高一数学必修1综合测试题(1)
高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。
2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。
4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。
5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。
高一数学必修1测试卷(含详细答案)

则 f ( 0 ) f (x ) f ( x )
f ( x)
f ( x)
(0)
,, 3 分
所以 f ( x ) 为 R 上的奇函数
,, 6 分
(3 )令 x y 1
则 f (1 1) f (2) f (1) f (1) 2
,, 8 分
f ( 2 a ) f (a 1 ) 2 f ( a2 ) f a( 1 ) f
( D ) { x x 0}
1 (C ) y
2
x
(D) y
2
( x)
2
x
3. 集合 A {( x, y ) y x} ,集合 B {( x, y )
2x y 1 } 之间的关系是
x 4y 5
( A) A B
(B) B A
(C ) A B
(D ) B A
4. 已知函数 f ( x ) log 2 x 1 , 若 f ( a ) 1, 则 a
取值范围 .
22(本小题分 A,B 类,满分 14 分,任选一类,若两类都选,以 A 类记分) ( A 类) 定义在 R 上的函数 y f ( x ) ,对任意的 a, b R ,满足
f ( a b) f (a ) f (b ) ,当 x 0 时,有 f ( x ) 1,其中 f (1) 2 .
( 1) 求 f ( 0 ) 、 f ( 1) 的值; ( 2) 证明 y f ( x ) 在 (0, ) 上是增函数;
10. 已知 f ( x)
2
1 1
x x2
,则
f
( x ) 不.满.足. 的关系是
( A) f ( x) f ( x )
1 (C ) f ( )
x
f (x)
2023-2024学年高一上数学必修一第1章综合测试卷(附答案解析)

2023-2024学年高一上数学必修一第1章综合测试卷
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合A={-1,0,1,2},集合B={y|y=2x-3,x∈A},则A∩B=(B)
A.{-1,0,1}B.{-1,1}
C.{-1,1,2}D.{0,1,2}
解析:由题可得集合B={-5,-3,-1,1},所以A∩B={-1,1},故选B.
2.命题“对任意x∈R,都有x2≥0”的否定为(D)
A.对任意x∈R,都有x2≥0B.不存在x∈R,使得x2<0
C.存在x∈R,使得x2≥0D.存在x∈R,使得x2<0
3.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD 为菱形”是“AC⊥BD”的(A)
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
解析:若四边形ABCD为菱形,则菱形的对角线互相垂直,即“四边形ABCD为菱形”⇒“AC⊥BD”;但是“AC⊥BD”推不出“四边形ABCD为菱形”,例如对角线垂直的等腰梯形.所以“四边形ABCD 为菱形”是“AC⊥BD”的充分不必要条件,故选A.
4.设集合U={1,2,3,4,5,6},M={1,2,3},N={3,4,5},则(∁U M)∩(∁U N)=(D)
A.{1,2,3,4,5}B.{1,2,4,5,6}
C.{1,2,6}D.{6}
解析:由题意∁U M={4,5,6},∁U N={1,2,6},则(∁U M)∩(∁U N)=
第1页共9页。
高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。
$\varnothing \in A$ B。
$2\in A$ C。
$2\in A$ D。
$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。
$2$ B。
$5$ C。
$6$ D。
$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。
若 $A\subseteq B$,则 $a$ 的范围是()A。
$a\geq 2$ B。
$a\leq 1$ C。
$a\geq 1$ D。
$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。
$(,\infty)$ B。
$[。
\infty)$ C。
$(-\infty,)$ D。
$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。
$\{0,2,3,6\}$ B。
$\{0,3,6\}$ C。
$\{2,1,5,8\}$ D。
$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。
$(2,3)$ B。
$[-1,5]$ C。
$(-1,5)$ D。
$(-1,5]$7.下列函数是奇函数的是()A。
$y=x$ B。
$y=2x-3$ C。
$y=x^2$ D。
$y=|x|$8.化简:$(\pi-4)+\pi=$()A。
$4$ B。
$2\pi-4$ C。
$2\pi-4$ 或 $4$ D。
$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。
2023-2024学年高一上数学必修一综合测试卷(附答案解析)

解析:当 c=0 时,A 不成立;当 a=-1,b=-2 时,B 不成立;
由不等式的性质知 C 不成立;若 a> b,则一定能推出 a>b,故 D 成
立.
