通畅。因此,要求电力线载波机 要有较快调节速度和较大调节范围的自动电平调节系统 (3)为便于灵活组织通信和频率分配,并避免因发信功率太大引起 制造困难,电力线载波机大多是单路机。 (4)现代电力线载波机大多为多功能、标准化、系列化、通用化的 载波通信设备,能适应在110-500kV各种不同电压等级的电力线 上传送电话与非电话业务的需要。 (5)为了提高电力线高频通道和载波设备的利用率,国产电力线载 波机本身常带有自动交换系统,并可为重要用户提供优先权。

电力线载波通信技术研究

电力线载波通信技术研究

电力线载波通信技术研究电力线载波通信技术的基本原理是利用电力线路上的导线作为信号传输介质。

通过在电力线上发送高频信号,利用线路的传导特性将信号传输到电力线的其他地方,并通过接收器接收信号,实现数据的传输。

在电力线载波通信技术中,主要使用的载波频率范围为几千赫兹到几兆赫兹,从而满足不同传输需求的应用。

电力线载波通信技术的主要优点在于利用了电力线路已有的基础设施进行通信,省去了铺设新的通信线路的成本。

此外,电力线路广泛覆盖城市和农村,基本上每个家庭都有电力线路的接入,因此电力线载波通信技术可以实现几乎全民覆盖的通信服务。

另外,电力线载波通信技术也具备较好的抗干扰能力,因为电力线路往往被埋设在地下或者沿着建筑物墙壁,相较于无线信号,更不容易受到外界干扰。

电力线载波通信技术的应用领域非常广泛。

首先,在智能电力系统中,电力线载波通信可以实现对电力设备的遥测、遥控和通信控制,提高电力系统的自动化程度和稳定性。

其次,在智能家居领域,电力线载波通信可以实现智能家居设备之间的联网通信,实现智能家居的远程控制和监测。

同时,电力线载波通信技术还可应用于智能电表、智能楼宇系统、远程抄表等领域。

需要指出的是,电力线载波通信技术也面临一些挑战。

首先,电力线路本身的传输能力存在一定的限制,无法满足高速数据传输的需求。

此外,电力线下存在一定的噪声和干扰,可能会对通信信号造成影响。

为了解决这些问题,研究人员需要进一步改进电力线载波通信技术,提高通信质量和传输速率。

综上所述,电力线载波通信技术作为一种新的通信技术在智能电力系统和智能家居等领域具有广泛的应用前景。

通过研究和改进电力线载波通信技术,可以进一步提高通信质量和传输速率,将其应用于更广泛的领域,为人们的生活和工作带来更多便利。

电力线载波通信原理

电力线载波通信原理

电力线载波通信原理
电力线载波通信是一种利用电力线传输数据的通信技术,它基于载波通信原理。

载波通信是指在传送高频信号的载波上叠加低频信号进行通信的一种方式。

在电力线载波通信中,采用电力线作为传输媒介,将数据信号转化为高频载波信号,通过改变载波信号的某些属性来传输数据。

电力线载波通信一般采用频分多址技术,即将不同用户的数据信号编码成不同的频带,并将其叠加在电力线上传输。

接收端通过解调和解码将载波信号转换成原始的数据信号。

电力线载波通信的优点在于利用现有的电力线进行通信,无需额外的布线,降低了成本。

同时,电力线覆盖范围广泛,能够在室内和室外实现通信。

然而,电力线作为传输媒介也存在一些问题,如传输距离受限、传输速率较低、干扰较多等。

因此,电力线载波通信一般用于短距离的低速数据传输,如智能家居、智能电网等领域。

第三章电力线载波通信

第三章电力线载波通信

2、从使用的带宽角度划分。分为宽带、窄带电 力线载波通信。
➢ 宽带:带宽2M-30MHz之间,通信速率 1Mbit/s以上,实现高速数据传输。
➢ 窄带:带宽3-500kHz,通信速率小于1Mbit/s。
三、我国电力线载波通信的现状
从80年代鼎盛时期到现在,其主要表现为: ➢ 由模拟发展到数字,由单通道到多通道; ➢ 地位由基本通信方式到备用通信方式; ➢ 传输信息由话音和远动信号到计算机、
第三章电力线载波通信
第一节 概述
电力线载波通信(Power Line Carrier,PLC)是利用高 压输电线作为传输通路的载波通信方式,用于电力系 统的调度通信、远动、保护、生产指挥、行政业务通 信及各种信息传输。
电力线路是为输送50Hz强电设计的,线路衰减小,机 械强度高,传输可靠,电力线载波通信复用电力线路 进行通信不需要通信线路建设的基建投资和日常维护 费用,在电力系统中占有重要地位。
上下边带信号所具有的频率范围虽然与原 始话音信号不同,但它们都保持着原话音 信号的振幅及频率特征,是我们变频调制 后要利用的部分。
单路单向载波变频系统示意图
发送端通过变频调制器和带通滤波器对 原始信号进行调制,接收端用同样的变 频调制器对接收到的信号进行解调。
(4)信号的调制/解调过程
发送端话音信号(0.3~3.4)kHz经载频fc调制后, 输出上、下边带及其他频率成分。带通滤波器BPF 取出上边带fc+ (0.3~3.4)kHz,其他成分被抑制。
3.收信支路
收信支路从高频通道上选出对方送来的高频信 号进行解调,恢复出对方发送的音频信号。
单边带载波机收信应采用同步检波实现解调, 即要求收信端的高频、中频载频与发送端高载 频、中载频严格相等。否则,解调后的音频信 号将出现频率偏差。国际规定,通话偏差应小 于10Hz,传输远动信号偏差小于2Hz。

电力线载波通信xin

电力线载波通信xin

通信速率限制
由于电力线信道的特性,电力线载波 通信速率受到一定限制,难以实现高 速数据传输。
安全问题
电力线网络开放性强,数据传输安全 性存在一定风险,需要采取相应的安 全措施。
技术标准不统一
