数电实验报告

合集下载

数电实验报告触发器及其应用(共10篇)

数电实验报告触发器及其应用(共10篇)

数电实验报告触发器及其应用(共10篇)1、实验目的:掌握触发器的原理和使用方法,学会利用触发器进行计数、存储等应用。

2、实验原理:触发器是一种多稳态数字电路,具有存储、计数、分频、时序控制等功能。

常见的触发器有RS触发器、D触发器、T触发器、JK触发器等。

RS触发器是由两个交叉互连的反相器组成的,它具有两个输入端R(复位)和S(置位),一个输出端Q。

当输入R=1,S=0时,Q=0;当输入R=0,S=1时,Q=1;当R=S=1时,无法确定Q的状态,称为禁态。

JK触发器是将RS触发器的两个输入端合并在一起而成,即J=S,K=R,当J=1,K=0时,Q=1;当J=0,K=1时,Q=0;当J=K=1时,Q反转。

JK触发器具有启动、停止、颠倒相位等功能。

D触发器是由单个输入端D、输出端Q和时钟脉冲输入端组成的,当时钟信号上升沿出现时,D触发器的状态发生改变,如果D=1,Q=1;如果D=0,Q=0。

T触发器只有一个输入端T和一个输出端Q,在每个时钟脉冲到来时,T触发器执行T→Q操作,即若T=1,则Q取反;若T=0,则Q保持不变。

触发器可以组成计数器、分频器、存储器、状态机等各种数字电路,被广泛用于计算机、控制系统等领域。

3、实验器材:数码万用表、示波器、逻辑分析仪、CD4013B触发器芯片、几个电阻、电容、开关、信号发生器等。

4、实验内容:4.1 RS触发器测试利用CD4013B芯片来测试RS触发器的功能,在实验中将RS触发器的输入端分别接入CD4013B芯片的端子,用示波器观察输出端的波形变化,并记录下输入输出关系表格,来验证RS触发器的工作原理。

具体实验步骤如下:将CD4013B芯片的端子按如下接线方式连接:RST1,2脚接入+5V电源,C1个100nF的电容与单位时间5 ns的外部时钟信号交替输入接口CLK,以模拟器件为master时,向器件提供单个时钟脉冲。

测试时选择适宜的数据输入,R1和S2另一端程+5V,S1和R2另一端连接接地GND,用万用表测量各端电压,电容缓存的电压。

数字电子技术 实验报告

数字电子技术 实验报告

实验一组合逻辑电路设计与分析1.实验目的(1)学会组合逻辑电路的特点;(2)利用逻辑转换仪对组合逻辑电路进行分析与设计。

2.实验原理组合逻辑电路是一种重要的数字逻辑电路:特点是任何时刻的输出仅仅取决于同一时刻输入信号的取值组合。

根据电路确定功能,是分析组合逻辑电路的过程,一般按图1-1所示步骤进行分析。

图1-1 组合逻辑电路的分析步骤根据要求求解电路,是设计组合逻辑电路的过程,一般按图1-2所示步骤进行设计。

图1-2 组合逻辑电路的设计步骤3.实验电路及步骤(1)利用逻辑转换仪对已知逻辑电路进行分析。

a.按图1-3所示连接电路。

b.在逻辑转换仪面板上单击由逻辑电路转换为真值表的按钮和由真值表导出简化表达式后,得到如图1-4所示结果。

观察真值表,我们发现:当四个输入变量A,B,C,D中1的个数为奇数时,输出为0,而当四个输入变量A,B,C,D 中1的个数为偶数时,输出为1。

因此这是一个四位输入信号的奇偶校验电路。

图1-4 经分析得到的真值表和表达式(2)根据要求利用逻辑转换仪进行逻辑电路的设计。

a.问题提出:有一火灾报警系统,设有烟感、温感和紫外线三种类型不同的火灾探测器。

为了防止误报警,只有当其中有两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警控制信号,试设计报警控制信号的电路。

b.在逻辑转换仪面板上根据下列分析出真值表如图1-5所示:由于探测器发出的火灾探测信号也只有两种可能,一种是高电平(1),表示有火灾报警;一种是低电平(0),表示正常无火灾报警。