3.命题“∃x∈R,x3-x2+1>0”的否定是( A )
A.∀x∈R,x3-x2+1≤0 B.∀x∈R,x3-x2+1>0
C.∃x∈R,x3-x2+1≤0 D.不存在 x∈R,x3-x2+1≤0
的取值范围是( A )
A.[2,6)
B.(2,6)
C.(-∞,2]∪(6,+∞)
D.(-∞,2)∪(6,+∞)
解析:①当 a=2 时,1>0 成立,故 a=2 符合条件;②当 a≠2 时,
a-2>0,
必须满足 Δ=a-22-4a-2<0,
解得 2<a<6.由①②可知,a∈
[2,6).故选 A.
二、多项选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小
2
4
sinx
在
1π,3π 22
上单调递减,故
y=
π,3π 2sin2x 在 4 4 上单调递减,故
题给出的四个选项中,有多个选项符合题目要求.全部选对的得 5 分,
部分选对的得 3 分,有选错的得 0 分)
9.下列函数是偶函数的是( CD )
A.f(x)=tanx B.f(x)=sinx C.f(x)=cosx D.f(x)=lg|x|
解析:根据题意,依次分析选项:对于 A,f(x)=tanx,是正切函
解析:存在量词命题“∃x∈M,p(x)”的否定为全称量词命题“∀
x∈M,綈 p(x)”,故选 A.
4. 22cos375°+ 22sin375°的值为( A )
高一数学必修一期中备考综合测试01(A卷)(解析版).docx

班级 ________ 姓名___________ .学号__________ 分数《必修一期中备考综合测试卷(一)》(A卷)(测试时问:120分钟满分:150分)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列给出的命题正确的是()A.高中数学课本中的难题可以构成集合B.有理数集Q是最大的数集C.空集是任何非空集合的真子集D.自然数集N中最小的数是1【答案】C【解析】难题不具有确定性,不能构造集合,A错误;实数集R就比有理数集Q犬,疗错误;空集是任何非空集合的真子集,C正确;自然数集N中最小的数是0, D错误;故选C・2.若P={x|x<l),Q={x|x>-l},则()A. PcQB. QcpC. C(! P cQD. Qc Q, P【答案】C【解析】C v P={x|x^l},而Q二{x|x>T},故有C v PCQ故选C.3.已知集合N, P为全集U的子集,且满足McpcN,则下列结论不正确的是()A. [uNcQPB. C N P C GMC. (C U P) AM=0D. ((>M) AN=0【答案】D【解析】因为PUN,所以C V N C QP,故A正确;因为Mcp,所以C N P C C N M,故B正确;因为MCP,所以(CiP) AM=0,故C正确;因为MG N,所以(C U M)DNH0.故D不正确. 故选D.4.[2018届黑龙江省佳木斯市鸡东县第二中学高三第一次月考】若集合A = {l,2,4,8},B = {x|2x<5}, 则A c B =()A. {1}B. {2}C. {1,2}D. {1,2,3}【答案】C【解析】B = {x|2A <5} =(^o,log25)/.AnB = {l,2},选B.5.【2018届福建省数学基地校高三联考】下列函数屮,定义域是R且为增函数的是()A. y = e~xB. y = x^C. y = larD. y = x【答案】B【解析】分别画出四个函数的图象,如图:故选B.6.【2018届广西钦州市高三第一次检测】已知集合A = {1, 2, 3, 4},集合B = {3,4, 5, 6},集合C=AnB, 则集合C的子集的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】2, 3, 4}, B={3, 4, 5, 6},/.C=AnB={l, 2, 3, 410(3, 4, 5, 6} = {3, 4打•:集合C的子集为0, {3},⑷,{3, 4} f共4个.故选:D・7.集合A= {-1,0,1}, A的子集中含有元素0的子集共有()A. 2个B. 4个C. 6个D. 8个【答案】B【解析】含有元素0的子集有{0}, {0,-1}, {0,1}, {0,-1, 1},共4个.故选B.8.[2018届福建省数学基地校高三联考】函数/(对二 _ 的定义域为()71og2x-lA. (0,2)B.「(0,2]C. (2,4W)D. [2,-H X))【答案】C【解析】因为log 2x>l=>x>2,所以选C.X 2,XG [-1,0]9. 函数/(%) = { 1 ([的最值情况为()-,xe(O,ll x A.最小值0,最大值1 B.最小值0,无最大值 C.最小值0,最大值5 D.最小值1,最大值5【答案】B【解析1 xe [-1,0], f(x)的最大值为1,最小值为0; xe(o,l]时,f(x)e [1,+8)无最大值,有最小{Hl,所以f(x)有最小值0,无最大值.故选B.10. 若函数/(尢)的定义域为[—2,2],则函数/(x+l) + /(l-2x)的定义域为() 1 ~| [ 1 ~| 1~ 3~A. —, 1B. —, 2C. [—2,21rD. —3,—_ 2」 L 2」 L 」|_ 2_【答案】A【解析】因为函数/(x)的定义域为[-2=2],所以函数/(x+l)+/(l-2x)中有:-2<x+l<2 -2<l-2x<2故选A.( )A. 4B. —4C. 1 r 1 _D.―一 4 4【答案】 C【解析】 /(-2)= 2-2 =1 _ 4故选C.即函数/(x+l) + /(l-2x)的定义域为11.【2018届新疆呼图壁县第一屮学高三9月】设/(x) = {-J x + 22Xx>0 x<0,求f(-2)的值12. 【2018届甘肃省武威市第六屮学高三第一次】若a 满足a + lga = 4, b 满足b + 10b = 4,函数 f (x )=F + (a ;:)::2zO 则关于x 的方程f (x )=x 解的个数是() A. 1 B. 2 C. 3 D. 4【答案】C【解析】Ta 满足a + 1駅=4, b 满足b + 10b = 4,.