目前电力线载波通信技术标准不统一, 不同厂商设备互通性差,制约了行业 发展。
未来发展方向
技术创新与研发
统一技术标准
时间跳变扩频(Tiபைடு நூலகம்e Hopping Spread Spectrum, THSS):通过在时间上跳变信 号的发送时间,扩展信号的频谱,提高抗干扰能力。
抗干扰技术
频域滤波
通过在频域上对信号进行 滤波,滤除噪声和干扰信 号,提高信号的信噪比。
时域滤波
通过在时域上对信号进行 滤波,滤除噪声和干扰信 号,提高信号的信噪比。
网络监控
实时监测网络状态,确保通信网络的正常运行。
故障诊断与处理
对网络故障进行诊断和处理,及时恢复网络的 正常运行。
性能优化
根据网络运行状况,对网络性能进行优化,提高网络的传输效率和稳定性。
04
电力线载波通信的优势 与挑战
优势
覆盖范围广
电力线网络遍布城乡, 利用电力线作为传输媒 介,可以轻松实现大范
将信息编码为脉冲信号,通过电力线进行传输,具有传输速度快、占 用带宽小的优点。
扩频技术
直接序列扩频(Direct Sequence Spread Spectrum, DSSS):通过将信号扩展到 更宽的频带,降低信号的功率谱密度,提高抗干扰能力。
跳频扩频(Frequency Hopping Spread Spectrum, FHSS):通过在多个频率上 跳变,扩展信号的频谱,提高抗干扰能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、电力线载波通信的特点
1、独特的耦合设备。耦合设备既要使载波信号有效传送, 又要不影响工频电流的传输,还要能方便地分离载波信 号与工频电流。此外,还必须防止工频电压、大电流对 载波通信设备的损坏,确保安全。
2. 线路频谱安排的特殊性 电力线载波通信能使用的频谱由三个因素决定: (1)电力线路本身的高频特性。 (2)避免50Hz工频的干扰。 (3)考虑载波信号的辐射对无线电广播及无线通信的影响。 我国规定电力线载波通信使用的频率范围为40-500KHz。
1、按照电力线电压等级划分。分为高压、中压、 低压电力线载波通信。
➢ 高压:35kV及以上,载波线路良好,传输调 度电话、远动、高频保护及其他监控系统的 信息。
➢ 中压:10kV,载波线路较差,传输配电网自 动化、小水电和大用户抄表信息。
➢ 低压:380V及以下,载波线路极差,传输电 力线上网、用户抄表及家庭自动化的信息和 数据。
线路阻波器GZ串在电力线和母线间,其作用是通过电 力电流,阻止高频载波信号漏到变压器和电力线分支 线路,以减小线路对高频信号的介入损耗和衰耗。
结合设备:连接载波机和输电线,提供高频信号通路。
输电线:传输电能和高频信号。
载波通信原理
载波通信所采用的是频分多路复用。
频分多路复用:在发送端运用频谱搬移 技术,将多路信号的频谱搬移到互不重 叠的频段上,从而构成一个群频信号, 经信道发送出去。
3、线路存在强大的电磁干扰。由于电力线路上 存在强大的电晕等干扰噪声,要求电力线载波设 备具有较高的发信功率,以获得必需的输出信噪 比。另外,由于50Hz谐波的强烈干扰,使得0.33.4KHz的话音信号不能直接在电力线上传输,只 能将信号频谱搬移到40KHz以上,进行载波通信。
二、电力线载波通信方式分类
G
发电机
变压器
耦合装置
GZ C
电力线路
耦合装置
GZ C
变压器
G
发电机
JL
HFC
载 波 机 A
JL
HFC
载 波 机 B
图3-1 电力线载波通信系统构成方框图
各构成部分的作用:
电力载波机:主要实现调制和解调。其性能好坏直接 影响电力线载波通信系统的质量。
耦合电容C和结合滤波器JL组成一个带通滤波器,其作 用是通过高频载波信号,并阻止电力线上的工频高压 和工频电流进入载波设备,确保人身、设备安全。
电力线载波通信是电力系统特有的通信方式。
高压输电网络通信系统
变电站 500kv以上
变电站
220kv
220kv
升压
发电
220kv
变电站 110kv
110kv 110kv 110kv 110kv
110kv
配电网络通信
10kv
2kv 35kv 35kv 35kv 35kv 35kv
(2)变频基本原理
信号频谱的搬移是利用半导体二极管、 三极管等非线性元件对信号进行变频调 制的结果。
二极管的伏安特性表达式如下: ia 0a 1 ua 2 u2a 3 u 3 ... (3-1)
为方便工程分析,只取前三项:
ia0a1ua2u2a3u3 (3-2)
二极管伏安特性曲线
(a)电路
(b)输入、输出频谱 非线性元件的变频作用
第三章电力线载波通信
第一节 概述
电力线载波通信(Power Line Carrier,PLC)是利用高 压输电线作为传输通路的载波通信方式,用于电力系 统的调度通信、远动、保护、生产指挥、行政业务通 信及各种信息传输。
电力线路是为输送50Hz强电设计的,线路衰减小,机 械强度高,传输可靠,电力线载波通信复用电力线路 进行通信不需要通信线路建设的基建投资和日常维护 费用,在电力系统中占有重要地位。
2、从使用的带宽角度划分。分为宽带、窄带电 力线载波通信。
➢ 宽带:带宽2M-30MHz之间,通信速率 1Mbit/s以上,实现高速数据传输。
➢ 窄带:带宽3-500kHz,通信速率小于1Mbit/s。
三、我国电力线载波通信的现状
从80年代鼎盛时期到现在,其主要表现为: ➢ 由模拟发展到数字,由单通道到多通道; ➢ 地位由基本通信方式到备用通信方式; ➢ 传输信息由话音和远动信号到计算机、
10kv 10kv 10kv 10kv
变电站
220v市电

