10年图论试题
图论习题课——精选推荐

图论习题课⼀、填空题1、对下列图,试填下表(是??类图的打〝√ 〞,否则打〝?〞)。
①②③2、若图G=中具有⼀条汉密尔顿回路,则对于结点集V 的每个⾮空⼦集S ,在 G 中删除S 中的所有结点得到的连通分⽀数为W ,则S 中结点数|S|与W 满⾜的关系式为。
3、设有向图D 为欧拉图,则图D 中每个结点的⼊度.4、数组{1,2,3,4,4}是⼀个能构成⽆向简单图的度数序列,此命题的真值是 .5、“3,3K 是欧拉图也是哈密顿图”这句话是_______。
(填对或错)6、极⼤可平⾯图的每⼀个⾯的次数都是_________.7、5阶完全图的边连通度是.8、图G是2-⾊的当且仅当G是.⼆、选择题1、下列⽆向图可能不是偶图的是( )(A) ⾮平凡的树(B)⽆奇圈的⾮平凡图(C) n(1)n ⽅体图(D) 平⾯图2、关于平⾯图,下列说法错误的是( )(A) 简单连通平⾯图中⾄少有⼀个度数不超过5的顶点;(B)极⼤外平⾯图的内部⾯是三⾓形,外部⾯也是三⾓形;(C) 存在⼀种⽅法,总可以把平⾯图的任意⼀个内部⾯转化为外部⾯;(D) 平⾯图的对偶图也是平⾯图。
3、已知图G的邻接矩阵为,则G有().A.5点,8边B.6点,7边C.6点,8边D.5点,7边4、设图G=,则下列结论成⽴的是( ).A.deg(V)=2∣E∣B.deg(V)=∣E∣C.EvVv2)deg(=∑∈D.Vv=∑∈)deg(5、设完全图K n有n个结点(n≥2),m条边,当()时,K n中存在欧拉回路.A.m为奇数B.n为偶数C.n为奇数D.m为偶数6、设G是连通平⾯图,有v个结点,e条边,r个⾯,则r= ( ).A.e-v+2 B.v+e-2 C.e-v-2 D.e+v+27、下列定义正确的是( ).A含平⾏边或环的图称为多重B不含平⾏边或环的图称为简单图C含平⾏边和环的图称为多重D不含平⾏边和环的图称为简单图8、以下结论正确是( ).A仅有⼀个孤⽴结点构成的图是零图B⽆向完全图Kn每个结点的度数是nC有n(n>1)个孤⽴结点构成的图是平凡图D图中的基本回路都是简单回路9、下列数组能构成简单图的是( ).(A) (0,1,2,3) (B) (2,3,3,3) (C) (3,3,3,3) (D) (4,2,3,3)10、n阶⽆向完全图Kn中的边数为().(A) 2)1(+nn(B) 2)1(-nn(C) n (D)n(n+1)11、以下命题正确的是( ).(A) n(n≥1)阶完全图Kn都是欧拉图(B) n(n≥1)阶完全图Kn都是哈密顿图(C) 连通且满⾜m=n-1的图(∣V∣=n,∣E∣=m)是树(D) n(n≥5)阶完全图Kn都是平⾯图12、下列结论不正确是( ).(A) ⽆向连通图G是欧拉图的充分必要条件是G不含奇数度结点(B) ⽆向连通图G有欧拉路的充分必要条件是G最多有两个奇数度结点(C) 有向连通图D是欧拉图的充分必要条件是D的每个结点的⼊度等于出度(D) 有向连通图D有有向欧拉路的充分必要条件是除两个结点外,每个结点的⼊度等于出度13、⽆向完全图K4是().(A)欧拉图(B)哈密顿图(C)树(D)平⾯图14、在如下各图中()欧拉图。
图论复习题

连通度: κ (G) = min{| V|| V是 G 的顶点割集} 。 完全图的连通度定义为κ (Kν) =ν − 1 。空图的连通度 定义为0。
v
2
1
证:(a)若 G 不连通,可分为两个顶点数分别为
v1,v2的互不连通子图 G1,G2。
易v知i 1,(i 1,2),v1 v2 v 于是
(G )
v1 2
v2 2
v1(v1 2
1)
v2 (v2 2
1)
(v
1)(v1 2
•确定下列给定图类的点连通度和边连通度.
(Pl ) (Pl ) 1 (Kn ) (Kn ) n 1
(Cn ) (Cn ) 2 (Kl,n ) (Kl,n ) l
• 由定义我们可以确定对于图的任一点和任意一条边, 有下列性质成立
定义为0。
注:(1)对平凡图或不连通图G, (G) 0 。 (2)若图G 是含有割边的连通图,则 (G) 1 。 (3)若 (G) k ,则称G 为k-边连通的。
(4)所有非平凡连通图都是1-边连通的。
(5)使得 E (G) 的边割集 E称为G 的最小边割
集。
(G) 1 (G x) (G) 1 (G xy) (G)
定理3.1 .
证明:先证 (G) (G) 。 若G 不连通,则 (G) (G) 0 。 若G 是完全图,则 (G) (G) 1 。
《图论》练习题201410