・・a, b 分别为函数y = 4-泻函数y = lgx, y = 10週象 交点的横坐标,由于y = x^y = 4-X @象交点的横坐标为2,函数y = lgx, y = 10啲图象关于y = x 对称, y2 1 Ay -L 0 丈 V・・.a + b = 4, .I 函数f (x )=' 一 ,当XMO 时,关于x 的方程f (x ) = x,即P + 4X+2二須 2, x> 0即疋+ 3x4-2=0, /.X = -2或x = -1,满足题鼠 当x > 0时,关于x 的方程f (x ) = x,即x = 2,满足题意, ・•・关于x 的方程f (x ) = x 的解的个数是3,故选C.第II 卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 【2018届浙江省温州市高三9月测试】(J log2S = ___________ ・【答案】;【解析】@10§23= 2』諮=210g23 = |,故答案为*(1 \14.【2018届河北省石家庄二中八月模拟】已知幕函数/(兀)的图彖经过点-,V2,M/(x ) = 丿_1【答案】x 4[ 1 1V2=>c^ = --,所以/(x) = x 4,应填答案兀J 15. 【2018届宁夏育才中学高三第一次月考】函数y = lo&(x+l ) + 2(d>0且dHl )恒过定点A,则A 的坐【解析】由题意- 丿标为____ .【答案】(0, 2)【解析】log 」=0.・.x = 0R 寸y = 2,即A 的坐标为(0, 2).(3X - 1 x > 016. [2018届贵•州省贵阳市第一中学高三月考一】已知函,数f (x )=L ;x2_;;;:0'若方程£(*)=皿有3个不等的实根,则实数m 的取值范围是 __________ . 【答案】(0, 2)【解析】画出函数图像,得二次函数最高•点位(-12),常函数y = m 和曲线有三个交点,则位于x 轴上方, 最高点「下方即可•故得m e (0,2).三、解答题(本大题共6小题,共70分•解答应写出文字说明、证明过程或演算步骤・)17. (本小题 10 分)计算:(1)(0.064戶 + (-2)‘ 3+16_0-75+(0.25)251 19 【答案】(1) —;(2)—16 4【解析】试题分析:(1)主要利用指数幕的运算法则(a ,n )n =a ,,ut 即可得出;(2)利用对数的运算法则、换 底公式即可得出.2 2 16 8 2 16(2)原式ulogQ 石+lgl00+2 +些•坐=—丄 + 4 + 1= —lg2 21g3 4418. (本小题12分)已知函数/(x) = {x 2+l,-l<x<l2x + 3,x v -1(1) 求 /(/(/(-2)))的值。
高一数学必修1综合测试题

高一数学必修1综合测试题1.集合EMBED Equation.3 ,EMBED Equation.DSMT4 则EMBED Equation.DSMT4 为()A. EMBED Equation.3 B.{0,1} C.{1,2} D. EMBED Equation.32.已知集合 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 则 EMBED Equation.DSMT4 ()A.EMBED Equation.DSMT4 B.EMBED Equation.DSMT4 C. EMBED Equation.DSMT4 D. EMBED Equation.DSMT43.设EMBED Equation.DSMT4 ,EMBED Equation.DSMT4 ,EMBEDEquation.DSMT4 ,则().A EMBED Equation.DSMT4B EMBED Equation.DSMT4C EMBED Equation.DSMT4 D EMBED Equation.DSMT44.已知函数EMBED Equation.DSMT4 是定义在R上的奇函数,且当EMBED Equation.3 时, EMBED Equation.3 ,则 EMBED Equation.DSMT4 在R上的解析式为()A. EMBED Equation.3 B. EMBED Equation.3C. EMBED Equation.3 D. EMBED Equation.35.要使EMBED Equation.DSMT4 的图象不经过第二象限,则t的取值范围为()A. EMBED Equation.DSMT4B. EMBED Equation.DSMT4C. EMBED Equation.DSMT4D. EMBED Equation.DSMT46.已知函数 EMBED Equation.DSMT4 在区间 EMBED Equation.DSMT4 上是EMBED Equation.DSMT4 的减函数,则 EMBED Equation.DSMT4 的取值范围是()A.EMBED Equation.DSMT4 B.EMBED Equation.DSMT4 C.EMBED Equation.DSMT4 D. EMBED Equation.DSMT47.已知 EMBED Equation.DSMT4 是 EMBED Equation.DSMT4 上的减函数,那么 EMBED Equation.DSMT4 的取值范围是()A EMBED Equation.DSMT4B EMBED Equation.DSMT4C EMBED Equation.DSMT4 D EMBED Equation.DSMT48.设EMBED Equation.DSMT4 ,函数EMBED Equation.DSMT4 在区间EMBED Equation.DSMT4 上的最大值与最小值之差为EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 ()A.EMBED Equation.DSMT4 B.2 C.EMBED Equation.DSMT4 D.49. 