数电实验报告汇总

合集下载

郑大数电实验报告

郑大数电实验报告

一、实验目的1. 理解数字电路的基本概念和基本原理。

2. 掌握数字电路中常用逻辑门电路的功能和特性。

3. 学会使用数字电路实验箱进行基本实验操作。

4. 培养动手实践能力和分析问题、解决问题的能力。

二、实验原理数字电路是由逻辑门电路组成的,用于处理数字信号的电路。

逻辑门电路是数字电路的基本单元,包括与门、或门、非门、异或门等。

本实验主要涉及以下逻辑门电路:1. 与门(AND Gate):只有当所有输入信号都为高电平时,输出信号才为高电平。

2. 或门(OR Gate):只要有一个输入信号为高电平,输出信号就为高电平。

3. 非门(NOT Gate):输入信号为高电平时,输出信号为低电平;输入信号为低电平时,输出信号为高电平。

4. 异或门(XOR Gate):只有当输入信号不同时,输出信号才为高电平。

三、实验仪器与设备1. 数字电路实验箱2. 电源3. 逻辑开关4. 测试灯5. 连接线四、实验步骤1. 与门实验:- 将与门输入端连接到逻辑开关。

- 通过逻辑开关控制输入信号,观察输出信号的变化。

- 记录实验数据,分析实验结果。

2. 或门实验:- 将或门输入端连接到逻辑开关。

- 通过逻辑开关控制输入信号,观察输出信号的变化。

- 记录实验数据,分析实验结果。

3. 非门实验:- 将非门输入端连接到逻辑开关。

- 通过逻辑开关控制输入信号,观察输出信号的变化。

- 记录实验数据,分析实验结果。

4. 异或门实验:- 将异或门输入端连接到逻辑开关。

- 通过逻辑开关控制输入信号,观察输出信号的变化。

- 记录实验数据,分析实验结果。

五、实验结果与分析1. 与门实验:- 输入信号均为高电平时,输出信号为高电平。

- 至少有一个输入信号为低电平时,输出信号为低电平。

2. 或门实验:- 至少有一个输入信号为高电平时,输出信号为高电平。

- 输入信号均为低电平时,输出信号为低电平。

3. 非门实验:- 输入信号为高电平时,输出信号为低电平。

数电实验报告实验

数电实验报告实验

一、实验目的1. 理解和掌握数字电路的基本原理和设计方法。

2. 培养动手能力和实验技能。

3. 提高分析问题和解决问题的能力。

二、实验原理数字电路是一种以二进制为基础的电路,其基本元件是逻辑门和触发器。

本实验主要涉及以下几种逻辑门:与门、或门、非门、异或门、同或门、与非门、或非门等。

1. 与门(AND Gate):当所有输入端都为高电平时,输出才为高电平。

2. 或门(OR Gate):当至少一个输入端为高电平时,输出为高电平。

3. 非门(NOT Gate):对输入信号取反。

4. 异或门(XOR Gate):当输入端信号不同时,输出为高电平。

5. 同或门(NOR Gate):当输入端信号相同时,输出为高电平。

6. 与非门(NAND Gate):与门和非门的组合。

7. 或非门(NOR Gate):或门和非门的组合。

三、实验器材1. 数字电路实验箱2. 逻辑门芯片3. 电源4. 连接线5. 测试仪器四、实验步骤1. 组成基本逻辑门电路:根据实验原理,搭建与门、或门、非门、异或门、同或门、与非门、或非门等基本逻辑门电路。

