无机材料物理性能》课后习题答案
无机材料物理性能-习题讲解

2. 已知金刚石的相对介电常数r=5.5,磁化 率=-2.17×10-5,试计算光在金刚石中的传 播速度
c c c v n rr r (1 ) 3 108 5.5 (1 2.17 105 ) 1.28108 m / s
引起散射的其它原因还有:缺陷、杂质、晶粒界 面等。
7. 影响热导率的因素有哪些?
温度的影响:
低温:主要是声子传导。自由程则有随温度的升高而迅速降低的特点,低温时,上限为晶粒的距离, 在高温时,下限为晶格的间距。
高温下热辐射显著,光子传导占优势;
在低温时,热导率λ与T3成比例。高温时,λ则迅速降低。 结晶构造的影响 :声子传导与晶格振动的非谐和有关。晶体结构越复杂,晶格振动的非谐和越大, 自由行程则趋于变小,从而声子的散射大, λ 低。
9.证明固体材料的热膨胀系数不因内含均匀 分散的气孔而改变
对于内含均匀分散气孔的固体材料,可视为固相 与气相组成的复合材料,其热膨胀系数为:
V KW / K W /
i i i i i i i
由于空气组分的质量分数Wi≈0,所以气孔对热膨 胀系数没有贡献。
10. 影响材料散热的因素有哪些?
第三章
材料的光学性能
---习题讲解
1. 试述光与固体材料的作用机理
在固体材料中出现的光学现象是电磁辐射与固体材料中的 原子、离子或电子之间相互作用的结果。一般存在两种作 用机理: 一是电子极化,即在可见光范围内,电场分量与传播过程 中遇到的每一个原子都发生相互作用,引起电子极化,即 造成电子云和原子核的电荷中心发生相互位移,所以当光 通过介质时,一部分能量被吸收同时光速减小,后者导致 折射。 二是电子能态转变:即电磁波的吸收和发射包含电子从一 种能态向另一种能态转变的过程。材料的原子吸收了光子 的能量之后可将较低能级的电子激发到较高能级上去,电 子发生的能级变化与电磁波频率有关。
材料物理性能课后习题答案解析北航出版社田莳主编

材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE md dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16) 2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)22323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085F F h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
材料物理性能课后习题答案解析北航出版社田莳主编

材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE md dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16) 2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)22323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085F F h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
无机材料物理性能试题及答案

无机材料物理性能试题及答案It was last revised on January 2, 2021无机材料物理性能试题及答案无机材料物理性能试题及答案一、填空题(每题2分,共36分)1、电子电导时,载流子的主要散射机构有中性杂质的散射、位错散射、电离杂质的散射、晶格振动的散射。
2、无机材料的热容与材料结构的关系不大,CaO和SiO2的混合物与CaSiO3的热容-温度曲线基本一致。
3、离子晶体中的电导主要为离子电导。
可以分为两类:固有离子电导(本征电导)和杂质电导。
在高温下本征电导特别显着,在低温下杂质电导最为显着。
4、固体材料质点间结合力越强,热膨胀系数越小。
5、电流吸收现象主要发生在离子电导为主的陶瓷材料中。
电子电导为主的陶瓷材料,因电子迁移率很高,所以不存在空间电荷和吸收电流现象。
6、导电材料中载流子是离子、电子和空位。
7. 电子电导具有霍尔效应,离子电导具有电解效应,从而可以通过这两种效应检查材料中载流子的类型。