函数 EMBED Equation.3 与 EMBED Equation.3 在同一直角坐标系下的图象大致是(C)10.定义在R上的偶函数 EMBED Equation.3 满足 EMBED Equation.3 ,且当EMBED Equation.DSMT4 EMBED Equation.3 时EMBEDEquation.DSMT4 ,则 EMBED Equation.DSMT4 等于()A. EMBED Equation.DSMT4 B. EMBED Equation.DSMT4 C.EMBED Equation.DSMT4 D. EMBED Equation.DSMT411.根据表格中的数据,可以断定方程 EMBED Equation.3 的一个根所在的区间是(). EMBED Equation.3 -10123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)-10123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)0123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)23 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.312345(-1,0)B.(0,1)C.(1,2)D.(2,3)3 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.312345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.312345(-1,0)B.(0,1)C.(1,2)D.(2,3)0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)12.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)2.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)7.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)20.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)12345(-1,0)B.(0,1)C.(1,2)D.(2,3)2345(-1,0)B.(0,1)C.(1,2)D.(2,3)345(-1,0)B.(0,1)C.(1,2)D.(2,3)45(-1,0)B.(0,1)C.(1,2)D.(2,3)5(-1,0)B.(0,1)C.(1,2)D.(2,3)(-1,0)B.(0,1)C.(1,2)D.(2,3)A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12.下表显示出函数值 EMBED Equation.3 随自变量 EMBED Equation.3 变化的一组数据,由此判断它最可能的函数模型是().x45678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型45678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型5678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型78910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型8910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型10y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型1921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型21232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型2527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型27A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型13.若 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 .14. EMBED Equation.3 =15.已知函数 EMBED Equation.3 同时满足:(1)定义域为 EMBED Equation.DSMT4 且EMBED Equation.DSMT4 恒成立;(2)对任意正实数EMBED Equation.3 ,若 EMBED Equation.3 有 EMBED Equation.3 ,且 EMBED Equation.3 .试写出符合条件的函数 EMBED Equation.DSMT4 的一个解析式16.给出下面四个条件:① EMBED Equation.DSMT4 ,② EMBED Equation.DSMT4 ,③ EMBED Equation.DSMT4 ,④ EMBED Equation.DSMT4 ,能使函数 EMBED Equation.DSMT4 为单调减函数的是 .17. 已知函数 EMBED Equation.DSMT4 的定义域为 EMBED Equation.DSMT4,且同时满足下列条件:(1) EMBED Equation.DSMT4 是奇函数;(2) EMBED Equation.DSMT4在定义域上单调递减;(3) EMBED Equation.DSMT4求 EMBED Equation.DSMT4 的取值范围HYPERLINK"/"18.