2. 测试电路功能:使用测试仪器对搭建的电路进行测试,验证电路是否满足基本逻辑功能。

3. 组成组合逻辑电路:根据实验要求,搭建组合逻辑电路,如全加器、半加器、译码器、编码器等。

4. 测试组合逻辑电路:使用测试仪器对搭建的组合逻辑电路进行测试,验证电路是否满足设计要求。

5. 组成时序逻辑电路:根据实验要求,搭建时序逻辑电路,如触发器、计数器、寄存器等。

6. 测试时序逻辑电路:使用测试仪器对搭建的时序逻辑电路进行测试,验证电路是否满足设计要求。

五、实验结果与分析1. 基本逻辑门电路测试结果:根据测试数据,搭建的与门、或门、非门、异或门、同或门、与非门、或非门等基本逻辑门电路均满足设计要求。

2. 组合逻辑电路测试结果:根据测试数据,搭建的全加器、半加器、译码器、编码器等组合逻辑电路均满足设计要求。

数电实验报告汇总

数电实验报告汇总

实验2 组合逻辑电路(半加器全加器及逻辑运算)一、实验目的1.掌握组合逻辑电路的功能测试。

2.验证半加器和全加器的逻辑功能。

3.学会二进制数的运算规律。

二、实验仪器及材料1.Dais或XK实验仪一台2.万用表一台3.器件: 74LS00 三输入端四与非门3片74LS86 三输入端四与或门1片74LS55 四输入端双与或门1片三、预习要求1.预习组合逻辑电路的分析方法。

2.预习用与非门和异或门构成的半加器、全加器的工作原理。

3.学习二进制数的运算。

四、实验容1.组合逻辑电路功能测试。

图2-1⑴用2片74LS00组成图2-1所示逻辑电路。

为便于接线和检查,在图中要注明芯片编号及各引脚对应的编号。

⑵图中A、B、C接电平开关,Y1、Y2接发光管显示。

⑶按表2-1要求,改变A、B、C的状态填表并写出Y1、Y2逻辑表达式。

⑷将运算结果与实验比较。

输入输出A B C Y1 Y20 0 0 0 00 0 1 0 10 1 1 1 11 1 1 1 11 1 0 1 01 0 0 1 11 0 1 1 00 1 0 1 0(5)实验过程及实验图:1)连线图:2)实验图:(6)实验总结:用两片74ls00芯片可实现如图电路功能2.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。

根据半加器的逻辑表达式可知,半加器Y是A、B的异或,而进位Z是A、B相与,故半加器可用一个集成异或门和二个与非门组成如图2-2。

图2-2⑴在实验仪上用异或门和与门接成以上电路。

A、B接电平开关S,Y、Z接电平显示。

⑵按表2-2要求改变A、B状态,填表。

输入端A 0 1 0 1B 0 0 1 1输出端Y 0 1 1 0 Z 0 0 0 1(3)实验过程及实验图:1)管脚图:2)实验图(4)实验总结:用异或门(74LS86)和与非门可组成半加器3.测试全加器的逻辑功能。

⑴写出图2-3电路的逻辑表达式。

⑵根据逻辑表达式列真值表。

⑶根据真值表画逻辑函数SiCi的卡诺图。

数字电字技术实验报告(3篇)

数字电字技术实验报告(3篇)

第1篇一、实验目的1. 理解数字电子技术的基本概念和原理。

2. 掌握数字电路的基本组成和逻辑功能。

3. 熟悉常用数字集成电路的使用方法和特点。

4. 培养分析和解决实际问题的能力。

二、实验器材1. 74LS系列数字集成电路2. 模拟电子实验箱3. 信号发生器4. 示波器5. 逻辑笔6. 连接线7. 电阻、电容、二极管等基础元件三、实验内容1. 数字电路基本组成和逻辑功能实验2. 常用数字集成电路实验3. 逻辑门电路实验4. 组合逻辑电路实验5. 时序逻辑电路实验四、实验原理1. 数字电路基本组成和逻辑功能:数字电路由逻辑门电路、触发器、计数器等基本单元组成,实现逻辑运算、计数、定时等功能。

2. 常用数字集成电路:包括逻辑门电路、触发器、计数器、译码器、编码器等。

3. 逻辑门电路:逻辑门电路是实现基本逻辑运算的单元,如与门、或门、非门等。

4. 组合逻辑电路:组合逻辑电路由逻辑门电路组成,实现输入与输出之间的逻辑关系。

5. 时序逻辑电路:时序逻辑电路由触发器组成,具有记忆功能,实现计数、定时等功能。

五、实验步骤与方法1. 数字电路基本组成和逻辑功能实验:(1)观察逻辑门电路的输入输出关系;(2)测试与门、或门、非门等基本逻辑门电路;(3)分析逻辑门电路的逻辑功能。