因此,令A、B、C分别表示烟感、温感、紫外线三种探测器的探测输出信号,为报警控制电路的输入、令F 为报警控制电路的输出。

图1-5 经分析得到的真值表(3)在逻辑转换仪面板上单击由真值表到处简化表达式的按钮后得到最简化表达式AC+AB+BC。

4.实验心得通过本次实验的学习,我们复习了数电课本关于组合逻辑电路分析与设计的相关知识,掌握了逻辑转换仪的功能及其使用方法。

数电实验报告实验

数电实验报告实验

一、实验目的1. 理解和掌握数字电路的基本原理和设计方法。

2. 培养动手能力和实验技能。

3. 提高分析问题和解决问题的能力。

二、实验原理数字电路是一种以二进制为基础的电路,其基本元件是逻辑门和触发器。

本实验主要涉及以下几种逻辑门:与门、或门、非门、异或门、同或门、与非门、或非门等。

1. 与门(AND Gate):当所有输入端都为高电平时,输出才为高电平。

2. 或门(OR Gate):当至少一个输入端为高电平时,输出为高电平。

3. 非门(NOT Gate):对输入信号取反。

4. 异或门(XOR Gate):当输入端信号不同时,输出为高电平。

5. 同或门(NOR Gate):当输入端信号相同时,输出为高电平。

6. 与非门(NAND Gate):与门和非门的组合。

7. 或非门(NOR Gate):或门和非门的组合。

三、实验器材1. 数字电路实验箱2. 逻辑门芯片3. 电源4. 连接线5. 测试仪器四、实验步骤1. 组成基本逻辑门电路:根据实验原理,搭建与门、或门、非门、异或门、同或门、与非门、或非门等基本逻辑门电路。

2. 测试电路功能:使用测试仪器对搭建的电路进行测试,验证电路是否满足基本逻辑功能。

3. 组成组合逻辑电路:根据实验要求,搭建组合逻辑电路,如全加器、半加器、译码器、编码器等。

4. 测试组合逻辑电路:使用测试仪器对搭建的组合逻辑电路进行测试,验证电路是否满足设计要求。

5. 组成时序逻辑电路:根据实验要求,搭建时序逻辑电路,如触发器、计数器、寄存器等。

6. 测试时序逻辑电路:使用测试仪器对搭建的时序逻辑电路进行测试,验证电路是否满足设计要求。

五、实验结果与分析1. 基本逻辑门电路测试结果:根据测试数据,搭建的与门、或门、非门、异或门、同或门、与非门、或非门等基本逻辑门电路均满足设计要求。

2. 组合逻辑电路测试结果:根据测试数据,搭建的全加器、半加器、译码器、编码器等组合逻辑电路均满足设计要求。

数电实验报告数码管显示控制电路设计

数电实验报告数码管显示控制电路设计

数电实验报告数码管显示控制电路设计一、实验目的1.学习数码管介绍和使用;2.熟悉数码管控制电路设计思路和方法;3.掌握数码管显示控制电路的实验过程和步骤。

二、实验原理数码管是数字显示器件,具有低功耗、体积小、寿命长等优点。

常见的数码管有共阳极和共阴极两种。

共阳极数码管的阳极端口是一个共用的端口,通过将不同的阴极端口接地来控制数码管的发光情况。

共阴极数码管的阴极端口是一个共用的端口,通过将不同的阳极端口接地来控制数码管的发光情况。

数码管的控制电路可以使用逻辑门电路或微控制器来实现。

本实验采用逻辑门电路来设计数码管显示控制电路。

三、实验器材和器件1.实验板一块;2.74LS47数码管译码器一颗;3.共阴极数码管四个;4.逻辑门IC:7404、7408、7432各一个;5.杜邦线若干。

四、实验步骤1.将74LS47数码管译码器插入实验板上的相应位置,并用杜邦线连接74LS47和逻辑门IC的引脚:1)将74LS47的A、B、C和D引脚依次连接到7408的输入端;2)将74LS47的LE引脚连接到VCC(高电平,表示使能有效);3)将74LS47的BI/RBO引脚连接到GND(低电平,表示译码输出);4)将7408的输出端依次连接到7432的输入端;5)将7432的输出端依次连接到数码管的阴极端口。