8. 非晶体的导热率(不考虑光子导热的贡献)在所有温度下都比晶体的小。
在高温下,二者的导热率比较接近。
9. 固体材料的热膨胀的本质为:点阵结构中的质点间平均距离随着温度升高而增大。
10. 电导率的一般表达式为∑=∑=iiiiiqnμσσ。
其各参数n i、q i和i的含义分别是载流子的浓度、载流子的电荷量、载流子的迁移率。
11. 晶体结构愈复杂,晶格振动的非线性程度愈大。
格波受到的散射大,因此声子的平均自由程小,热导率低。
12、波矢和频率之间的关系为色散关系。
13、对于热射线高度透明的材料,它们的光子传导效应较大,但是在有微小气孔存在时,由于气孔与固体间折射率有很大的差异,使这些微气孔形成了散射中心,导致透明度强烈降低。
14、大多数烧结陶瓷材料的光子传导率要比单晶和玻璃小1~3数量级,其原因是前者有微量的气孔存在,从而显着地降低射线的传播,导致光子自由程显着减小。
15、当光照射到光滑材料表面时,发生镜面反射 ;当光照射到粗糙的材料表面时,发生 漫反射 。
南京工业大学无机材料物理性能习题与答案2013年考试必备

<无机材料物理性能>习题与答案一、填空题(每题2分,共36分)1、电子电导具有霍尔效应,离子电导具有电解效应,从而可以通过这两种效应检查材料中载流子的类型。
2、电导率的一般表达式为∑=∑=iiiiiqnμσσ。
其各参数n i、q i和μi的含义分别是载流子的浓度、载流子的电荷量、载流子的迁移率。
3、离子晶体中的电导主要为离子电导。
可以分为两类:固有离子电导(本征电导)和杂质电导。
在高温下本征电导特别显著,在低温下杂质电导最为显著。
4、电子电导时,载流子的主要散射机构有中性杂质的散射、位错散射、电离杂质的散射、晶格振动的散射。
5、电流吸收现象主要发生在离子电导为主的陶瓷材料中。
电子电导为主的陶瓷材料,因电子迁移率很高,所以不存在空间电荷和吸收电流现象。
6、导电材料中载流子是离子、电子和空位。
7. 固体材料质点间结合力越强,热膨胀系数越小。
8. 非晶体的导热率(不考虑光子导热的贡献)在所有温度下都比晶体的小。
在高温下,二者的导热率比较接近。
9. 固体材料的热膨胀的本质为:点阵结构中的质点间平均距离随着温度升高而增大。
10. 无机材料的热容与材料结构的关系不大,CaO和SiO2的混合物与CaSiO3 的热容-温度曲线基本一致。
11. 晶体结构愈复杂,晶格振动的非线性程度愈大。
格波受到的散射大,因此声子的平均自由程小,热导率低。
12、波矢和频率之间的关系为色散关系。
13、对于热射线高度透明的材料,它们的光子传导效应较大,但是在有微小气孔存在时,由于气孔与固体间折射率有很大的差异,使这些微气孔形成了散射中心,导致透明度强烈降低。
14、大多数烧结陶瓷材料的光子传导率要比单晶和玻璃小1~3数量级,其原因是前者有微量的气孔存在,从而显著地降低射线的传播,导致光子自由程显著减小。
15、当光照射到光滑材料表面时,发生镜面反射;当光照射到粗糙的材料表面时,发生漫反射。
16、作为乳浊剂必须满足:具有与基体显著不同的折射率,能够形成小颗粒。
无机材料物理性能-习题讲解

13. 固体材料内含均匀分散的气孔对其热传导 有何影响
一般在温度不是很高,而且气孔率也不大,气孔尺寸很小, 又均匀地分散在陶瓷介质中时,这样的气孔就可看作为一分 散相。陶瓷材料的热导率按下式计算:
c 1 2v0 1 d =0 c 1 vd 1 d 2c 1 d c 1 d
第三章
材料的光学性能
---习题讲解
1. 试述光与固体材料的作用机理
在固体材料中出现的光学现象是电磁辐射与固体材料中的 原子、离子或电子之间相互作用的结果。一般存在两种作 用机理: 一是电子极化,即在可见光范围内,电场分量与传播过程 中遇到的每一个原子都发生相互作用,引起电子极化,即 造成电子云和原子核的电荷中心发生相互位移,所以当光 通过介质时,一部分能量被吸收同时光速减小,后者导致 折射。 二是电子能态转变:即电磁波的吸收和发射包含电子从一 种能态向另一种能态转变的过程。材料的原子吸收了光子 的能量之后可将较低能级的电子激发到较高能级上去,电 子发生的能级变化与电磁波频率有关。
质点在平衡位置两侧时受力的情况并不对称,在质 点平衡位置r0的两侧,合力曲线的斜率是不等的,