2. 常用数字集成电路实验:(1)观察数字集成电路的引脚排列和功能;(2)测试译码器、编码器、计数器等数字集成电路;(3)分析数字集成电路的逻辑功能。

3. 逻辑门电路实验:(1)观察逻辑门电路的输入输出关系;(2)测试与门、或门、非门等基本逻辑门电路;(3)分析逻辑门电路的逻辑功能。

4. 组合逻辑电路实验:(1)设计组合逻辑电路;(2)搭建实验电路;(3)观察电路的输入输出关系;(4)分析电路的逻辑功能。

5. 时序逻辑电路实验:(1)观察触发器的逻辑功能;(2)搭建时序逻辑电路;(3)观察电路的输入输出关系;(4)分析电路的逻辑功能。

六、实验结果与分析1. 数字电路基本组成和逻辑功能实验:通过实验,掌握了数字电路的基本组成和逻辑功能,了解了逻辑门电路的输入输出关系。

数电实验总结五篇

数电实验总结五篇

数电实验总结五篇第一篇:数电实验总结数字电子技术是一门理论与实践密切相关的学科,如果光靠理论,我们就会学的头疼,如果借助实验,效果就不一样了,特别是数字电子技术实验,能让我们自己去验证一下书上的理论,自己去设计,这有利于培养我们的实际设计能力和动手能力。

通过数字电子技术实验, 我们不仅仅是做了几个实验,不仅要学会实验技术,更应当掌握实验方法,即用实验检验理论的方法,寻求物理量之间相互关系的方法,寻求最佳方案的方法等等,掌握这些方法比做了几个实验更为重要。

在数字电子技术实验中,我们可以根据所给的实验仪器、实验原理和一些条件要求,设计实验方案、实验步骤,画出实验电路图,然后进行测量,得出结果。

在数字电子技术实验的过程中,我们也遇到了各种各样的问题,针对出现的问题我们会采取相应的措施去解决,比如:1、线路不通——运用逻辑笔去检查导线是否可用;2、芯片损坏——运用芯片检测仪器检测芯片是否正常可用以及它的类型;3、在一些实验中会使用到示波器,这就要求我们能够正确、熟悉地使用示波器,通过学习我们学会了如何调节仪器使波形便于观察,如何在示波器上读出相关参数,如在最后的考试实验《555时基电路及其应用》中,我们能够读出多谐振荡器的Tpl、Tph和单稳态触发器的暂态时间Tw,还有有时是因为接入线的问题,此时可以通过换用原装线来解决。

同时,我们也得到了不少经验教训:1、当实验过程中若遇到问题,不要盲目的把导线全部拆掉,然后又重新连接一遍,这样不但浪费时间,而且也无法达到锻炼我们动手动脑能力的目的此时,我们应该静下心来,冷静地分析问题的所在,有可能存在哪一环节,比如实验原理不正确,或是实验电路需要修正等等,只有这样我们的能力才能有所提高。

2、在实验过程中,要学会分工协作,不能一味的自己动手或是自己一点也不参与其中。

3、在实验过程中,要互相学习,学习优秀同学的方法和长处,同时也要学会虚心向指导老师请教,当然这要建立在自己独立思考过的基础上。

数电实验报告汇总

数电实验报告汇总

数电实验报告汇总一、引言数字电路是由逻辑门进行组合和连接而成的电路,是计算机和其他电子设备的基础。

通过实验研究数字电路的特性和性能,可以更好地理解数字电路的工作原理和应用。

二、实验目的1.熟悉数字电路的基本概念和基本元件;2.掌握数字电路的设计和实现方法;3.了解数字电路的功能和性能。

三、实验内容1.逻辑门的基本实验通过对与门、或门、非门等逻辑门进行实验,了解不同逻辑门的特点和功能。

2.逻辑门的组合与实现通过对与非门、与门和或门等逻辑门的组合与实现进行实验,掌握逻辑门之间的联接和组合方法。

3.数字电路的设计和实现通过对时序电路和组合电路的设计与实现进行实验,掌握数字电路的设计方法和实现过程。

四、实验步骤1.准备实验所需的数字电路实验箱、元件和仪器设备;2.根据实验要求,连接相应的实验电路;3.进行实验前的电路调试和检查,确保电路连接正确;4.进行实验操作并记录实验数据;5.根据实验结果进行数据分析和讨论;6.撰写实验报告。

