四边形练习题(基础题)

合集下载

四边形练习题(含答案)

四边形练习题(含答案)

四边形练习题(含答案)1、阅读下面材料,再回答问题:有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”。

解决下列问题:(1)菱形的“二分线”可以是。

(2)三角形的“二分线”可以是。

(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”.2、用配方法解方程时,原方程可变形为()A. B.C. D.3、用两块边长为a的等边三角形纸片拼成的四边形是【】A.等腰梯形 B.菱形 C.矩形 D.正方形4、在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()5、下列命题中错误的是()A.两组对边分别相等的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组对边平行的四边形是梯形6、如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( )A. B.2 C. D.7、将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()8、如下图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP 的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是A.10 B.16 C.18 D.209、如图,在梯形ABCD中,AD//BC,AD=2,AB=3,BC=6,沿AE翻折梯形ABCD,使点B落在AD的延长线上,记为B′,连接B′E交CD于F,则的值为( )A. B. C. D.10、用任意两个全等的直角三角形拼下列图形:①平行四边形②矩形③菱形④正方形⑤等腰三角形⑥等边三角形其中一定能够拼成的图形是_______(只填题号).11、某陶瓷市场现出售的有边长相等的正三角形、正方形、正五边形的地板砖,某顾客想买其中的镶嵌着铺地板,则他可以选择的是.12、在一张三角形纸片中,剪去其中一个50°的角,得到如图所示的四边形,则图中∠1+∠2的度数为______________。

平行四边形基础训练题

平行四边形基础训练题

平行四边形基础训练题一.选择题(共10小题)1.在四边形ABCD中,给出下列条件:①AB∥CD;②AD=BC;③∠A=∠C;④AD∥BC.从以上选择两个条件使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种2.如图,在平行四边形ABCD中,DE平分∠ADC,∠DEC=30°,则∠ADC=()A.30°B.45°C.60°D.80°3.如图,在▱ABCD中,若∠A=∠D+40°,则∠B的度数为()A.110°B.70°C.55°D.35°4.如图,在△ABC中,点D、E分别是AB、AC的中点,若∠B=40°,则∠BDE的度数为()A.40°B.50°C.140°D.150°5.(2021秋•泰山区期末)下列条件中,不能判定四边形是平行四边形的是()A.两组对边分别相等B.一组对边平行,另一组对边相等C.两组对角分别相等D.一组对边平行且相等6.(2021秋•九龙坡区校级期末)如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为()A.8B.10C.16D.207.平行四边形一边长是14cm,那么它的两条对角线的长度可以是()A.8cm和16cm B.10cm和16cm C.18cm和14cm D.8cm和12cm 8.如图所示,在平行四边形ABCD中,已知AB=8,AD=3,AE平分∠BAD交DC于点E,则CE的长为()A.3B.4C.5D.89.(2021秋•晋江市期末)如图,在Rt△ABC中,∠C=90°,∠A=2∠B,AB=8,D、E 分别是AB与AC的中点,则DE的长为()A.5B.4C.2D.210.(2021秋•绵阳期末)如图,在平行四边形OABC中,对角线相交于点E,OA边在x轴上,点O为坐标原点,已知点A(4,0),E(3,1),则点C的坐标为()A.(1,1)B.(1,2)C.(2,1)D.(2,2)二.填空题(共10小题)11.如图,平行四边形ABCD中,AC、BD相交于点O,OE⊥BD交AD、BC于E、F,若△ABE的周长为10,则四边形ABCD的周长是.12.(2021秋•芝罘区期末)如图,平行四边形ABCD中,AB=4,AD=6,∠BAD和∠ADC 的平分线交BC于E、F两点,则EF的长是.13.(2021秋•莱芜区期末)如图,已知▱ABCD的周长为38,对角线AC、BD相交于点O,点E是CD的中点,△DOE的周长为16,则BD的长为.14.(2021秋•任城区期末)如图,在▱ABCD中,AB=AC,∠CAB=40°,则∠D的度数是.15.如图,在▱ABCD中,DB=AB,∠C=70°,AE⊥BD于E,则∠DAE=.16.(2022•渝中区校级开学)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E、F分别是线段AO,BO的中点,若AC+BD=12cm,△OAB的周长是10cm,则EF=cm.17.(2022•九龙坡区校级开学)如图,DE是△ABC的中位线,∠ABC的角平分线交DE于点F,AB=8,BC=12,则EF的长为.18.(2021秋•泰山区期末)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=8,BC=12,则EF的长为.19.(2021秋•任城区期末)如图,▱ABCD的顶点A,B,C的坐标分别是(0,1),(﹣2,﹣2),(2,﹣2),则顶点D的坐标是.20.(2021秋•张店区期末)如图,在▱ABCD中,AB=3,AD=5,∠ABC的平分线交AD 于E,交CD的延长线于点F,则DF=.三.解答题(共5小题)21.(2022•锦江区校级开学)如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E、F在对角线AC上,且AE=CF.(1)求证:四边形EGFH是平行四边形;(2)连接BD交AC于点O,若BD=14,AE+CF=EF,求EG的长.22.(2021秋•鲤城区校级期末)如图,在平行四边形ABCD中,点E、F分别在边BC和AD上,且BE=DF.求证:AE∥CF.23.如图,在平行四边形ABCD中,对角线AC和BD相交于点O,BD⊥AD,AB=10,AD =8,求OB的长度及平行四边形ABCD的面积.24.(2021秋•桓台县期末)已知,如图在▱ABCD中,对角线AC和BD相交于点O,点E,F分别在OD,BO上,且OE=OF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)延长AE交CD于点G,延长CF交AB于点H.求证:AH=CG.25.如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF.证明:BE=DF.。

二年级的四边形的数学练习题(推荐6篇)

二年级的四边形的数学练习题(推荐6篇)