当r< r0时,曲线的斜率较大,r> r0时,斜率较小, 所以r< r0时,斥力随位移增大得很快,r> r0时,引力 随位移的增大要慢些,在这样的受力情况下,质点 振动时的平均位置就不在r0处而要向右移,因此相邻 质点间平均距离增加,温度越高,振幅越大,质点 在r0两侧受力不对称情况越显著,平衡位置向右移 动得越多,相邻质点间平均距离也就增加得越多, 以致晶胞参数增大,晶体膨胀。 从位能曲线的非对称性同样可以得到较具体的解释, 温度愈高,平均位置移得愈远,晶体就愈膨胀。
《材料物理性能》课后习题答案

《材料物理性能》课后习题答案课后习题《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al2O3(E=380GPa)和5%的玻璃相(E=84GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5%的气孔,再估算其上限和下限弹性模量。
解:令E1=380GPa,E2=84GPa,V1=0.95,V2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E0(1-1.9P+0.9P2)可得,其上、下限弹性模量分别变为331.3 GPa和293.1GPa。
1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t=0,t=和t=时的纵坐标表达式。
解:Maxwell模型可以较好地模拟应力松弛过程:Voigt模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
如采用四元模型来表示线性高聚物的蠕变过程等。
FττNτ60°53°Ф3mm1-11一圆柱形Al2O3晶体受轴向拉力F,若其临界抗剪强度τf为135MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解:第二章脆性断裂和强度2-1求融熔石英的结合强度,设估计的表面能力为1.75J/m2;Si-O的平衡原子间距为1.6*10-8cm;弹性模量从60到75Gpa =2-2融熔石英玻璃的性能参数为:E=73Gpa;γ=1.56J/m2;理论强度σth=28Gpa。
如材料中存在最大长度为2μm的内裂,且此内裂垂直于作用力方向,计算由此导致的强度折减系数。
无机材料物理性能试题及答案

无机材料物理性能试题及答案无机材料物理性能试题及答案一、填空题(每题2分,共36分)1、电子电导时,载流子的主要散射机构有中性杂质的散射、位错散射、电离杂质的散射、晶格振动的散射。
2、无机材料的热容与材料结构的关系不大,CaO和SiO2的混合物与CaSiO3的热容-温度曲线基本一致。
3、离子晶体中的电导主要为离子电导。
可以分为两类:固有离子电导(本征电导)和杂质电导。
在高温下本征电导特别显着,在低温下杂质电导最为显着。
4、固体材料质点间结合力越强,热膨胀系数越小。
5、电流吸收现象主要发生在离子电导为主的陶瓷材料中。
电子电导为主的陶瓷材料,因电子迁移率很高,所以不存在空间电荷和吸收电流现象。
6、导电材料中载流子是离子、电子和空位。
7. 电子电导具有霍尔效应,离子电导具有电解效应,从而可以通过这两种效应检查材料中载流子的类型。
8. 非晶体的导热率(不考虑光子导热的贡献)在所有温度下都比晶体的小。
在高温下,二者的导热率比较接近。
9. 固体材料的热膨胀的本质为:点阵结构中的质点间平均距离随着温度升高而增大。
10. 电导率的一般表达式为∑=∑=iiiiiqnμσσ。
其各参数ni、qi和?i的含义分别是载流子的浓度、载流子的电荷量、载流子的迁移率。
11. 晶体结构愈复杂,晶格振动的非线性程度愈大。
格波受到的散射大,因此声子的平均自由程小,热导率低。
12、波矢和频率之间的关系为色散关系。
13、对于热射线高度透明的材料,它们的光子传导效应较大,但是在有微小气孔存在时,由于气孔与固体间折射率有很大的差异,使这些微气孔形成了散射中心,导致透明度强烈降低。
14、大多数烧结陶瓷材料的光子传导率要比单晶和玻璃小1~3数量级,其原因是前者有微量的气孔存在,从而显着地降低射线的传播,导致光子自由程显着减小。
15、当光照射到光滑材料表面时,发生镜面反射;当光照射到粗糙的材料表面时,发生漫反射。
16、作为乳浊剂必须满足:具有与基体显着不同的折射率,能够形成小颗粒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解: 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: 以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