2.将四个数码管的阳极端口分别连接到4个控制开关上,并将开关接地。

3.将实验电路接入电源,调整电压和电流,观察数码管的显示情况。

五、实验结果和分析实验结果显示,控制开关的状态可以控制数码管的显示内容。

当其中一控制开关接地时,对应的数码管会显示相应的数字。

通过调整开关的状态,可以实现不同数字的显示。

六、实验总结通过这次实验,我学会了数码管的基本使用方法和控制电路的设计思路。

数码管作为一种数字显示元件,广泛应用于各种电子产品中,掌握其控制方法对于电子工程师来说非常重要。

在今后的学习和工作中,我将继续深入研究数码管的相关知识和应用,提高自己的技术水平。

数电实验报告实验一心得

数电实验报告实验一心得

数电实验报告实验一心得引言本实验是数字电路课程的第一次实验,旨在通过实际操作和观察,加深对数字电路基础知识的理解和掌握。

本次实验主要涉及布尔代数、逻辑门、模拟开关和数字显示等内容。

在实验过程中,我对数字电路的原理和实际应用有了更深入的了解。

实验一:逻辑门电路的实验实验原理逻辑门是数字电路中的基本组件,它能够根据输入的布尔值输出相应的结果。

常见的逻辑门有与门、或门、非门等。

本次实验主要是通过搭建逻辑门电路实现布尔函数的运算。

实验过程1. 首先,我按照实验指导书上的电路图,使用示波器搭建了一个简单的与门电路。

并将输入端连接到两个开关,输出端连接到示波器,以观察电路的输入和输出信号变化。

2. 其次,我打开示波器,观察了两个开关分别为0和1时的输出结果。

当两个输入均为1时,示波器上的信号为高电平,否则为低电平。

3. 我进一步观察了两个开关都为1时的输出信号波形。

通过示波器上的脉冲信号可以清晰地看出与门的实际运行过程,验证了实验原理的正确性。

实验结果和分析通过本次实验,我成功地搭建了一个与门电路,并观察了输入和输出之间的关系。

通过示波器上的信号波形,我更加直观地了解了数字电路中布尔函数的运算过程。

根据实验结果和分析,我可以总结出:1. 逻辑门电路可以根据布尔函数进行输入信号的运算,输出相应的结果。

2. 在与门电路中,当输入信号均为1时,输出信号为1,否则为0。

3. 示例器可以实时显示电路的输入和输出信号波形,方便实验者观察和分析。

结论通过本次实验,我对数字电路的基本原理和逻辑门电路有了更深刻的理解。

我学会了如何搭建逻辑门电路,并通过示波器观察和分析输入和输出信号的变化。

这对我进一步理解数字电路的设计和应用具有重要意义。

通过实验,我还锻炼了动手操作、实际观察和分析问题的能力。

实验过程中,需要认真对待并细致观察电路的运行情况,及时发现和解决问题。

这些能力对于今后的学习和研究都非常重要。

总之,本次实验让我更好地理解了数字电路的基本原理和应用,提高了我的实验能力和观察分析能力。

数电实验报告答案

数电实验报告答案

实验名称:数字电路基础实验实验目的:1. 熟悉数字电路的基本原理和基本分析方法。

2. 掌握数字电路实验设备的使用方法。

3. 培养动手实践能力和分析问题、解决问题的能力。

实验时间:2023年X月X日实验地点:实验室XX室实验仪器:1. 数字电路实验箱2. 万用表3. 双踪示波器4. 数字信号发生器5. 短路线实验内容:一、实验一:基本逻辑门电路实验1. 实验目的- 熟悉与门、或门、非门的基本原理和特性。