《图论》练习题(2014)1、利用Dijkstra 算法求下图中顶点0v 到其它各顶点的距离,并写出到顶点8v 的最短路。
2、1、列出色数3为的三个图: 。
2、p 阶完全图的色数为: 。
3、p 阶树的邻接多项式为: 。
4、p 阶完全图的邻接多项式为: 。
5、如下图所示的图的邻接矩阵为 ,关联矩阵为 。
6、度序列为(2,2,2,2,2,2)的简单图是 。
7、是否存在度序列为(2,2,3,4,5,6),(1,2,3,4,4,5)的简单图?若存在,给出一个图;若不存在,请说明理由。
8、画出如下图的所有生成子图。
9、设图G 如下图所示,求该图的生成树个数)(G 。
v 2v 6v 4v 610、已知图G (V 、E ),画出G -V 5,G -v 3v 4,G[{v 2,v 3,v 5}],G[{v 3v 4,v 4,v 6,v 7v 8}]G :11、已知图G 的邻接矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2111102112011111A ,画出G ,并求出度序列。
12、证明:偶图G 的任意子图H 仍为偶图。
13、证明:设图G (V 、E )的度序列为(p d d d ,,,21 ),边数为q ,则q i d pi 21==∑14、证明:在任何图中,奇顶点个数为偶数。
15、证明:整数序列(6,6,5,4,3,3,1)不可能为一个简单图的图序列。
16、证明顶点度数均为2的简单连通图是圈。
17、证明非平凡树T 的边连通度为'()1T κ=。
18、n 阶完全图n K 的连通度为()1T n κ=-。
19、设G 是一个p 阶图,且()()21,-≥∈∀p v d G V v ,则G 连通图。
20、若图G 是 不连通的,则其补图G C 是连通的。
21、证明:设G 是由1G 和2G 两个连通分支组成的图,则);();();(21x G P x G P x G P =。
v 1v 2v 3v 4v 5v 6v 8v 722、证明:设G 是由1G 和2G 两个连通分支组成的图,则)}(),(max{)(21G G G χχχ=。
图论与组合数学期末复习试题含答案

图论与组合数学期末复习试题含答案组合数学部分第1章排列与组合例1:1)、求⼩于10000的含1的正整数的个数;2、)求⼩于10000的含0的正整数的个数;解:1)、⼩于10000的不含1的正整数可看做4位数,但0000除外.故有9×9×9×9-1=6560个.含1的有:9999-6560=3439个2)、“含0”和“含1”不可直接套⽤。
0019含1但不含0。
在组合的习题中有许多类似的隐含的规定,要特别留神。
不含0的1位数有19个,2位数有29个,3位数有39个,4位数有49个不含0⼩于10000的正整数有()()73801919999954321=--=+++个含0⼩于10000的正整数9999-7380=2619个。
例2:从[1,300]中取3个不同的数,使这3个数的和能被3整除,有多少种⽅案?解:将[1,300]分成3类:A={i|i ≡1(mod 3)}={1,4,7,…,298},B={i|i ≡2(mod 3)}={2,5,8,…,299},C={i|i ≡0(mod 3)}={3,6,9,…,300}.要满⾜条件,有四种解法:1)、3个数同属于A;2)、3个数同属于B ;3)、3个数同属于C;4)、A,B,C 各取⼀数;故共有3C(100,3)+1003=485100+1000000=1485100。
例3:(Cayley 定理:过n 个有标志顶点的数的数⽬等于2-n n )1)、写出右图所对应的序列;2)、写出序列22314所对应的序列;解:1)、按照叶⼦节点从⼩到⼤的顺序依次去掉节点(包含与此叶⼦节点相连接的线),⽽与这个去掉的叶⼦节点相邻的另外⼀个内点值则记⼊序列。
如上图所⽰,先去掉最⼩的叶⼦节点②,与其相邻的内点为⑤,然后去掉叶⼦节点③,与其相邻的内点为①,直到只剩下两个节点相邻为⽌,则最终序列为51155.。
2)、⾸先依据给定序列写出(序列长度+2)个递增序列,即1234567,再将给出序列按从⼩到⼤顺序依次排列并插⼊递增序列得到:112223344567。
图论复习题