二年级的四边形的数学练习题〔推荐6篇〕篇1:二年级的四边形的数学练习题二年级的关于四边形的数学练习题一、你认为下面的说法正确吗?1、这是一个四边形。

2、长方形的对边相等。

3、一个正方形的周长是12厘米,它的边长一定是6厘米。

4、小冬冬家到学校最近的路是第③条。

5、下面两个图形的周长相等。

二、选一选,把你认为正确的答案圈起来。

1、边长1厘米的正方形的周长是厘米。

A、1厘米B、2厘米C、4厘米2、用1张长10厘米,宽6厘米的长方形纸,折一个最大的正方形,正方形的`边长是厘米。

A、4B、6C、103、用2个边长1厘米的正方形拼成的长方形的周长是厘米。

A、6B、7C、8篇2:数学三角形与四边形练习题六道数学三角形与四边形练习题精选六道1.(安徽芜湖)一个角的`补角是36°35′,这个角是________.2.如图4-1-12,线段AB=10 cm,AD=2 cm,D为线段AC 的中点,那么线段CB=________cm.图4-1-123.(湖南株洲)如图4-1-13,直线a∥b,直线c与a,b分别交于点A,B,且∠1=120°,那么∠2=图4-1-13A.60°B.120°C.30°D.150°4.(20四川南充)如图4-1-14,直线DE经过点A,DE∥BC,∠B=60°,以下结论成立的是图4-1-14A.∠C=60°B.∠DAB=60°C.∠EAC=60°D.∠BAC=60°5.以下命题中,正确的选项是A.假设a0,那么a0,b0B.假设a0,那么a0,b0C.假设ab=0,那么a=0且b=0D.假设ab=0,那么a=0或b=06.(20湖北孝感)∠α是锐角,∠α与∠β互补,∠α与∠r互余,那么∠β-∠r的值等于A.45°B.60°C.90°D.180°篇3:二年级数学练习题二年级数学练习题一口算(8分)65 - 24 = 66 - 16 = 77 - 34 = 93 - 61 =85 - 25 = 5 5- 14 = 67 - 56 = 56 - 9 =42 + 9= 43 + 3 = 48 + 4 = 25 + 3 =35 + 4= 23 + 9 = 35 = 9 + 26 =25 + 5 = 24 + 7 = 24 + 6 = 38 + 7 =21= 53 - 20 = 45 - 20 = 43 - 21 =59 - 44 = 33 = 36 - 14 = 87 - 77 =36 + 43 = 25 + 55 = 24 + 16 = 52=34 + 82= 49 + 5 = 22 = 22 =46 - 8 = 34 - 5 = 83 - 6 = 45 - 23 =二填空。

初中数学经典四边形习题50道(附答案)

初中数学经典四边形习题50道(附答案)

_D _C_B_C_A_B_A_B_E_A_B_C_B_F_B_C_F_C_D _B_F_B_A_E四边形经典例题50道1.已知:在矩形ABCD中,AE⊥BD于E,∠DAE=3∠BAE ,求:∠EAC的度数。

2.已知:直角梯形ABCD中,BC=CD=a且∠BCD=60︒,E、F分别为梯形的腰AB、DC的中点,求:EF的长。

3、已知:在等腰梯形ABCD中,AB∥DCAD=BC,E、F分别为AD、BCBD平分∠ABC交EF于G,EG=18,GF=10求:等腰梯形ABCD的周长.4、已知:梯形ABCD中,AB∥CDAC为邻边作平行四边形ACED,线交BE于F,求证:F是BE5、已知:梯形ABCDAB∥CD,AC⊥CB,AC平分∠A,∠B=60︒,梯形的周长是20cm,AB的长.6、从平行四边形四边形ABCD的各顶点作对角线的垂线AE、BF、CG、DH,垂足分别是E、F、G、H,求证:EF∥GH.7、已知:梯形ABCD的角线的交点为E若在平边的一边BC的延长线上取一点F,使SABC∆=SEBF∆,求证:DF∥AC。

8、在正方形ABCD中,直线EF平行于对角线AC,边AB、BC的交点为E、F延长线上取一点G,使若EG与DF的交点为H,正方形的边长相等。

9、若以直角三角形ABC为边,在三角形ABC的外部作ABDE,AF是BC边的高,延长使AG=BC,求证:BG=CD。

10、正方形ABCD,E、F分别是线上的一点,且AE=AF=AC,EF交BC,交AC于K,交CD于H,求证:EG=GC=CH=HF。

11、在正方形ABCD的对角线BD上,取BE=AB,若过E作BD的垂线EF交CD于F,求证:CF=ED.12、平行四边形ABCD中,∠A、∠D的平分线相交于E,AE、DE与DC、AB延长线交于G、F,求证:AD=DG=GF=FA。

13、在正方形ABCD的边CD上任取一点E,延长BC到F,使CF=CE,求证:BE⊥DF14、在四边形ABCD中,AB=CD,P、Q 分别是AD、BC中点,M、N分别是对角线AC、BD的中点,求证:PQ⊥MN。

平行四边形基础训练题

平行四边形基础训练题

平行四边形基础训练题一.选择题(共6小题)1.如图,一架梯子AB斜靠在竖直墙上,点M为梯子AB的中点,当梯子底端向左水平滑动到CD位置时,滑动过程中OM的变化规律是()A.变小B.不变C.变大D.先变小再变大2.如图所示,在四边形ABCD中,∠BCD=90°,AB⊥BD于点B,点E是BD的中点,连接AE,CE,则AE与CE的大小关系是()A.AE<CE B.AE=CE C.AE>CE D.AE=2CE3.菱形的周长为12,一个内角为60°,则较短的对角线长为()A.2B.3C.1D.4.▱ABCD中,AC,BD是两条对角线,如果添如一个条件,可推出▱ABCD是菱形,那么这个条件可以是()A.AB=CD B.AC=BD C.AC⊥BD D.AB⊥BD5.如图,剪两张对边平行的纸片随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠DAB+∠ABC=180°B.AB=BCC.AB=CD,AD=BC D.∠ABC=∠ADC,∠BAD=∠BCD 6.如图,矩形ABCD的对角线AC、BD相交于点O,已知OA=3,则BD等于()A.3B.4C.5D.6二.填空题(共6小题)7.如图,Rt△ABC中,∠BAC=90°,点D是斜边BC的中点,BC=12,则AD=.8.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AC=6cm,BC=8cm,则CD 的长为cm.9.已知菱形的周长等于8cm,一条对角线长为2cm,则此菱形的面积为.10.在▱ABCD中,对角线AC,BD相交于点O.请你添加一个条件,使得四边形ABCD成为菱形,这个条件可以是.(写出一种情况即可)11.如图将两张长为8,宽为2的矩形纸条交叉,重叠部分是一个特殊四边形,则这个特殊四边形周长的最小值为.12.如图,在矩形ABCD中,对角线AC,BD相交于点O,若OA=2,则BD的长为.三.解答题(共3小题)13.已知,如图,∠ABC=∠ADC=90°,点E、F分别是AC、BD的中点,AC=10,BD =6.(1)求证:EF⊥BD;(2)求EF的长.14.如图,在Rt△ABC中,DC是斜边AB上的中线,EF过点C且平行于AB.若∠BCF=35°,求∠ACD的度数.15.如图,菱形ABCD中,E,F分别在边AD、AB上,DE=BF.求证:EC=FC.。