- 学习逻辑门电路的测试方法。

2. 实验步骤- 连接实验箱,设置输入端。

- 使用万用表测量输出端电压。

- 记录不同输入组合下的输出结果。

- 分析实验结果,验证逻辑门电路的特性。

3. 实验结果与分析- 实验结果与理论预期一致,验证了与门、或门、非门的基本原理。

- 通过实验,加深了对逻辑门电路特性的理解。

二、实验二:组合逻辑电路实验1. 实验目的- 理解组合逻辑电路的设计方法。

- 学习使用逻辑门电路实现组合逻辑电路。

2. 实验步骤- 根据设计要求,绘制组合逻辑电路图。

- 连接实验箱,设置输入端。

- 测量输出端电压。

- 记录不同输入组合下的输出结果。

- 分析实验结果,验证组合逻辑电路的功能。

3. 实验结果与分析- 实验结果符合设计要求,验证了组合逻辑电路的功能。

- 通过实验,掌握了组合逻辑电路的设计方法。

三、实验三:时序逻辑电路实验1. 实验目的- 理解时序逻辑电路的基本原理和特性。

- 学习使用触发器实现时序逻辑电路。

2. 实验步骤- 根据设计要求,绘制时序逻辑电路图。

- 连接实验箱,设置输入端和时钟信号。

- 使用示波器观察输出波形。

- 记录不同输入组合和时钟信号下的输出结果。

- 分析实验结果,验证时序逻辑电路的功能。

3. 实验结果与分析- 实验结果符合设计要求,验证了时序逻辑电路的功能。

- 通过实验,加深了对时序逻辑电路特性的理解。

四、实验四:数字电路仿真实验1. 实验目的- 学习使用数字电路仿真软件进行电路设计。

数电实验报告(含实验内容)

数电实验报告(含实验内容)

数电实验报告(含实验内容)班级:专业:姓名:学号:实验一用与非门构成逻辑电路一、实验目的1、熟练掌握逻辑电路的连接并学会逻辑电路的分析方法2、熟练掌握逻辑门电路间的功能变换和测试电路的逻辑功能二、实验设备及器材KHD-2 实验台集成 4 输入2 与非门74LS20集成 2 输入4 与非门74LS00 或CC4011三、实验原理本实验用的逻辑图如图 2-1 所示图1-1图1-1四、实验内容及步骤1、用与非门实现图1-1电路,测试其逻辑功能,将结果填入表1-1中,并说明该电路的逻辑功能。

2、用与非门实现图1-1电路,测试其逻辑功能,将结果填入表1-2中,并说明该电路的逻辑功能。

3、用与非门实现以下逻辑函数式,测试其逻辑功能,将结果填入表1-3中。

Y(A,B,C)=A’B+B’C+AC班级:专业:姓名:学号:五、实验预习要求1、进一步熟悉 74LS00、74LS20 和CC4011 的管脚引线2、分析图 1-1 (a)、的逻辑功能,写出逻辑函数表达式,并作出真值表。

六、实验报告1、将实验数据整理后填入相关的表格中2、分别说明各逻辑电路图所实现的逻辑功能A B C Z A B C Y表1-1 表1-2A B C Y 表1-3班级:专业:姓名:学号:实验二组合逻辑电路的设计与测试一、实验目的1、掌握组合逻辑电路的设计与测试方法2、进一步熟悉常用集成门电路的逻辑功能及使用二、实验设备及器材KHD-2 实验台4 输入2 与非门74LS202 输入4 与非门74LS00 或CC4011三、实验原理使用中、小规模集成电路来设计组合电路是最常见的逻辑电路的设计方式。