函数 EMBED Equation.DSMT4 在区间 EMBED Equation.DSMT4 上有最大值 EMBED Equation.DSMT4 ,求实数 EMBED Equation.DSMT4 的值HYPERLINK "/"19.已知函数 EMBED Equation.3 ,求函数 EMBED Equation.3 的定义域与值域.20.集合A是由适合以下性质的函数f(x)组成的,对于任意的x≥0,f(x)∈ EMBED Equation.3 且f(x)在(0,+∞)上是增函数.(1)试判断 EMBED Equation.DSMT4 (x≥0)是否在集合A中,若不在集合A中,试说明理由;(2)对于(1)中你认为是集合A中的函数f(x),证明不等式f(x)+f(x+2)<2f(x+1)对于任意x≥0总成立.高一数学必修1综合测试题(一)参考答案:1----5 DCACA 6----10BCDCD 11.C 12.A13. 3 14. EMBED Equation.DSMT4 15. EMBED Equation.DSMT4等16. ①④17解: EMBED Equation.DSMT4EMBED Equation.DSMT4 , EMBED Equation.DSMT4 EMBED Equation.DSMT4 .18解:对称轴 EMBED Equation.DSMT4 ,当 EMBED Equation.DSMT4 是 EMBED Equation.DSMT4 的递减区间,EMBED Equation.DSMT4 ;6分当 EMBED Equation.DSMT4 是 EMBED Equation.DSMT4 的递增区间,EMBED Equation.DSMT4 ;9分当 EMBED Equation.DSMT4 时 EMBED Equation.DSMT4 与 EMBED Equation.DSMT4 矛盾;所以 EMBED Equation.DSMT4 或 EMBED Equation.DSMT4 HYPERLINK "/"19 解:由 EMBED Equation.3 ,得 EMBED Equation.3 . 解得 EMBED Equation.DSMT4 EMBED Equation.DSMT4 定义域为 EMBEDEquation.DSMT4令 EMBED Equation.3 ,则 EMBED Equation.3 .∵ EMBED Equation.3 ,∴ EMBED Equation.3 ∴值域为 EMBED Equation.3 .20.解:(1) EMBED Equation.3 EMBED Equation.3 EMBED Equation.3不在集合A中又 EMBED Equation.3 的值域 EMBED Equation.3 , EMBED Equation.3当 EMBED Equation.3 时 EMBED Equation.3 为增函数 EMBED Equation.3 在集合A中(2) EMBED Equation.3 EMBED Equation.3EMBED Equation.3EMBED Equation.3 对任意 EMBED Equation.3 ,不等式 EMBED Equation.3 总成.高一数学必修1综合测试题(二)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I={0,1,2},且满足C I (A∪B)={2}的A、B共有组数A.5B.7C.9D.112.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则A.A EMBED PBrush BB.B EMBED PBrush AC.A=BD.A∩B= EMBED Equation.33.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B的元素个数是A.5B.4C.3D.24.若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},则能使Q EMBED Equation.3 (P∩Q)成立的所有实数a的取值范围为A.(1,9)B.[1,9]C.[6,9 EMBED Equation.3D.(6,9]5.已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原象分别对应是6和9,则19在f作用下的象为A.18B.30C. eq \f(27,2)D.286.函数f(x)= eq \f(3x-1,2-x) (x∈R且x≠2)的值域为集合N,则集合{2,-2,-1,-3}中不属于N的元素是A.2B.-2C.-1D.-37.已知f(x)是一次函数,且2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为A.3x-2B.3x+2C.2x+3D.2x-38.下列各组函数中,表示同一函数的是A.f(x)=1,g(x)=x0B.f(x)=x+2,g(x)= eq \f(x2-4,x-2)C.f(x)=|x|,g(x)= eq \b\lc\{(\a\al(x x≥0,-x x<0))D.f(x)=x,g(x)=( eq \r(x) )29. f(x)= eq \b\lc\{(\a\al(x2x>0,πx=0,0 x<0)) ,则f{f[f(-3)]}等于A.0B.πC.π2D.910.已知2lg(x-2y)=lg x+lg y,则 eq \f(x,y) 的值为A.1B.4C.1或4D. eq \f(1,4) 或411.设x∈R,若a<lg(|x-3|+|x+7|)恒成立,则A.a≥1B.a>1C.0<a≤1D.a<112.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是A.