四边形基础测试题及答案

四边形基础测试题及答案

四边形基础测试题及答案一、选择题1.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-, 解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.2.如图,□ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若4AB =,6AC =,则BD 的长为( )A .11B .10C .9D .8 【答案】B【解析】【分析】根据勾股定理先求出BO 的长,再根据平行四边形的性质即可求解.【详解】∵6AC =,∴AO=3,∵AB ⊥AC ,∴BO=2234+=5∴BD=2BO=10,故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.3.如图,在菱形ABCD 中,点E 在边AD 上,30BE ADBCE ⊥∠=︒,.若2AE =,则边BC 的长为( )A 5B 6C 7D .22【答案】B【解析】【分析】 由菱形的性质得出AD ∥BC ,BC=AB=AD ,由直角三角形的性质得出3,在Rt △ABE 中,由勾股定理得:BE 2+22=3)2,解得:2,即可得出结果. 【详解】∵四边形ABCD 是菱形,∴AD BC BC AB =,∥.∵BE AD ⊥.∴BE BC ⊥.∴30BCE ∠=︒,∴2EC BE =,∴223AB BC EC BE BE ==-=.在Rt ABE △中,由勾股定理得()22223BE BE +=, 解得2BE =,∴36BC BE ==.故选B.【点睛】 此题考查菱形的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握菱形的性质,由勾股定理得出方程是解题的关键.4.如图,在平行四边形ABCD 中,2=AD AB ,CE 平分BCD ∠交AD 于点E ,且8BC =,则AB 的长为( )A .4B .3C .52D .2【答案】A【解析】【分析】 利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB 即可得出答案.【详解】∵CE 平分∠BCD 交AD 边于点E ,∴∠ECD=∠ECB ,∵在平行四边形ABCD 中,AD ∥BC ,AB=CD ,∴∠DEC=∠ECB ,∠DEC=∠DCE ,∴DE=DC ,∵AD=2AB ,∴AD=2CD ,∴AE=DE=AB .∵8AD BC ==,2=AD AB∴AB=4,故选:A .【点睛】此题考查了平行四边形的性质,得出∠DEC=∠DCE 是解题关键.5.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C 3D 31【答案】D【解析】【分析】分三种情形讨论①若以边BC 为底.②若以边PC 为底.③若以边PB 为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD 中,∵∠ABC=60°,AB=1,∴△ABC ,△ACD 都是等边三角形,①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P 与点A 重合时,PD 值最小,最小值为1;②若以边PC 为底,∠PBC 为顶角时,以点B 为圆心,BC 长为半径作圆,与BD 相交于一点,则弧AC (除点C 外)上的所有点都满足△PBC 是等腰三角形,当点P 在BD 上时,PD 31③若以边PB 为底,∠PCB 为顶角,以点C 为圆心,BC 为半径作圆,则弧BD 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点D 重合时,PD 最小,显然不满足题意,故此种情况不存在;上所述,PD 的最小值为31故选D .【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.6.正九边形的内角和比外角和多( )A .720︒B .900︒C .1080︒D .1260︒【答案】B【解析】【分析】根据多边形的内角和公式求出正九边形的内角和,减去外角和360°即可.【详解】∵正九边形的内角和是(92)1801260-⨯=o o,∴1260360-=o o 900︒,故选:B.【点睛】此题考查多边形的内角和公式、外角和,熟记公式是解题的关键.7.如图,在平行四边形ABCD 中,AC=4,BD=6,P 是BD 上的任一点,过点P 作EF ∥AC ,与平行四边形的两条边分别交于点E 、F ,设BP=x ,EF=y ,则能反映y 与x 之间关系的图象是( )A .B .C .D .【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P 在BO 上和P 在OD 上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC 与BD 交于O 点,当P 在BO 上时,∵EF ∥AC , ∴EF BP AC BO =即43y x =, ∴43y x =; 当P 在OD 上时,有643DP EF y x DO AC -==即, ∴y=483x -+.故选C .8.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA +PB 的最小值为( )A 29B 34C .2D 41【答案】D【解析】 解:设△ABP 中AB 边上的高是h .∵S △PAB =13S 矩形ABCD ,∴12 AB •h =13AB •AD ,∴h =23AD =2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 就是所求的最短距离.在Rt △ABE 中,∵AB =5,AE =2+2=4,∴BE 22AB AE +2254+41PA +PB 的41.故选D .9.已知,如图,在ABC V 中,90ACB ∠=︒,30A ∠=︒,求证:12BC AB =.在证明该结论时,需添加辅助线,则作法不正确的是( )A .延长BC 至点D ,使CD BC =,连接ADB .在ACB ∠中作BCE B ∠=∠,CE 交AB 于点EC .取AB 的中点P ,连接CPD .作ACB ∠的平分线CM ,交AB 于点M【答案】D【解析】【分析】 分别根据各选项的要求进行证明,推出正确结论,则问题可解.【详解】解:选项A : 如图,由辅助线可知,ABC ADC ≅V ;,则有AB=AD ,再由90ACB ∠=︒,由30BAC ∠=︒,则60B ∠=︒,∴ABD △是等边三角形∴1122BC DB AB ==故选项A 正确;选项B:如图,由辅助线可知,EBD △是等边三角形则60BEC EAC ECA ∠=∠+∠=︒,BE=EC∵30A ∠=︒∴30ECA A ∠=∠=︒∴AE=EC ∴12BC AB =故选项B 正确选项C 如图,有辅助线可知,CP 为直角三角形斜边上的中线∴AP=CP=BP∵30A ∠=︒∴60B ∠=︒∴PBC V 是等边三角形∴12BC BP AB ==综上可知选项D 错误故应选D【点睛】 此题主要考查了全等三角形的判定,等边三角形的判定与性质的综合应用,根据条件选择正确的证明方法是解题的关键.10.如图,菱形ABCD 中,对角线BD 与AC 交于点O , BD =8cm ,AC =6cm ,过点O 作OH ⊥CB 于点H ,则OH 的长为( )A .5cmB .52cm C .125cm D .245cm 【答案】C【解析】【分析】根据菱形的对角线互相垂直平分求出OB 、OC ,再利用勾股定理列式求出BC ,然后根据△BOC 的面积列式计算即可得解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,111163,842222OC AC OB BD ==⨯===⨯= 在Rt △BOC 中,由勾股定理得,2222345BC OB OC ++=∵OH ⊥BC ,1122BOC S OC OB CB OH ∴=⋅=⋅V ∴1143522OH ⨯⨯=⨯ ∴125OH =故选C .【点睛】本题考查了菱形的性质,勾股定理,三角形的面积,熟记性质是解题的关键,难点在于利用两种方法表示△BOC 的面积列出方程.11.下列命题中是真命题的是( )A .多边形的内角和为180°B .矩形的对角线平分每一组对角C .全等三角形的对应边相等D .两条直线被第三条直线所截,同位角相等【答案】C【解析】【分析】根据多边形内角和公式可对A 进行判定;根据矩形的性质可对B 进行判定;根据全等三角形的性质可对C 进行判定;根据平行线的性质可对D 进行判定.【详解】A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,B.矩形的对角线不一定平分每一组对角,故该选项是假命题,C.全等三角形的对应边相等,故该选项是真命题,D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,故选:C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.12.