如采用四元件模型来表示线性高聚物的蠕变过程等。
第二章 脆性断裂和强度)(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82332min 2MPa Pa N F F f =⨯=︒︒⨯⨯=⨯=︒⨯︒⨯=⇒︒⨯︒=πσπτπτ:此拉力下的法向应力为为:系统的剪切强度可表示由题意得图示方向滑移2-1 求融熔石英的结合强度,设估计的表面能力为1.75J/m 2; Si-O 的平衡原子间距为1.6*10-8cm;弹性模量从60到75Gpaa E th γσ==GPa 64.28~62.2510*6.175.1*10*)75~60(109=- 2-2 融熔石英玻璃的性能参数为:E=73 Gpa ;γ=1.56 J/m 2;理论强度σth=28 Gpa 。
如材料中存在最大长度为2μm 的内裂,且此内裂垂直于作用力方向,计算由此导致的强度折减系数。
2c=2μm c=1*10-6mc E c πγσ2==GPa 269.010*1*14.356.1*10*73*269=- 强度折减系数=1-0.269/28=0.992-5 一钢板受有长向拉应力350MPa ,如在材料中有一垂直于拉应力方向的中心穿透缺陷,长8mm(=2c)。
此钢材的屈服强度为1400 MPa ,计算塑性区尺寸r 0及其裂缝半长c 的比值。
讨论用此试件来求K IC 值的可能性。
c Y K σ=I =c .σπ=39.23Mpa.m 1/2=>==π151031.04/125.0/0c r >0.021 用此试件来求K IC 值的不可能。
2-6 一陶瓷零件上有一垂直于拉应力的边裂,如边裂长度为:(1)2mm;(2)0.049mm;(3)2 um, 分别求上述三种情况下的临界应力。
设此材料的断裂韧性为1.62MPa.m 2。
讨论讲结果。
解:c Y K I σ= Y=1.12π=1.98c K I98.1=σ=2/1818.0-c (1)c=2mm, MPa c 25.1810*2/818.03==-σ (2)c=0.049mm, MPa c 58.11610*049.0/818.03==-σ(3)(3)c=2um, MPa c 04.57710*2/818.06==-σ2-4 一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图。
如果E=380 Gpa ,μ=0.24,求K Ic 值,设极限荷载达50Kg 。
计算此材料的断裂表面能。
解 c/W=0.1, Pc=50*9.8N ,B=10, W=10,S=40 代入下式:])/(7.38)/(6.37)/(8.21)/(6.4)/(9.2[2/92/72/52/32/12/3W c W c W c W c W c BWS P K c IC +-+-== ]1.0*7.381.0*6.371.0*8.211.0*6.41.0*9.2[010.0*1040*8.9*502/92/72/52/32/12/3+-+-=62*(0.917-0.145+0.069-0.012+0.0012)=1.96*0.83==1.63Pam 1/228.3)10*380*2/(94.0*)10*63.1(2)1(92622==-=E K IC μγ J/m 2第三章 材料的热学性能2-3 一热机部件由反应烧结氮化硅制成,其热导率λ=0.184J/(cm.s.℃),最大厚度=120mm.如果表面热传递系数h=0.05 J/(cm 2.s.℃),假定形状因子S=1,估算可兹应用的热冲击最大允许温差。
解:h r S R T m m 31.01⨯'=∆ =226*0.18405.0*6*31.01 ==447℃2-1 计算室温(298K )及高温(1273K )时莫来石瓷的摩尔热容值,并请和按杜龙-伯蒂规律计算的结果比较。
(1) 当T=298K ,Cp=a+bT+cT -2=87.55+14.96*10-3*298-26.68*105/2982=87.55+4.46-30.04=61.97 *4.18J/mol.K(2) 当T=1273K ,Cp=a+bT+cT -2=87.55+14.96*10-3*1293-26.68*105/12732=87.55+19.34-1.65=105.24*4.18J/mol.K=438.9 J/mol.K据杜隆-珀替定律:(3Al 2O 3.2SiO 4)Cp=21*24。