(0, eq \f(1,2) )B.(0, EMBED Equation.3C.( eq\f(1,2) ,+∞) D.(0,+∞)二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上)13.若不等式x2+ax+a-2>0的解集为R,则a可取值的集合为__________.14.函数y= eq \r(x2+x+1) 的定义域是______,值域为__ ____.15.若不等式3 EMBED Equation.3 >( eq \f(1,3) )x+1对一切实数x恒成立,则实数a 的取值范围为___ ___.16. f(x)= EMBED Equation.3 ,则f(x)值域为_____ _.17.函数y= eq \f(1,2x+1) 的值域是__________.18.方程log2(2-2x)+x+99=0的两个解的和是______.三、解答题19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(C U A)∩(C U B).20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f(x)=log EMBED Equation.3 2x-log EMBED Equation.3 x+5,x∈[2,4],求f(x)的最大值及最小值.23.已知函数f(x)= eq \f(a,a2-2) (a x-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.高一数学必修1综合测试题(二)参考答案一、选择题题号123456789101112答案C B C D B D A C C B D A二、填空题123456789101112答案C B C D B D A C C B D A二、填空题23456789101112答案C B C D B D A C C B D A二、填空题3456789101112答案C B C D B D A C C B D A二、填空题456789101112答案C B C D B D A C C B D A二、填空题56789101112答案C B C D B D A C C B D A二、填空题6789101112答案C B C D B D A C C B D A二、填空题789101112答案C B C D B D A C C B D A二、填空题89101112答案C B C D B D A C C B D A二、填空题9101112答案C B C D B D A C C B D A二、填空题101112答案C B C D B D A C C B D A二、填空题1112答案C B C D B D A C C B D A二、填空题12答案C B C D B D A C C B D A二、填空题答案C B C D B D A C C B D A二、填空题答案C B C D B D A C C B D A二、填空题C B CD B D A C C B D A二、填空题B C D B D A C C B D A二、填空题C D B D A C C B D A二、填空题D B D A C C B D A二、填空题B D AC C BD A二、填空题D A C C B D A二、填空题A C CB D A二、填空题C C BD A二、填空题C BD A二、填空题B D A二、填空题D A二、填空题A二、填空题二、填空题二、填空题13. EMBED Equation.3 14. R [ eq \f(\r(3),2),+∞) 15. - eq \f(1,2) < a < eq \f(3,2)16. (-2,-1]17. (0,1) 18. -99三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(C U A)∩(C U B).(C U A)∩(C U B)={x|-1<x<1}20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.考查函数对应法则及单调性的应用.(1)【证明】由题意得f(8)=f(4×2)=f(4)+f(2)=f(2×2)+f(2)=f(2)+f(2)+f(2)=3f(2)又∵f(2)=1 ∴f(8)=3(2)【解】不等式化为f(x)>f(x-2)+3∵f(8)=3 ∴f(x)>f(x-2)+f(8)=f(8x-16)∵f(x)是(0,+∞)上的增函数∴ EMBED Equation.3 解得2<x< eq \f(16,7)21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考查函数的应用及分析解决实际问题能力.【解】(1)当每辆车月租金为3600元时,未租出的车辆数为 eq \f(3600-3000,50) =12,所以这时租出了88辆.(2)设每辆车的月租金定为x元,则公司月收益为f(x)=(100- eq \f(x-3000,50) )(x-150)- eq \f(x-3000,50) ×50整理得:f(x)=- eq \f(x2,50) +162x-2100=- eq \f(1,50) (x-4050)2+307050 ∴当x=4050时,f(x)最大,最大值为f(4050)=307050 元22.已知函数f(x)=log EMBED Equation.3 2x-log EMBED Equation.3 x+5,x∈[2,4],求f(x)的最大值及最小值.考查函数最值及对数函数性质.【解】令t=log EMBED Equation.3 x∵x∈[2,4],t=log EMBED Equation.3 x在定义域递减有log EMBED Equation.3 4<log EMBED Equation.3 x<log EMBED Equation.3 2,∴t∈[-1,- eq \f(1,2) ]∴f(t)=t2-t+5=(t- eq \f(1,2) )2+ eq \f(19,4) ,t∈[-1,- eq \f(1,2) ]∴当t=- eq \f(1,2) 时,f(x)取最小值 eq \f(23,4)当t=-1时,f(x)取最大值7.23.