10kv


10kv

10kv
线

10kv



10kv
输电线是电力系统特有的、巨大的资源。除局端外,管理路径与输电线路径 一致.
电力通信发展历程及趋势
全数字载波机将进入高速发展阶段
未来的电力通信将以光纤和全数字载波机为主要通信方式 ▪ 大变电站、环网的通信方式是以为光纤主,载波备用; ▪ 中、小变电站及农网自动化的主要通信方式为全数字载波 机。
利用三角函数公式
sin21cos2 2
2
2 s i n s i n c o s ( ) c o s ( )
展开整理得:
i
a0
a2 2
网络及监控系统的信息; ➢ 对通信容量、接口功能、信息采集、网
管性能和质量水平提出了更高要求。
课外作业:通过网络等方式收集电力线载波通信现状、发展趋势和 应用案例,并制作ppt。
第二节 电力线载波通信系统
一、电力线载波通信系统构成
➢ 主要由电力线载波机、电力线路和耦合设备构成。
➢ 耦合装置包括线路阻波器GZ、耦合电容器C、结合滤波器JL(又 称结合设备)和高频电缆HFC,与电力线路一起组成电力线高频 通道。
当将两个不同频率的正弦信号uF UFsint 和 ufc Ufcsinct同时加到二极管上时,二极 管的端电压uU Fsin tU fcsinct。
代入(3-2)得:
i a 0 a 1 ( U F s i n t U f c s i n c t ) a 2 ( U F s i n t U f c s i n c t ) 2
群频信号所占据的频带范围,必须在传 输信道的有效通带内。
(1)频分多路复用
频分多路复用
三路独立信号f1(t)、 f2(t)、 f3(t), 不同频率的载波分别进 行单边带调制,已调信号频谱 F1(ω)、 F2(ω)、 F3(ω)。
三路信号汇集后,得群频信号 的频谱F (ω)。
群频信号在同一条信道上传输, 在接收端用带通滤波器滤出各 信号。
相关文档
最新文档