设计组合电路的一般步骤如图2-1 所示。

图 2-1 组合逻辑电路设计流程图根据设计任务的要求建立输入、输出变量,并列出真值表。

然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。

并按实际选用逻辑门的类型修改逻辑表达式。

根据简化后的逻辑表达,画出逻辑图,用标准器件构成逻辑电路。

数电实验报告

数电实验报告

数电实验报告实验目的:本实验旨在通过实际操作,加深对数电原理的理解,掌握数字电子技术的基本原理和方法,培养学生的动手能力和实际应用能力。

实验仪器和设备:1. 示波器。

2. 信号发生器。

3. 逻辑分析仪。

4. 电源。

5. 万用表。

6. 示教板。

7. 电路元件。

实验原理:数电实验是以数字电子技术为基础,通过实验操作来验证理论知识的正确性。

数字电子技术是一种以数字信号为工作对象,利用电子器件实现逻辑运算、数字存储、数字传输等功能的技术。

本次实验主要涉及数字逻辑电路的设计与实现,包括基本逻辑门的组合、时序逻辑电路、触发器等。

实验内容:1. 实验一,基本逻辑门的实验。

在示教板上搭建与非门、或门、与门、异或门等基本逻辑门电路,通过输入不同的逻辑信号,观察输出的变化情况,并记录实验数据。

2. 实验二,时序逻辑电路的实验。

利用触发器、计数器等元件,设计并搭建一个简单的时序逻辑电路,通过改变输入信号,验证电路的功能和正确性。

3. 实验三,逻辑分析仪的应用。

利用逻辑分析仪对实验中的数字信号进行观测和分析,掌握逻辑分析仪的使用方法,提高实验数据的准确性。

实验步骤:1. 按照实验指导书的要求,准备好实验仪器和设备,检查电路连接是否正确。

2. 依次进行各个实验内容的操作,记录实验数据和观察现象。

3. 对实验结果进行分析和总结,查找可能存在的问题并加以解决。

实验结果与分析:通过本次实验,我们成功搭建了基本逻辑门电路,观察到了不同输入信号对输出的影响,验证了逻辑门的功能和正确性。

在时序逻辑电路实验中,我们设计并搭建了一个简单的计数器电路,通过实验数据的记录和分析,验证了电路的正常工作。

逻辑分析仪的应用也使我们对数字信号的观测和分析有了更深入的了解。

实验总结:本次数电实验不仅加深了我们对数字电子技术的理解,还培养了我们的动手能力和实际应用能力。

在实验过程中,我们遇到了一些问题,但通过认真分析和思考,最终都得到了解决。

这次实验让我们深刻体会到了理论与实践相结合的重要性,也让我们对数字电子技术有了更加深入的认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国家电工电子实验教学中心数字电子技术基础实验报告实验题目:中频自动增益控制数字电路的研究学院:电子信息工程学院班级:学生姓名:学号:任课教师:骆丽同组成员:2015年11月17日目录1 设计任务要求 (1)2 设计方案及论证 (1)2.1 任务分析 (1)2.2 方案比较 (3)2.3 系统结构设计 (5)2.4 具体电路设计 (8)3 制作及调试过程 (16)3.1.1 制作及调试过程 (16)3.1.2 遇到的问题和解决方法 (17)3.2.1 仿真过程 (17)3.2.2 制作及调试过程 (19)3.2.3 实验结果 (20)3.2.4 遇到的问题和解决方法 (20)4 实验研究与思考 (21)5 总结 (23)5.1 本人所做工作 (23)5.2 收获体会 (23)5.3 对本课程的建议 (23)6 参考文献 (23)1 设计任务要求【实验目的】1.掌握中频自动增益数字电路设计可以提高学生系统地构思问题和解决问题的能力。

2.通过自动增益数字电路实验可以系统地归纳用加法器、A/D和D/A转换电路设计加法、减法、乘法、除法和数字控制模块电路技术。

3.培养学生通过现象分析电路结构特点,进而改善电路的能力。

【基础实验】(1)用加法器实现2位乘法电路(2)用4位加法器实现可控累加(加/减,-9到9,步长为3)电路。

最大数字和为两位10进制数18。

(要求二进制转化为十进制电路设计不能用模块74185)【发挥部分】(1)设计一个电路,输入信号50mV到5V峰峰值,1KHZ~10KHZ的正弦波信号,输出信号为3到4V的同频率,不失真的正弦波信号。

精度为8位,负载500Ω。

(2)发挥部分中,若输出成为直流,电路如何更改。

2 设计方案及论证2.1 任务分析【基础部分】用加法器实现2位乘法电路2位乘法电路是典型的组合电路。

设两位二进制分别为A1,A0和B1,B0,输出为S3,S2,S1,S0。

根据乘法展开式,如图2-1,要实现2位乘法电路,可以使用与门将两个信号相与来实现乘运算,再通过加法器实现加和运算。

最后通过输入高低电平,在数码管上观察乘积结果进行验证。

图2-1 2位乘法展开式【发挥部分】(1)设计一个电路,输入信号50mV 到5V 峰峰值,1KHZ ~10KHZ 的正弦波信号,输出信号为3到4V 的同频率,不失真的正弦波信号。

精度为8位,负载500Ω。

(2)发挥部分中,若输出成为直流,电路如何更改。

中频自动增益数字电路:自动增益数字控制电路是一种在输入信号变化很大的情况下,输出信号保持恒定或在较小的范围内波动的电路。

在通信设备中,特别是在通信接收设备中起着重要的作用。

它能够保证接收机在接收弱信号时增益高,在接收强信号时增益低,使输出保持适当的低电平,不至于因为输入信号太小而无法正常工作,也不至于因为输入信号过大而使接收机发生堵塞或饱和。