五、实验结果与分析1.逻辑门的实验结果通过对与门、或门、非门等逻辑门的实验,观察各门的输入和输出关系,了解逻辑门的基本特点和功能。

2.逻辑门的组合与实现结果通过对与非门、与门和或门等逻辑门的组合与实现的实验,观察各门之间的联接和组合方式,了解逻辑门之间的关系和功能。

3.数字电路的设计和实现结果通过对时序电路和组合电路的设计与实现的实验,观察电路的工作情况和性能,验证数字电路的设计方法和实现过程。

分析实验结果后,我们发现逻辑门的输出与输入之间具有确定的关系,逻辑门之间可以通过联接和组合来实现不同的功能,数字电路的设计和实现需要考虑电路的工作原理和功能需求。

六、实验总结通过本次实验,我们进一步了解了数字电路的基本概念和基本元件,掌握了数字电路的设计和实现方法,了解了数字电路的功能和性能。

在实验过程中,我们发现电路连接的正确性对实验结果起着重要作用,实验前的电路调试和检查工作十分重要。

数电实验报告

数电实验报告

数电实验报告引言:数电实验是电子信息科学与技术专业中一门重要的实验课程。

通过数电实验,我们可以掌握数字电路的基本原理与设计方法,加深对电子电路原理的理解与应用。

本实验报告将对我们进行的数电实验进行总结与评述,以便更好地理解数电实验的内容和意义。

实验目的:本次数电实验的主要目的是通过实验的方式,掌握数字电路的设计与实现原理,以及相应的实验工具和测试设备的使用方法。

通过实际操作,我们将验证数字电路的可靠性和正确性,并培养我们的实验技能和分析问题的能力。

实验内容:本次数电实验涵盖了多个实验项目,其中包括:逻辑门的实验、组合逻辑电路的实验以及时序逻辑电路的实验等。

1. 逻辑门的实验这一部分我们主要学习并实验了与门、或门、非门、异或门等逻辑门的基本原理与应用。

透过实际连接与测试,我们进一步了解了逻辑门之间的相互转换关系和应用场景。

通过使用示波器、万用表等仪器设备,我们能够验证逻辑门的逻辑功能与实际输出是否一致。

2. 组合逻辑电路的实验在组合逻辑电路的实验中,我们学习了多种组合逻辑电路的设计原理和真值表的绘制方法。

通过实际搭建和测试,我们验证了布尔代数的基本运算规则在实际电路中的应用,并掌握了基本的编码器、解码器和多路选择器等组合逻辑电路的设计与实现方法。

3. 时序逻辑电路的实验时序逻辑电路实验是本次数电实验的重点和难点部分。

通过实验,我们学习了时钟信号的产生与作用原理,掌握了触发器的工作原理和应用方法。

我们还学习了时序逻辑电路的分析与设计技巧,实践了状态图和状态表的绘制方法,进一步体验了时序逻辑电路在数字系统中的重要性和应用价值。

实验结果与分析:通过实验操作和测试数据,我们得出了相应的实验结果,并对实验结果进行了分析。

通过实验数据的处理和对比,我们可以进一步验证电路设计的正确性,找出问题所在并加以改正。

同时,我们还对实验结果进行了数据处理和图表绘制,以便更好地展示实验结果。

总结与反思:通过本次数电实验,我们不仅掌握了数字电路的基本原理和设计方法,还提高了实验操作技能、问题分析和解决能力。

数电实验报告西理工(3篇)

数电实验报告西理工(3篇)

第1篇一、实验目的1. 理解数字电路的基本组成和基本逻辑门的工作原理。

2. 掌握常用逻辑门电路的设计方法。

3. 培养动手能力和分析问题、解决问题的能力。

二、实验仪器与设备1. 数字逻辑实验箱2. 逻辑分析仪3. 示波器4. 逻辑笔5. 实验指导书三、实验原理数字电路是由逻辑门、触发器等基本元件组成的,用于处理和传输二进制信息的电子系统。

本实验主要涉及以下几种基本逻辑门:1. 与门(AND)2. 或门(OR)3. 非门(NOT)4. 异或门(XOR)5. 同或门(XNOR)这些逻辑门可以组合成复杂的逻辑电路,实现各种逻辑功能。