已知函数f(x)= eq \f(a,a2-2) (a x-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.考查指数函数性质.【解】f(x)的定义域为R,设x1、x2∈R,且x1<x2则f(x2)-f(x1)= eq \f(a,a2-2) (a EMBED Equation.3 -a EMBED Equation.3 -a EMBED Equation.3 +a EMBED Equation.3 )=eq \f(a,a2-2) (a EMBED Equation.3 -a EMBED Equation.3 )(1+ EMBED Equation.3 )由于a>0,且a≠1,∴1+ EMBED Equation.3 >0∵f(x)为增函数,则(a2-2)( a EMBED Equation.3 -a EMBED Equation.3 )>0 于是有 EMBED Equation.3 ,解得a> eq \r(2) 或0<a<1。
高一数学必修1综合测试题3套(附答案)

高一数学综合检测题(1)一、选择题:(每小题5分,共60分,请将所选答案填在括号内) 1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( )(A)3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n ∈Z}, T={x|x=4k ±1,k ∈Z},则 ( ) (A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T 3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么PQ 等( )(A)(0,2),(1,1) (B){(0,2 ),(1,1)} (C){1,2} (D){}|2y y ≤4.不等式042<-+ax ax 的解集为R ,则a 的取值范围是 ( ) (A)016<≤-a (B)16->a (C)016≤<-a (D)0<a 5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B)5 (C)4 ( D)36.函数243,[0,3]y x x x =-+∈的值域为 ( )(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2] 7.函数y=(2k+1)x+b 在(-∞,+∞)上是减函数,则 ( )(A)k>12 (B)k<12 (C)k>12- (D).k<12- 8.若函数f(x)=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤-3 (B)a ≥-3 (C)a ≤5 (D)a ≥39.函数2(232)xy a a a =-+是指数函数,则a 的取值范围是 ( )(A) 0,1a a >≠ (B) 1a = (C) 12a =( D)121a a ==或10.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11.函数y =的定义域是 ( )(A )[1,+∞] (B) (23,)+∞ (C) [23,1] (D) (23,1]12.设a,b,c都是正数,且346a b c==,则下列正确的是( )(A) 111c ab =+ (B) 221C a b =+ (C) 122C a b =+ (D) 212c a b =+二、填空题:(每小题4分,共16分,答案填在横线上)13.已知(x,y )在映射 f 下的象是(x-y,x+y),则(3,5)在f 下的象是 ,原象是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1综合测试题(一)
1.集合{|1,}A y y x x R ==+∈,{|2,},x
B y y x R ==∈则A B 为( ) A .{(0,1),(1,2)} B .{0,1}
C .{1,2}
D .(0,)+∞ 2.已知集合{
}
1|
1242
x N x x +=∈<<Z ,,{11}M
=-,,则M
N =( )
A .{11}-,
B .{0}
C .{1}-
D .{10}-,
3.设
12
log 3a =,0.2
13b =⎛⎫
⎪
⎝⎭,1
32c =,则( ).
A
a b c << B c b a << C c a b <<
D
b a
c <<
4.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上的解析式为 ( ) A . ()(2)f x x x =-+ B .()||(2)f x x x =-
C .
()(||2)f x x x =- D. ()||(||2)f x x x =-
5.要使1
()3x g x t +=+的图象不经过第二象限,则t 的取值范围为 ( )
A.
1t ≤- B. 1t <- C.3t ≤- D. 3t ≥-
6.已知函数
log (2)a y ax =-在区间[0,1]上是x 的减函数,则a
的取
值范围是( )
A .
(0,1) B .(1,2) C .(0,2) D .(2,)+∞
7.已知(31)4,1()log ,1
a a x a x f x x x -+<=>⎧⎨⎩
是
(,)-∞+∞上的减函数,那么a 的取值范围是
( )
A
(0,1)
B
1
(0,)3
C 11
[,)73 D
1
[,1)
7
8.设
1
a>,函数()log
a
f x x
=在区间[,2]
a a上的最大值与最小值之差为
1
2,则
a=
()
A.
2
B.2 C.