输入信号可由信号发生器输入模拟信号,通过转换后,输出信号可以用示波器显示出来,并测量参数。

ADC0809采集放大直流信号后,可以进行数字编码。

输入直流信号越大,输出数字量越大。

ADC0809输出数字量接在DAC0832的低8位数据输入端。

集成DAC0832与运算放大器接成反相比例放大器。

输入电压信号ui 接至RFB ,内部的反馈电阻R 成为放大器的输入电阻。

输出电压信号uO 接至UREF ,数字量控制的倒T 电阻网络为反相比例放大器的反馈电阻。

倒T 电阻网络的等效电阻值受输入数字量的控制,即输入电阻不变,电阻网路的等效电阻变化,其反相比例放大器的增益也随之变化。

设计理念是自动增益,也就是说大信号小增益、小信号大增益。

iU 作为参考电压,整个2R R 网络作为反馈网络。

增益:800137013722222i U G U D D D D -==⋅+⋅+⋅++⋅……也即模拟输入大时,通过ADC0809转换成的数字量D 就大,增益G 就小;模拟输入小时,通过ADC0809转换成的数字量D 就小,增益G 就大,及实现了自动增益。

2.2 方案比较【基础部分】基础实验比较简单,在老师的提示下,采用的方案是利用与门和74283加法器。

根据二进制数的乘法公式,设两位二进制分别为A1、A0和B1、B0,输出从高位到低位依次为S3、S2、S1、S0,其中S0=A0*B0,S1=A0*B1+A1*B0,S2=A1*B1+S1可能产生的进位,S3=S2可能产生的进位。

其中两数相与可以用74LS08(两输入四与门)实现,而加法可以用74LS283(四位二进制超前进位全加器)实现。

优点:①只需要两个芯片,便于连接,节省成本,电路简单,易于理解②S3不需要再次连接电路,只需要进行空置,等待S2的进位,减少了问题产生的可能因素。

③无需使用CO 和CI 。

【发挥部分】 (1) 方案一输出的频率1kHz~10kHz 正弦模拟信号转换成数字信号:比较器与计数器(74LS161)一起对输入锁存器的信号进行控制,其中,运用八个与门构成峰值异步清零模块,对ADC 传输的信号进行周期性清零。

当满足次态大于现态或完成一个周期时,一级锁存LE 引脚输入高电平,允许数据通过,而此时二级锁存LE 引脚输入低电平,处于保持状态。

最后进行DAC 转换,结合运放lm324构成除法电路和放大电路,实现将IOUT1端口输出以电流为模值(其值随DAC 寄存器的内容线性变化,也即是随着数据输入而变化 )的正弦量转换为电压为模值的正弦量,并作为参考电压REF U 送回DAC 输入端8号引脚,在反馈电阻RFB 输出端加上交流输入信号i U ,2OUT I 接地并接到运算放大器的同相输入端,1OUT I 接到运算放大器的反相输入端,则把R-2R 网络型D/A 转换器构成了运算放大器的反馈元件,用R-2R 型电阻网络和运算放大器实现了模拟信号被数字D 相除的除法器。

经过运放输出D Ku u i o /=,并在DAC 和第一级运放间和电压跟随器的反馈端加了适当的反馈电阻对电压放大倍数进行调节并且对带负载能力进行提高。

(2) 方案二利用检波电路,从调幅波中取出低频信号。

为了取出低频有用信号,还必须使用滤波器滤除高频分量,所以检波电路通常包含非线性元器件和滤波器两部分,再进行DAC 转换,结合运放lm324构成除法电路,实现将IOUT1端口输出以电流为模值(其值随DAC 寄存器的内容线性变化,也即是随着数据输入而变化 )的正弦量转换为电压为模值的正弦量,并作为参考电压REF U 送回DAC 输入端8号引脚,在反馈电阻RFB 输出端加上交流输入信号i U ,2OUT I 接地并接到运算放大器的同相输入端,1OUT I 接到运算放大器的反相输入端,则把R-2R 网络型D/A 转换器构成了运算放大器的反馈元件,用R-2R 型电阻网络和运算放大器实现了模拟信号被数字D 相除的除法器。