如图,在平行四边形ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若60B ∠=o ,AB=3,则ADE ∆的周长为()A .12B .15C .18D .2【答案】C【解析】【分析】 依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE 是等边三角形,即可得到△ADE 的周长为6×3=18.【详解】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选:C .【点睛】此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.13.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF V ,CDG V ,DAH V 全等,AEH △,BEF V ,CFG △,DGH V 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D .2【答案】C【解析】【分析】【详解】 解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG V ,∴CDG V 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ^^,EM GN =,∵正方形ABCD 的边长为4,即4AB CD AD BC ====,∴4MN =,设EM GN x ==,则42EG FH x ==-,∵正方形EFGH 的面积与ABE △面积相等, 即2114(42)22x x ?-,解得:121,4x x ==, ∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=V ABE S , ∵ABE △,BCF V ,CDG V ,DAH V 全等,∴2====V V V V ABE BCF CDG DAH S S S S ,∵正方形ABCD 的面积4416=⨯=,AEH △,BEF V ,CFG △,DGH V 也全等, ∴1(4=V AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=V ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.14.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】 根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE ,∴12DH DFHB AB==,12BG BEDG AD==,∴13DH BGBD BD==,∴BG=GH=DH,∴S△ABG=S△AGH=S△ADH,∴S平行四边形ABCD=6 S△AGH,∴S△AGH:ABCDS平行四边形=1:6,∵E、F分别是边BC、CD的中点,∴12EFBD=,∴14EFCBCDDSS=VV,∴18EFCABCDSS=V四边形,∴1176824AGH EFCABCDS SS+=+=V V四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.15.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB ,∵AB ,∴AE=AD ,又∠ABE=∠AHD=90°∴△ABE ≌△AHD (AAS ),∴BE=DH ,∴AB=BE=AH=HD ,∴∠ADE=∠AED=12(180°﹣45°)=67.5°, ∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED ,故①正确; ∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB (对顶角相等), ∴∠OHE=∠AED ,∴OE=OH ,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH ,∴OH=OD ,∴OE=OD=OH ,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD ,又BE=DH ,∠AEB=∠HDF=45°∴△BEH ≌△HDF (ASA ),∴BH=HF ,HE=DF ,故③正确;由上述①、②、③可得CD=BE 、DF=EH=CE ,CF=CD-DF ,∴BC-CF=(CD+HE )-(CD-HE )=2HE ,所以④正确;∵AB=AH ,∠BAE=45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB≠HF ,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C .【点睛】 考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质16.已知ABCD Y (AB BC ),用尺规在ABCD 内作菱形,下列作法错误的是( )A .如图1所示,作对角线AC 的垂直平分线EF ,则四边形AECF 为所求B .如图2所示,在AB DC ,上截取AE AD DF DA ==,,则四边形AEFD 为所求 C .如图3所示,作ADC ABC ∠∠、的平分线DE BF ,,则四边形DEBF 为所求 D .如图4所示,作BDE BDC DBF DBA ∠=∠∠=∠,,则四边形DEBF 为所求【答案】C【解析】【分析】根据平行四边形的性质及判定、菱形的判定逐个判断即可.【详解】解:A 、根据线段的垂直平分线的性质可知AB =AD ,一组邻边相等的平行四边形是菱形;符合题意;B 、根据四条边相等的四边形是菱形,符合题意;C 、根据两组对边分别平行四边形是平行四边形,不符合题意;D 、根据一组邻边相等的平行四边形是菱形,符合题意.故选:C .【点睛】本题考查了复杂作图,解决本题的关键是利用平行四边形的性质及判定、菱形的判定.17.如图,在□ABCD 中,延长CD 到E ,使DE =CD ,连接BE 交AD 于点F ,交AC 于点G .下列结论中:①DE =DF ;②AG =GF ;③AF =DF ;④BG =GC ;⑤BF =EF ,其中正确的有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由AAS 证明△ABF ≌△DEF ,得出对应边相等AF=DF ,BF=EF ,即可得出结论,对于①②④不一定正确.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,即AB ∥CE ,∴∠ABF=∠E ,∵DE=CD ,∴AB=DE ,在△ABF 和△DEF 中,∵===ABF E AFB DFE AB DE ∠∠⎧⎪∠∠⎨⎪⎩, ∴△ABF ≌△DEF (AAS ),∴AF=DF ,BF=EF ;可得③⑤正确,故选:B .【点睛】此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.18.如图,在△ABC 中,点D 为BC 的中点,连接AD ,过点C 作CE ∥AB 交AD 的延长线于点E ,下列说法错误的是( )A .△ABD ≌△ECDB .连接BE ,四边形ABEC 为平行四边形 C .DA =DED .CE =CD【答案】D【解析】【分析】 根据平行线的性质得出∠B=∠DCE ,∠BAD=∠E ,然后根据AAS 证得△ABD ≌△ECD ,得出AD=DE ,根据对角线互相平分得到四边形ABEC 为平行四边形,CE=AB ,即可解答.【详解】∵CE ∥AB ,∴∠B=∠DCE ,∠BAD=∠E ,在△ABD 和△ECD 中,===B DCE BAD E BD CD ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△ECD (AAS ),∴DA=DE ,AB=CE ,∵AD=DE ,BD=CD ,∴四边形ABEC 为平行四边形,故选:D .【点睛】此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD ≌△ECD .19.如图,ABC V 中,5AB AC ==,AE 平分BAC ∠交BC 于点E ,点D 为AB 的中点,连接DE ,则DE 的长为( )A .2B .2.5C .3D 5【答案】B【解析】【分析】 根据等腰三角形三线合一可得AE ⊥BC ,再根据直角三角形斜边上的中线是斜边的一半即可求得DE 的长度.【详解】解:∵5AB AC ==,AE 平分BAC ∠,∴AE ⊥BC ,又∵点D 为AB 的中点, ∴1 2.52DE AB ==, 故选:B .【点睛】 本题考查等腰三角形三线合一和直角三角形斜边上的中线.熟练掌握相关定理,并能正确识图,得出线段之间的关系是解题关键.20.一个多边形的每个内角均为108º,则这个多边形是( )A .七边形B .六边形C .五边形D .四边形【答案】C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.。