四、实验内容1. 基本逻辑门实验(1)观察与门、或门、非门、异或门、同或门的基本逻辑功能。

(2)通过实验验证逻辑门电路的正确性。

2. 组合逻辑电路实验(1)设计一个四路数据选择器。

(2)设计一个编码器,将10个二进制数编码成4位二进制数。

(3)设计一个译码器,将4位二进制数译码成10个输出信号。

3. 时序逻辑电路实验(1)观察触发器的逻辑功能。

(2)设计一个计数器,实现从0到9的计数功能。

五、实验步骤1. 基本逻辑门实验(1)根据实验指导书,搭建与门、或门、非门、异或门、同或门的实验电路。

(2)通过逻辑笔和逻辑分析仪观察各个逻辑门的输入输出关系。

(3)分析实验结果,验证逻辑门电路的正确性。

2. 组合逻辑电路实验(1)根据实验要求,设计四路数据选择器的电路图。

(2)搭建实验电路,通过逻辑笔和逻辑分析仪观察数据选择器的输入输出关系。

(3)分析实验结果,验证数据选择器的正确性。

(4)根据实验要求,设计编码器的电路图。

(5)搭建实验电路,通过逻辑笔和逻辑分析仪观察编码器的输入输出关系。

(6)分析实验结果,验证编码器的正确性。

(7)根据实验要求,设计译码器的电路图。

(8)搭建实验电路,通过逻辑笔和逻辑分析仪观察译码器的输入输出关系。

(9)分析实验结果,验证译码器的正确性。

3. 时序逻辑电路实验(1)根据实验要求,设计计数器的电路图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验2 组合逻辑电路(半加器全加器及逻辑运算)一、实验目的1.掌握组合逻辑电路的功能测试。

2.验证半加器和全加器的逻辑功能。

3.学会二进制数的运算规律。

二、实验仪器及材料1.Dais或XK实验仪一台2.万用表一台3.器件:74LS00 三输入端四与非门3片74LS86 三输入端四与或门1片74LS55 四输入端双与或门1片三、预习要求1.预习组合逻辑电路的分析方法。

2.预习用与非门和异或门构成的半加器、全加器的工作原理。

3.学习二进制数的运算。

四、实验内容1.组合逻辑电路功能测试。

图2-1⑴用2片74LS00组成图2-1所示逻辑电路。

为便于接线和检查,在图中要注明芯片编号及各引脚对应的编号。

⑵图中A、B、C接电平开关,Y1、Y2接发光管显示。

⑶按表2-1要求,改变A、B、C的状态填表并写出Y1、Y2逻辑表达式。

⑷将运算结果与实验比较。

输入输出A B C Y1 Y20 0 0 0 00 0 1 0 10 1 1 1 11 1 1 1 11 1 0 1 01 0 0 1 11 0 1 1 00 1 0 1 0(5)实验过程及实验图:1)连线图:2)实验图:(6)实验总结:用两片74ls00芯片可实现如图电路功能2.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。

根据半加器的逻辑表达式可知,半加器Y是A、B的异或,而进位Z是A、B相与,故半加器可用一个集成异或门和二个与非门组成如图2-2。

图2-2⑴在实验仪上用异或门和与门接成以上电路。

A、B接电平开关S,Y、Z接电平显示。

⑵按表2-2要求改变A、B状态,填表。

输入端A 0 1 0 1B 0 0 1 1输出端Y 0 1 1 0 Z 0 0 0 1(3)实验过程及实验图:1)管脚图:2)实验图(4)实验总结:用异或门(74LS86)和与非门可组成半加器3.测试全加器的逻辑功能。

⑴写出图2-3电路的逻辑表达式。

⑵根据逻辑表达式列真值表。

⑶根据真值表画逻辑函数SiCi的卡诺图。

Ai Bi,Ci-1 00 01 11 10 0 0 1 0 1 111 0Si=Ci=图2-3⑷填写表2-3各点状态。

Ai Bi Ci-1 Y Z X1 X2 X3 Si Ci 0 0 0 0 0 1 1 1 00 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 111111⑸按原理图选择与非门并接线进行测试,将测试结果记入表2-4,并与上表进行比较看逻辑功能是否一致。