经过运放输出D Ku u i o /=,并在DAC 和第一级运放间和电压跟随器的反馈端加了适当的反馈电阻对电压放大倍数进行调节并且对带负载能力进行提高。

(3) 比较检波电路作为模拟电路更复杂,可靠性不高。

数字电路稳定性高,也更加符合要求。

本实验设计方案采用方案一。

(4) 方案一具体原理:该自动增益数字控制电路应分为五部分:第一部分是模数转换电路,它将输入的模拟信号按式2-1的方式转换成数字信号; 第二部分为数值比较电路,该部分用于比较模数转换所产生的数字大小,当新输入的数值大于之前输入的数值时,将新数值存入锁存电路,即实现记录信号峰值的功能;第三部分为锁存电路,用于存放数字信号的峰值,由于信号峰值有可能从大变小,而此时再进行数值比较,新输入的信号始终会小于此时锁存器中的信号峰值,因此,考虑利用两片锁存芯片级联,第一片每隔一定时间自动清零,而第二片中始终存储来自第一片锁存器所记录的信号的峰值;第四及第五部分为数模转换电路及放大电路,u0=K*u i/D,D为锁存器中所存储的输入信号的峰值,可得到电压增益的表达式如下:2.3 系统结构设计【基础部分】任意两个二进制数的乘运算通过与门实现,三个结果的求和通过将运算结果输入到加法器的不同位实现。

所以共需要四个与门和一个四位加法器。

本实验采用四位快速进位加法器74LS283和与门74LS08。

图2-2 2位乘法展开式图2-3 74LS283芯片引脚图图2-4 74L08芯片引脚图表2-1 乘法器真值表图2-5 系统结构图【发挥部分】用ADC输出的正弦模拟信号转换成数字信号:比较器与计数器(74LS161)一起对输入锁存器的信号进行控制,其中,运用八个与门构成峰值异步清零模块,对ADC传输的信号进行周期性清零。

当满足次态大于现态或完成一个周期时,一级锁存LE引脚输入高电平,允许数据通过,而此时二级锁存LE引脚输入低电平,处于保持状态。

最后进行DAC转换,结合运放LM324构成除法电路,实现将IOUT1端口输出以电流为模值(其值随DAC寄存器的内容线性变化,也即是随着数据输入而变化)的正弦量转换为电压为模值的正弦量。

系统框图如图2-6。

图2-6 系统结构图2.4 具体电路设计【基础部分】图2-7 乘法器电路图设计采用含四个与门的74ls08和一个74ls283加法器,根据结构框图得出仿真电路,如图2-7。

依照电路图在实验箱上进行实际电路的链接,容易得到结果【发挥部分】(1)分频电路图2-8 74LS161管脚图74LS161管脚图如图2-8所示。

当CR=LD=EP=ET=“1”、CP脉冲上升沿作用后,计数器加1。

74LS161具有异步清零功能和同步置数功能,一片74LS161可以组成16进制以下的任意进制分频器。

本实验中,我们将时钟信号16分频。

创造两个16分频的电路可以很好地控制锁存器轮流使信号通过,起到缓存的作用。

仿真分频部分电路图如图2-9。

图2-9 74LS161管脚连接示意图(2)A/D转化电路图2-10 ADC0809管脚图多路开关可选通8个模拟通道, 地址线为通道端口选择线,A为低地址,C为高地址,引脚图中为ADDA,ADDB和ADDCSTART是转换启动信号。

START上升沿时,复位ADC0809;START下降沿时启动芯片,开始进行A/D转换;在A/D转换期间,START应保持低电平。

ALE信号与START信号接在一起了,这样连接使得在信号的前沿写入(锁存)通道地址,紧接着在其后沿就启动转换。

Vref参考电压用来与输入的模拟信号进行比较,作为逐次逼近的基准。

其典型值为+5V(Vref(+)=+5V, Vref(-)=-5V)图2-11 ADC0809管脚连接示意图(3)比较器电路两个8位数的比较是从A的最高位A7和B的最高位B7进行比较,如果它们不相等,则该位的比较结果可以作为两数的比较结果。

相关文档
最新文档