初中所有四边形知识点考点类型题及练习含答案

初中所有四边形知识点考点类型题及练习含答案

四边形考点一、四边形的相关概念考点一、多边形及镶嵌1.若一个正多边形的内角和是其外角和的倍,则这个多边形的边数是______.2.下列正多边形中,能够铺满地面的是( )A、正五边形B、正六边形C、正七边形D、正八边形3.一个多边形从一个顶点共引出三条对角线,此多边形一定是( )A.四边形B. 五边形C.六边形D.三角形4. 一个同学在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现少了一个内角.少了的这个内角是_________度,他求的是_________边形的内角和.举一反三:【变式1】如果一个多边形的每一个内角都相等,且每一个内角的度数为135°,那么这个多边形的边数为( ) A.6 B.7 C.8 D.以上答案都不对【变式2】多边形的内角和随着边数的增加而_____,边数增加一条时,它的内角和增加___度. 考点二、平行四边形考点二、平行四边形5. 平行四边形的周长为40,两邻边的比为2:3,则这一组邻边长分别为________.考点:平行四边形的边的性质.6. 已知O是□ABCD的对角线交点,AC=24,BD=38,AD=14,那么△OBC的周长等于_______.7. 如图,BD是□ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是______________.举一反三:【变式1】在平行四边形ABCD中,两条对角线AC、BD相交于点O,如右图,与△ABO面积相等的三角形有( )个.A、1B、2C、3D、4【变式2】如图,△ABC中∠ACB=90°,点D、E分别是AC,AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.考点三、矩形8.如图,矩形ABCD的两条对角线相交于O,∠AOB=60°,AB=8,则矩形对角线的长_________.9. 如右图,把一张矩形纸片ABCD沿BD对折,使C点落在E处且与AD相交于点O.写出一组相等的线段__________.(不包括和).举一反三:【变式1】四边形ABCD的对角线相交于点O,在下列条件中,不能判定它是矩形的是( )A.AB=CD,AD=BC,∠BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°【变式2】矩形一个角的平分线分矩形一边成2cm和3cm,则这个矩形的面积为__________. 考点四、菱形10.在菱形ABCD中,对角线AC、BD交于点O,AC、BD的长分别为5厘米、10厘米,则菱形ABCD的面积为_________厘米2.11.能够判别一个四边形是菱形的条件是()A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角举一反三【变式1】已知菱形的一条对角线与边长相等,则菱形的两个邻角度数分别为( )A. 45°,135°B. 60°,120°C. 90°,90°D. 30°,150°【变式2】如图,已知AD平分∠BAC,DE∥AC,DF∥AB,AE=5.(1)判断四边形AEDF的形状?(2)它的周长是多少?【变式3】如图,菱形ABCO的边长为2,∠AOC=45°,则点B的坐标为___________.考点五、正方形12.正方形具有而矩形不一定具有的特征是( )A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等定互相垂直.13.如图,以A、B为顶点作位置不同的正方形,一共可以作( )A.1个B.2个C.3个D.4个.14.图中的矩形是由六个正方形组成,其中最小的正方形的面积为1,求这个矩形的长和宽各是多少?举一反三:【变式1】下列选项正确的是( )A.四边相等的四边形是正方形B.对角线互相垂直平分且相等的四边形是正方形C.对角线垂直的平行四边形是正方形D.四角相等的四边形是正方形【变式3】(1)顺次连结任意四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(2)顺次连结对角线相等的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(3)顺次连结对角线互相垂直的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(4)顺次连结对角线互相垂直且相等的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形考点六、梯形15.等腰梯形中,,cm,cm,,则梯形的腰长是_________cm.16. 如图,在梯形ABCD中,AD∥BC,AD=2,BC=8,AC=6,BD=8,则此梯形的面积是( )(A)24(B)20(C)16(D)1217.如图,在等腰梯形ABCD中,AD∥BC,AC,BD相交于点O.•有下列四个结论:①AC=BD;②梯形ABCD是轴对称图形;③∠ADB=∠DAC;④△AOD≌△ABO.其中正确的是( ).(A)①③④(B)①②④(C)①②③(D)②③④举一反三:【变式1】已知梯形的上底长为3,中位线长为6,则下底长为______.【变式2】如图,梯形ABCD中,AD∥BC,E、F分别是AD、BC的中点,∠ABC和∠BCD 互余,若AD=4,BC=10,则EF=_________.【变式3】已知等腰梯形ABCD,AD∥BC ,E为梯形内一点,且.求证:考点七、平面图形四.中考题萃1.(北京市)(4分)若一个多边形的内角和等于720°,则这个多边形的边数是( )A.5B.6C.7D.82.(赤峰市)(3分)分别剪一些边长相同的①正三角形,②正方形,③正五边形,④正六边形,如果用其中一种正多边形镶嵌,可以镶嵌成一个平面图案的有( )A.①②③B.②③④C.①②④D.①②③④都可以3.(湖北省襄樊市)(3分)顺次连接等腰梯形四边中点所得四边形是( )A.菱形B.正方形C.矩形D.等腰梯形4.(衡阳市)(3分)如图,在平行四边形中,,为垂足,如果,那么的度数是( )A. B. C. D.5.(广州)(3分)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( )A. B.2 C. D.6.(永春县)(3分)四边形的外角和等于__________度.7.如图,在正五边形ABCDE中,连结AC,AD,则∠CAD的度数是__________°.8.(佳木斯市)(3分)一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是__________.9.(江苏省宿迁市)(3分)若一个正多边形的内角和是其外角和的倍,则这个多边形的边数是______.10.(安顺市)(4分)若顺次连接四边形各边中点所得四边形是菱形,则原四边形可能是__________.(写出两种即可)11.(赤峰市)(4分)如图,已知平分,,,则________.12.(佛山市)(3分)如图,已知P是正方形ABCD对角线BD上一点,且BP = BC,则∠ACP度数是__________.13.(湖南省怀化市)(2分)如图,在平行四边形ABCD中,DB=DC、,CE BD于E,则__________.14.