表2-4Ai Bi Ci-1 Ci Si 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 0 111Bi Bi,Ci-100 01 11 10 0 0 0 1 0 1 01111 1 1 1 1(6)实验过程及实验图:1)引脚图:2)实验图:(7)实验总结:3个74ls00芯片可构成全加器4.测试用异或、与或和非门组成的全加器的逻辑功能。

全加器可以用两个半加器和两个与门一个或门组成,在实验中,常用一块双异或门、一个与或门和一个非门实现。

⑴画出用异或门、与或非门和与门实现全加器的逻辑电路图,写出逻辑表达式。

⑵找出异或门、与或非门和与门器件,按自己画出的图接线。

接线时注意与或非门中不用的与门输入端接地。

⑶当输入端Ai、Bi、Ci-1为下列情况时,用万用表测量Si和Ci的电位并将其转为逻辑状态填入表2-5。

表2-5输入端Ai 0 0 0 0 1 1 1 1Bi 0 0 1 1 0 0 1 1Ci-1 0 1 0 1 0 1 0 1 输出Si 0 1 1 0 1 0 0 1Ci 0 0 0 1 0 1 1 1 (4)实验过程及实验图:Si=A⊕B⊕CCi=AB+BC+AC引脚图:实验图:实验3 触发器一、实验目的1.熟悉并掌握R-S、D、J-K触发器的构成,工作原理和功能测试方法。

2.学会正确使用触发器集成芯片。

3.了解不同逻辑功能FF相互转换的方法。

二、实验仪器及材料1.双踪示波器一台2.Dais或XK实验仪一台3.器件74LS00 二输入端四与非门1片74LS74 双D触发器1片74LS112 双J-K触发器1片二、实验内容1.基本R-SFF功能测试:两个TTL与非门首尾相接构成的基本R-SFF的电路如图3-1所示。

⑴试按下面的顺序在/Sd,/Rd端加信号:/Sd=0 /Rd=1/Sd=1 /Rd=1/Sd=1 /Rd=0/Sd=1 /Rd=1观察并记录FF的Q、/Q端的状态,将结果填入下表3-1中,并说明在上述各种输入状态下,FF执行的功能?图3-1 基本R-SFF电路/Sd /Rd Q /Q 逻辑功能0 1 1 0 置11 1 1 0 保持1 0 0 1 置01 1 0 1 保持⑵/Sd接低电平,/Rd端加脉冲。

⑶/Sd接高电平,/Rd端加脉冲。

⑷令/Rd=/Sd,/Sd端加脉冲。

记录并观察⑵、⑶、⑷三各情况下,Q、/Q端的状态。

从中你能否总结出基本R-SFF 的Q、/Q端的状态改变和输入端Sd,Rd的关系。

⑸当/Sd,/Rd都接低电平时,观察Q、/Q端的状态。

当/Sd,/Rd同时由低电平跳为高电平时,注意观察Q、/Q端的状态。

重复3~5次看Q、/Q端的状态是否相同,以正确理解“不定”状态的含义。

(6)实验过程:1)引脚图:2)实验图:2.维持一阻塞型D发器功能测试。

双D型正沿边维持一阻塞型触发器74LS74的逻辑符号如图3-2所示图3-2 DFF逻辑符号图中/Sd,/Rd为异步置位1端,置0端(或称异步置位,复位端)。

CP为时钟脉冲端。

试按下面步骤做实验:⑴分别在/Sd,/Rd端加低电平,观察并记录Q、/Q端的状态。

⑵令/Sd,/Rd端为高电平,D端分别接高,低电平,用点动脉冲作为CP,观察并记录当CP为0、↑、1、↓时Q端状态的变化。

⑶当/Sd=/Rd=1、CP=0(或CP=1),改变D端信号,观察Q端的状态是否变化?整理上述实验数据,将结果填入下表3-2中。

⑷/Sd=/Rd=1,将D和Q端相连,CP加连续脉冲,用双踪示波器观察并记录Q相对于CP的波形。

/Sd /Rd CP D Q n Q n+10 0 X X 0 11 11 0 X X 0 01 01 1 ↓0 0 01 01 1 ↓ 1 0 11 11 1 0⑴X 0 11 1(5)实验过程及实验图:1)引脚图:2)实验图:3.负边沿J-K触发器功能测试双J-K负边沿触发器74LS112芯片的逻辑符号如图3-3所示。