2 D.4
9. 函数2
()1log
f x x
=+
与
1
()2x
g x-+
=
在同一直角坐标系下的图象大致是()
10.定义在R上的偶函数
()
f x满足(1)()
f x f x
+=-,且当x∈[1,0]
-时()
1
2
x
f x
⎛⎫
= ⎪
⎝⎭,则2
(log8)
f等于()
A.3 B.
1
8 C.2- D.
2
11.根据表格中的数据,可以断定方程20
x
e x
--=的一个根所在的区间是().x-1 0 1 2 3
x
e0.37 1 2.72 7.39 20.09
2
x+ 1 2 3 4 5
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
12.下表显示出函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是().x 4 5 6 7 8 9 10
y 15 17 19 21 23 25 27
A.一次函数模型B.二次函数模型 C.指数函数模型 D.对数函数模型13.若0
a>,234
9
a=,则
2
3
log a=.
14
.
lg8lg1.2
+-=
15.已知函数
()y f x =同时满足:(1)定义域为
(,0)(0,)-∞+∞且
()()f x f x -=恒成立;
(2)对任意正实数
12
,x x ,若
12
x x <有
12()()
f x f x >,且
1212()()()f x x f x f x ⋅=+.试写出符合条件的函数()f x 的一个解析式
16.给出下面四个条件:①010a x <<<⎧⎨⎩,②01
0a x <<>⎧⎨⎩
,③10a x ><⎧⎨⎩,④10
a x >>⎧⎨⎩,能使函数
2
log a y x -=为单调减函数的是 .
17. 已知函数()f x 的定义域为
()1,1-,且同时满足下列条件:
(1)()f x 是奇函数;(2)()f x 在定义域上单调递减;(3)
2
(1)(1)0,f a f a -+-< 求a 的取值范围
18.函数
2
()21f x x ax a =-++-在区间
[]0,1上有最大值2,求实数a 的值
19.已知函数()21,x f x =--,求函数
)(x f 的定义域与值域.
20.集合A 是由适合以下性质的函数f(x)组成的,对于任意的x≥0,f(x)∈[)4,2- 且f(x)在(0,+∞)上是增函数.
(1)试判断
121
()2()46()2
x f x f x ==-及 (x≥0)是否在集合A 中,若不在
集合A 中,试说明理由;
(2)对于(1)中你认为是集合A 中的函数f(x),证明不等式f(x)+f(x+2)<2f(x+1)对于任意x≥0总成立.
参考答案:
1----5 DCACA 6----10BCDCD 11.C 12.A
13. 3 14. 3
2 15. 12log ||y x = 等 16. ①④
17解:
22(1)(1)(1)f a f a f a -<--=-,…………………………… 2分
则2
211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩
, …………………………………………….. 11分
∴
01a <<. …………………………………………13分
18解:对称轴x a =, 2分
当[]
0,0,1a <是()f x 的递减区间,max ()(0)121
f x f a a ==-=⇒=-; 6分 当
[]
1,0,1a >是()f x 的递增区间,max ()(1)22f x f a a ===⇒=; 9分
当01a ≤≤
时
2max ()()12,f x f a a a a ==-+==
与01a ≤≤矛盾; 12分
所以1a =-或2
19 解:由
420x
-≥,得24x ≤. …………………………………………. 3分 解得2x ≤ ∴定义域为
{}2x x ≤ ……………………………………..8分
t =, ………………………………………………………….9分 则
4)1(12422++-=---=t t t y . ……………………….11分 ∵20<≤t ,∴35≤<-y ,……………………………………………..14 ∴值域为]3,5(-.
20.解:(1)时当49=x [)4,25)49(1-∉=f
)(1x f ∴不在集合A 中 …………………………………….3分
又)(2x f 的值域[)4,2-,[)4,2)(2-∈∴x f
当0≥x 时)(2x f 为增函数
)(2x f ∴在集合A 中………………………………………….7分
(2))1(2)2()(222+-++x f x f x f
⎥
⎦⎤
⎢⎣⎡---+-=++12)21(642)21(64)21(64x x x
)
0(0)21(6)21()21()21(26221≥<-=⎥⎦⎤
⎢⎣⎡--=+++x x x x x
)(2x f ∴对任意0≥x ,不等式)1(2)2()(222+<++x f x f x f 总成
立. …………………………………………….13分
(注:可编辑下载,若有不当之处,请指正,谢谢!)。