94=523.74 J/mol.K2-2 康宁1723玻璃(硅酸铝玻璃)具有下列性能参数:λ=0.021J/(cm.s.℃); α=4.6*10-6/℃;σp=7.0Kg/mm 2.E=6700Kg/mm 2,μ=0.25.求第一及第二热冲击断裂抵抗因子。
第一冲击断裂抵抗因子:ER f αμσ)1(-= =66610*8.9*6700*10*6.475.0*10*8.9*7- =170℃ 第二冲击断裂抵抗因子:ER f αμλσ)1(-=' =170*0.021=3.57 J/(cm.s)第四章 材料的光学性能3-1.一入射光以较小的入射角i 和折射角r 通过一透明明玻璃板,若玻璃对光的衰减可忽略不计,试证明明透过后的光强为(1-m)2 解:ri n sin sin 21= W = W’ + W’’ m WW W W m n n W W -=-=∴=⎪⎪⎭⎫ ⎝⎛+-=1'1"11'22121其折射光又从玻璃与空气的另一界面射入空气 则()21'"1"'"m WW m W W -=∴-= 3-2 光通过一块厚度为1mm 的透明Al 2O 3板后强度降低了15%,试计算其吸收和散射系数的总和。
解:第五章 材料的电导性能4-1 实验测出离子型电导体的电导率与温度的相关数据,经数学回归分析得出关系式为:TB A 1lg +=σ (1) 试求在测量温度范围内的电导活化能表达式。
(2) 若给定T1=500K ,σ1=10-9(1).-ΩcmT2=1000K ,σ2=10-6(1).-Ωcm计算电导活化能的值。
解:(1))/(10T B A +=σ10ln )/(T B A e +=σ=)/.10(ln 10ln T B A e e =)/(1kT W e A -W=k B ..10ln - 式中k=)/(10*84.04K eV -(2) 500/10lg 9B A +=-B=-3000W=-ln10.(-3)*0.86*10-4*500=5.94*10-4*500=0.594eV4-3本征半导体中,从价带激发至导带的电子和价带产生的空穴参与电导。
激发的电子数n 可近似表示为:)2/ex p(kT E N n g -=,式中N 为状态密度,k 为波尔兹曼常数,T 为绝对温度。
试回答以下问题:(1)设N=1023cm -3,k=8.6”*10-5eV.K -1时, Si(Eg=1.1eV),TiO 2(Eg=3.0eV)在室温(20℃)和500℃时所激发的电子数(cm -3)各是多少:(2)半导体的电导率σ(Ω-1.cm -1)可表示为μσne =,式中n 为载流子浓度(cm -3),e 为载流子电荷(电荷1.6*10-19C ),μ为迁移率(cm 2.V -1.s -1)当电子(e )和空穴(h )同时为载流子时,h h e e e n e n μμσ+=。
假定Si 的迁移率μe=1450(cm 2.V -1.s -1),μh=500(cm 2.V -1.s -1),且不随温度变化。
求Si 在室温(20℃)和500℃时的电导率解:(1) Si20℃ )298*10*6.8*2/(1.1ex p(10523--=n =1023*e -21.83=3.32*1013cm -3500℃ )773*10*6.8*2/(1.1ex p(10523--=n =1023*e -8=2.55*1019 cm -3TiO 220℃ )298*10*6.8*2/(0.3ex p(10523--=n=1.4*10-3 cm -3500℃ )773*10*6.8*2/(0.3ex p(10523--=n=1.6*1013 cm -3(2) 20 ℃h h e e e n e n μμσ+==3.32*1013*1.6*10-19(1450+500)=1.03*10-2(Ω-1.cm -1)500℃ h h e e e n e n μμσ+==2.55*1019*1.6*10-19(1450+500)=7956 (Ω-1.cm -1)4-2. 根据缺陷化学原理推导(1)ZnO 电导率与氧分压的关系。
(4)讨论添加Al 2O 3对NiO 电导率的影响。
解:(1)间隙离子型:2212O e Zn ZnO i +'+⇔∙∙ []6/12-∝'O P e 或221O e Zn ZnO i +'+⇔∙ []4/12-∝'O P e (4)添加Al 2O 3对NiO :添加Al 2O 3对NiO 后形成阳离子空位多,提高了电导率。