图3-3 J-KFF逻辑符号自拟实验步骤,测试其功能,并将结果填入下表3-3中。

若令J=K=1时,CP端加连续脉冲,用双踪示波器观察Q~CP波形,和DFF的D和Q端相连时观察到的Q端的波型相比较,有何异同点?表3-3/Sd /Rd CP J K Qn Qn+10 1 X X X X 11 0 X X X X 01 1 ↓0 X 0 01 1 ↓ 1 X 0 11 1 ↓X 0 1 11 1 ↓X 1 1 04.触发器功能转换⑴将D触发器和J-K触发器转换成T'触发器,列出表达式,画出实验电路图。

⑵接入连续脉冲,观察各触发器CP及Q端波形。

比较两者关系。

⑶自拟实验数据表并填写之。

(4)实验过程及实验图Qn+1=J/Qn+/KQn令J=1,K=1;Qn+1=/Qn2)实验图:四、实验报告1.整理实验数据、图表并对实验结果进行分析讨论。

2.写出实验内容3、4的实验步骤及表达式。

D 触发器: D Qn =+1JK 触发器: n n n Q K Q J Q+=+13.画出实验4的电路图及相应表格。

4.总结各类触发器特点。

实验4 时序电路一、实验目的1. 掌握常用时序电路分析,设计及测试方法。

2. 训练独立进行实验的技能。

二、实验仪器及材料料1.双踪示波器 一台 2. Dais 或XK 实验仪一台 3.器件 74LS73 双J -K 触发器2片 74LS174 双D 触发器 1片 74LS10 三输入三与非门1片三、实验内容1.异步二进制计数器 ⑴ 按图4-1接线图4-1⑵ 由CP 端输入单脉冲,测试并记录Q1~Q4端状态及波形。

⑶ 试将异步二进制加法计数改为减法计数,参考加法计数器,要求实验并记录。

(4)实验过程及实验图:1)4Q ~1Q :0000→0001→0010→0011→0100→0101→0110 →0111→1000→1001→1010→1011→1100→1101→1110→1111→0000 2)减法计数器:4Q ~1Q :1111→1110→1101→1100→1011→1010→1001→1000→0111→0110→0101→0100→0011→0010→0001→00002.异步二一十进制加法计数器 ⑴ 按图4-2接线。

图4-2QA 、QB 、QC 、QD 四个输出端分别接发光二极管显示,复位端R 接入单脉冲,CP 接连续脉冲。

⑵ 在CP 端接连续脉冲,观察CP 、QA 、QB 、QC 及QD 的波形,并画出它们的波形。

⑶ 将图4-1改为一个异步二一十进制减法计数器,并画出CP 、QA 、QB 、QC 及QD 的波形。

(4)实验过程及实验图:1)实验图:3. 自循环移位寄存器一环形计数器。

⑴按图4-3接线,将A、B、C、D置为1000,用单脉冲计数,记录各触发器状态。

图4-3改为连续脉冲计数,并将其中一个状态为“0”的触发器置为“1”(模拟干扰信号作用的结果),观察记数器能否正常工作。

分析原因。

ABCD依次显示:1000→1100→1110→1111→0111→0011→0001→0000→1000,能正常工作⑵按图4-4接线,现非门用74LS10三输入端三与非门重复上述实验,对比实验结果,总结关于自启动的体会。

图4-4(3)实验过程及实验图:实验结果:ABCD依次显示:1000→0100→0010→0001→1000,不能自启动四、实验报告1.画出实验内容要求的波形及记录表格。

2.总结时序电路特点。

时序电路具有如下特点:(1)路由组合电路和存储电路组成。

(2)电路中存在反馈,因而电路的工作状态与时间因素相关,即时序电路的输出由电路的输入和电路原来的状态共同决定。

实验5 集成计数器一、实验目的1.熟悉集成计数器逻辑功能和各控制端作用。

2.掌握计数器使用方法。

二、实验仪器有为材料1. 双踪示波器一台2. Dais或XK实验仪一台3. 器件74LS290 十进制计数器2片三、实验内容及步骤1. 集成计数器74LS290功能测试。

相关文档
最新文档