(海南省)(3分)如图,在等腰梯形ABCD中,AD∥BC,AE∥DC,AB=6cm,则AE=__________cm.15.(莆田市)(3分)如图,大正方形网格是由16个边长为1的小正方形组成,则图中阴影部分的面积是__________.16.(广州)(3分)如图,在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,AD=6,BC=8,则梯形的高为.17.(莆田市)(3分)如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______________度.18.(湖北省荆门市)(3分)如图,矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为________.19.(江苏省宿迁市)(3分)如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_________.20.(内蒙古)(6分)如图,在梯形中,AD∥BC,,,AE⊥BD于E,.求梯形的高.21.(湖北省荆州市)(6分)如图,矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F,连结DE,求证:DF=DC.22.(北京市)(5分)如图,在梯形中,,,,,,求的长.学习成果测评基础达标一、选择题1.只用下列图形不能镶嵌的是( )A.三角形B.四边形C.正五边形D.正六边形2.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.AB=BCD.AC=BD3.如图,将平行四边形ABCD沿翻折,使点恰好落在上的点处,则下列结论不一定成立的是( )A. B. C. D.4.顺次连结等腰梯形各边的中点,所成的四边形必定是( )A.等腰梯形B.菱形C.矩形D.平行四边形5.如图:等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,那么图中的全等三角形共有( )A.1对B.2对C.3对D.4对6.如图,矩形ABCD中,AD∥BC,AC与BD交于点O,则图中与△AOD面积相等的三角形有( )A.1个B.2个C.3个D.4个7.不能判定四边形ABCD为平行四边形的命题是( )A.AB∥CD且AB=CDB.AB=AD、BC=CDC.AB=CD,AD=BCD.∠A=∠C,∠B=∠D8.下列命题中,真命题是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边和一组对角分别相等的四边形是平行四边形C.两组对角分别相等的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是平行四边形9.正方形具有而菱形不一定具有的性质是( )A.对角线相等B.对角线互相垂直且平分C.四条边都相等D.对角线平分一组对角10.如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点A落在点F处,折痕为MN,则线段CN的长是( ).A.3cmB.4cmC.5cmD.6cm二、填空题11.四边形的内角和等于__________°,外角和等于___________°.12.正方形的面积为4,则它的边长为________,一条对角线长为_________.13.一个多边形,若它的内角和等于外角和的3倍,则它是_________边形.14.如果四边形ABCD满足______________________________条件,那么这个四边形的对角线AC 和BD互相垂直(只需填写一组你认为适当的条件)15.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为________.16.如图,平行四边形ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为________.17.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,则中位线EF=___________,EF分梯形所得的两个梯形的面积比S1:S2为________________.18.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为___________.三、解答题19.如图,E是正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数.20.如图,正方形中,与分别是、上一点.在①、②∥、③中,请选择其中一个条件,证明. (1)你选择的条件是___________(只需填写序号);(2)证明:21.如图,已知平行四边形ABCD中,AQ,BN,CN,DQ分别是∠DAB,∠ABC,∠BCD,∠CDA的平分线,AQ与BN交于P,CN与DQ交于M,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:推理过程要用到“平行四边形”和“角平分线”这两个条件)能力提升一、选择题1.等腰梯形的两条对角线互相垂直,中位线长为8,则该等腰梯形的面积为( )A.16B.32C.64D.5122.下列图形中是轴对称图形,但不是中心对称图形的是( )A.菱形B.矩形C.正方形D.等腰梯形3.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于( )A.20°B.25°C.30°D.35°4.如图,在梯形中,,,边的垂直平分线交边于,且为边的中点,又,则梯形的周长等于( )A. B. C. D.5.如图,矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于( ).二、填空题6.如图(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图(2)所示的一个菱形.对于图(1)中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论:________________.7.如图,矩形纸片ABCD,BC=2,∠ABD=30°.将该纸片沿对角线BD翻折,点A落在点E处,EB交DC于点F,则点F到直线DB的距离为________________.8.四边形ABCD为边长等于1的菱形,顺次连结它的各边中点组成四边形EFGH(四边形EFGH称为原四边形的中点四边形),再顺次连结四边形EFGH的各边中点组成第二个中点四边形,……,则按上述规律组成的第八个中点四边形的边长等于_____________.9.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长为________.10.如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第n层有___________白色正六边形.三、解答题11.在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.12.如图,把矩形纸片沿折叠,使点落在边上的点处,点落在点处.(1)求证:;(2)设,试猜想之间有何等量关系,并给予证明.。

三年级四边形的练习题

三年级四边形的练习题

三年级四边形的练习题一、选择题(每题2分,共10分)1. 下列哪个图形不是四边形?A. 正方形B. 长方形C. 圆形D. 平行四边形2. 如果一个四边形的对边相等,那么这个四边形可能是:A. 正方形B. 梯形C. 平行四边形D. 三角形3. 以下哪个选项不是四边形的性质?A. 四边形的内角和为360度B. 四边形的对边相等C. 四边形的对角线相互平分D. 四边形的对边平行4. 一个四边形的周长是20厘米,如果其中两条边的长度分别是4厘米和6厘米,那么另外两条边的长度之和是:A. 6厘米B. 10厘米C. 12厘米D. 14厘米5. 如果一个四边形的对角线互相垂直,那么这个四边形可能是:A. 正方形B. 长方形C. 菱形D. 梯形二、填空题(每空1分,共10分)6. 一个四边形的四个内角的度数之和是______度。

7. 如果一个四边形的对角线相等,那么这个四边形是______。

8. 一个四边形的两组对边分别相等,这个四边形可能是______或______。

9. 一个四边形的对角线相互平分,那么这个四边形是______。

10. 如果一个四边形的两组对边分别平行,那么这个四边形是______。

三、计算题(每题5分,共15分)11. 一个平行四边形的底边长是8厘米,高是5厘米,求这个平行四边形的面积。

12. 如果一个长方形的长是10厘米,宽是6厘米,求这个长方形的周长和面积。

13. 一个梯形的上底是6厘米,下底是10厘米,高是4厘米,求这个梯形的面积。

四、解答题(每题10分,共20分)14. 一个四边形的对角线相交,并且每条对角线都平分了另一条对角线。

请说明这个四边形可能是什么形状,并解释原因。

15. 一个正方形的边长是5厘米,求这个正方形的周长和面积,并说明正方形的四个角都是直角的原因。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四边形一·选择题1、下面给出四个命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③两组相邻的角互为补角的四边形是平行四边形;④有一个角与相邻的角互补的四边形是平行四边形。

其中,真命题的个数是()A、1B、2C、3D、42、若平行四边形的一边长为14cm,则它的两条对角线的长可能是()A、12cm 、16cmB、10cm 、26cmC、10cm 、16cmD、14cm、12cm3、下列图形中不是中心对称图形的是()A4,A5、A360°D、每条对角线平分一组对角。

6CA、有一个角是直角的平行四边形是矩形C二·填空题1、在△ABC中,D、E、F分别是AB、BC、CA的中点,连结DE,EF。

(1)若∠A=90°,则四边形ADEF的形状是;(2)若AB=AC,则四边形ADEF的形状是。

2、在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=60°,BE =2,DF=3,则∠D= °,平行四边形ABCD的周长= 。

3、平行四边形的周长是36,两邻边的比为4:5,则这邻边长分别是、。

4、在平行四边形ABCD 中,AC、BD相交于点O,它的周长为60,若△AOB的周长比△BOC的周长短10,则AB= ,BC= 。

5、矩形ABCD的两条对角线相交于点O,若∠AOD=120°,AC+AB=18,则矩形的对角线长为。

6、矩形ABCD中,AE⊥BD于E,若BE=4,DE=9,则矩形的面积等于。

7、矩形的一边长为6,各边中点围成的四边形的周长是20 ,则矩形的对角线长为。

8、菱形ABCD的一个锐角是60°,较短的对角线长为6cm ,则它的周长为 cm,面积为 cm2。

第23题图FEDCBA第24题图F E DCBA9、菱形ABCD 的对角线AC 、BD 之比为3:4,其周长为40 cm ,则菱形的面积为 cm 2。

10、菱形的周长是20 cm ,邻角之比为2:1,则两条对角线长分别是 。

11、如果菱形的两条对角线的和是34 cm ,边长时13 cm ,则两条对角线的长分别是 Cm .12、正方形的对角线长为4 cm ,则它的边长为 cm ,周长为 cm ,面积为 cm 2。

13、正方形ABCD 中,M 是AD 上的一点,ME ⊥BD ,MF ⊥AC ,垂足分别是E 、F ,且ME+MF=8 cm ,则AC= cm 。

14、等腰梯形的周长为64cm ,腰长为10 cm ,对角线长为24 cm ,则连接两腰和一底的中点所组成的三角形的周长为 cm 。

15、梯形的中位线长为12 cm ,一条对角线把它分为1:2两部分,则梯形上、下底的长分别为 。

三、解答题1.求证:顺次连接矩形各边中点的四边形是棱形.2.如图,□ABCD 中,AE 平分∠BAD 交BC 于点E ,CF 平分∠BCD 交AD 于点F ,求证:四边形AECF 是平行四边形.3.如图,在四边形ABCD 中,AD ∥BC ,AB =DC =AD , ∠C =60°,AE ⊥BD 于点E ,F 是CD 的中点. 求证:四边形AEFD 是平行四边形.第25题图PEDCBA第26题图E DCBA4.已知:如图,P 是正方形ABCD 内一点,在正方形ABCD 外有一点E ,满足∠ABE=∠CBP ,BE =BP .求证:⑴△CPB ≌△AEB ;⑵PB ⊥BE.5.如图,梯形ABCD 中,AD ∥BC ,AE ∥DC ,BD 平分∠ABC. 求证:⑴ AD =EC ;⑵ AB =EC.6.如图所示,在△ABC 中,分别以AB 、AC 、BC 为边在BC 的同侧 作等边△ABD ,等边△ACE ,等边△BCF .求证:四边形DAEF 是平行四边形;7 .如图,在△ABC 中,点O 是AC 边上一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的角平分线于点E , 交∠BCA 的外角平分线于点F .第28题图54321F NM EOCBA第4题图OFE DCBAFED CBA⑴ 求证:EO =FO ;⑵ 当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.习题1.□ABCD 中,∠A 比∠B 大40°,则∠C 的度数为( )A. 60°B. 70°C. 100°D. 110° 2.□ABCD 的周长为40cm ,△ABC 的周长为25cm ,则对角线AC 长为( ) A. 5cm B. 6cm C. 8cm D. 10cm3.在□ABCD 中,∠A =43°,过点A 作BC 和CD 的垂线,那么这两条垂线的夹角度为( )A. 113°B. 115°C. 137°D. 90° 4.如图,在□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,则四边形BCEF 的周长为( )A. 8.3B. 9.6C. 12.6D. 13.6 5.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD 中,AB =AD ,BC =DC ,那么这个四边形ABCD 是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确命题的个数是( )A. 0个B. 1个C. 3个D. 4个6.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( ) A. 88°,108°,88° B. 88°,104°,108° C. 88°,92°,92° D.88°,92°,88°7.矩形具有而一般的平行四边形不一定具有的特征是( )A.对角相等B.对角线互相平分C.对角线相等D.对边相等 8.如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BFA =30°,那么∠CEF 等于( )第16题图EDCBA第18题图第21题图EDCBAA. 20°B. 30°C. 45°D. 60°9.菱形具有而一般平行四边形不一定具有的特征是( )A.对边相等B.对角线互相平分C.对角相等D.对角线互相垂直平分10.已知四边形ABCD ,顺次连接各边中点,得到四边形EFGH ,添加下列条件能使四边形EFGH 成为菱形的是( )A.平行四边形ABCDB.菱形ABCDC.矩形ABCDD.对角线互相垂直的四边形ABCD 11.正方形具有而菱形不一定具有的性质是( )A.对角线互相垂直平分B.内角之和为360°C.对角线相等D.对角线平分内角 12.顺次连接等腰梯形四边中点所得四边形是( )A.菱形B.正方形C.矩形D.等腰梯形二、填空题(本大题共8小题,每小题3分,共24分)13.□ABCD 中,两邻边的差为4cm ,周长为32cm ,则两邻边长分别为 14.平行四边形的周长等于56cm ,两邻边长的比为3︰1,则这个平行四边形较长的长为 .15.若平行四边形的两邻边长分别为12和26,两长边之间的距离为8,则两短边的距离为16.如图,在□ABCD 中,DB =DC ,∠A =65°, CE ⊥BD 于E ,则∠BCE = . 17.三角形的三条中位线长是3cm ,4cm ,5cm ,则这个三角形的周长为 .18.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB =2, BC =3.则图中阴影部分的面积为 .19.E 点为正方形ABCD 的对角线AC 上一点,且AE =AB 连接BE ,则∠CBE = 度.20.等腰梯形两底之差等于一腰长,则这个等腰梯形的锐角是 度.第24题图F EDCBA第27题图FEDCBA 第28题图54321F NM EOCBA参考答案:一、1.D ;2.A ;3.C ;4.B ;5.B ;6.D ;7.C ;8.B ;9.D ;10.C ;11.C ;12.A ; 二、13.10cm ,6cm ;14.21cm ;15. ;16. 25°;17.24;18. 3;19. 22.5°;20. 60; 三、解答题:21.略;22.略;23.略;24.证明:∵AB =AD ,AE ⊥BD ∴BE =DE 又 DF =CF∴EF 是△BDC 的中位线. ∴EF ∥BC ,EF =BC. 又 AD ∥BC ,∠ABD =∠ADB , ∴∠ABD =∠DBC.又 四边形ABCD 是等腰梯形, ∠ABC =∠C =60°,∴∠DBC =30° ∴△BDC 是Rt △. ∴CD =BC. ∴AD =BC. ∴AD ∥EF ,AD =EF . ∴四边形AEFD 是平行四边形.25.略;26.略;27.⑴证明:∵△ABD 和△FBC 都是等边三角形 ∴∠DBF +∠FBA =∠ABC +∠FBA =60°∴∠DBF =∠ABC 又 BD =BA ,BF =BC , ∴△ABC ≌△DBF ∴AC =DF =AE同理:△ABC ≌△EFC ∴AB =EF=AD∴四边形EFDA 是平行四边形. ⑵ ①∠BAC =150°;②AB =AC ≠BC ;③∠BAC =60°.28.⑴证明:∵OE 平分∠BCA , ∴∠1=∠2又 MN ∥BC ∴∠1=∠3 ∴∠2=∠3 ∴EO =CO 同理 FO =OC ∴EO =FO.⑴点O运动到AC的中点时,四边形AECF是矩形.∵EO=FO,点O是AC的中点,∴四边形AECF是平行四边形.∵∠1=∠2,∠4=∠5∴∠2+∠5=×180°=90°∴∠ECF=90°.∴四边形AECF是平行四边形.1.平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。

平行四边形的对角线互相平分。

3.平行四边形的判定 ○1.两组对边分别相等的四边形是平行四边形 ○2.对角线互相平分的四边形是平行四边形; ○3.两组对角分别相等的四边形是平行四边形; ○4.一组对边平行且相等的四边形是平行四边形。

4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5.直角三角形斜边上的中线等于斜边的一半。

6.矩形的定义:有一个角是直角的平行四边形。

相关文档
最新文档