图论复习题(二)图论复习题一、选择题1.设图G =<V , E >,v ∈V ,则下列结论成立的是 ( C ) . A .deg(v )=2∣E ∣ B . deg(v )=∣E ∣ C .E v Vv 2)deg(=∑∈ [PPT 23] D .Ev Vv =∑∈)deg(定理1 图G=(V ,E )中,所有点的次之和为边数的两倍 2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110则G 的边数为( B ).A .6B .5C .4D .33、 设完全图K n 有n 个结点(n ≥2),m 条边,当( C )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数解释:K n 每个结点的度都为n -1,所以若存在欧拉回路则n -1必为偶数。
n 必为奇数。
4.欧拉回路是( B )A. 路径B. 简单回路[PPT 40]C. 既是基本回路也是简单回路D.既非基本回路也非简单回路5.哈密尔顿回路是( C )A. 路径B. 简单回路C. 既是基本回路也是简单回路D.既非基本回路也非简单回路[PPT 40]:哈密尔顿回路要求走遍所有的点,即是基本回路的点不重复,也可以是简单回路的边不重复。
6.设G 是简单有向图,可达矩阵P(G)刻划下列关系中的是( C ) A 、点与边 B 、边与点 C 、点与点 D 、边与边7.下列哪一种图不一定是树(C )。
A.无简单回路的连通图B. 有n 个顶点n-1条边的连通图C. 每对顶点间都有通路的图D. 连通但删去一条边便不连通的图8.在有n 个结点的连通图中,其边数(B )A.最多有n-1条B.至少有n-1条C.最多有n 条D.至少有n 条9.下列图为树的是(C )。
A 、>><><><=<},,,,,{},,,,{1d c b a a a d c b a GB 、>><><><=<},,,,,{},,,,{2d c d b b a d c b a GC 、>><><><=<},,,,,{},,,,{3a c d a b a d c b a GD 、>><><><=<},,,,,{},,,,{4d d c a b a d c b a G 10、下面的图7-22是(C )。
离散数学图论部分经典试题及答案

离散数学图论部分经典试题及答案离散数学图论部分综合练习⼀、单项选择题1.设图G 的邻接矩阵为0101010010000011100100110则G 的边数为( ).A .6B .5C .4D .32.已知图G 的邻接矩阵为,则G 有().A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =,则下列结论成⽴的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(4.图G 如图⼀所⽰,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集5.如图⼆所⽰,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所⽰,以下说法正确的是 ( ) .A .{(a, e )}是割边B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d , e )}是边割集οοοοοca b edο f图⼀图⼆图三7.设有向图(a )、(b )、(c )与(d )如图四所⽰,则下列结论成⽴的是 ( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的应该填写:D8.设完全图K n 有n 个结点(n ≥2),m 条边,当()时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数 9.设G 是连通平⾯图,有v 个结点,e 条边,r 个⾯,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +2 10.⽆向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中⾄多有两个奇数度结点C .G 连通且所有结点的度数全为偶数 D .G 连通且⾄多有两个奇数度结点11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的⼀棵⽣成树.A .1m n -+B .m n -C .1m n ++D .1n m -+ 12.⽆向简单图G 是棵树,当且仅当( ).A .G 连通且边数⽐结点数少1B .G 连通且结点数⽐边数少1C .G 的边数⽐结点数少1D .G 中没有回路.⼆、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是. 2.设给定图G (如图四所⽰),则图G 的点割οοοοc a b f集是.3.若图G=中具有⼀条汉密尔顿回路,则对于结点集V 的每个⾮空⼦集S ,在G 中删除S 中的所有结点得到的连通分⽀数为W ,则S 中结点数|S|与W 满⾜的关系式为.4.⽆向图G 存在欧拉回路,当且仅当G 连通且.5.设有向图D 为欧拉图,则图D 中每个结点的⼊度.应该填写:等于出度6.设完全图K n 有n 个结点(n 2),m 条边,当时,K n 中存在欧拉回路.7.设G 是连通平⾯图,v , e , r 分别表⽰G 的结点数,边数和⾯数,则v ,e 和r 满⾜的关系式.8.设连通平⾯图G 的结点数为5,边数为6,则⾯数为. 9.结点数v 与边数e 满⾜关系的⽆向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去条边后使之变成树.11.已知⼀棵⽆向树T 中有8个结点,4度,3度,2度的分⽀点各⼀个,T 的树叶数为.12.设G =是有6个结点,8条边的连通图,则从G 中删去条边,可以确定图G 的⼀棵⽣成树.13.给定⼀个序列集合{000,001,01,10,0},若去掉其中的元素,则该序列集合构成前缀码.三、判断说明题1.如图六所⽰的图G 存在⼀条欧拉回路.2.给定两个图G 1,G 2(如图七所⽰):(1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由.(2)若是欧拉图,请写出⼀条欧拉回路.v 123图六图七3.判别图G (如图⼋所⽰)是不是平⾯图,并说明理由.4.设G 是⼀个有6个结点14条边的连通图,则G 为平⾯图.四、计算题1.设图G =,其中V ={a 1, a 2, a 3, a 4, a 5},E ={,,,,}(1)试给出G 的图形表⽰;(2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图?2.设图G =,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表⽰;(2)写出其邻接矩阵;(2)求出每个结点的度数;(4)画出图G 的补图的图形. 3.设G =,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试(1)给出G 的图形表⽰;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出其补图的图形. 4.图G =,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G 的图形;(2)写出G 的邻接矩阵;(3)求出G 权最⼩的⽣成树及其权值.5.⽤Dijkstra 算法求右图中A 点到其它各点的最短路径。
图论试题及答案解析图片

图论试题及答案解析图片一、选择题1. 图论中,图的基本元素是什么?A. 点和线B. 点和面C. 线和面D. 点和边答案:A2. 在无向图中,如果两个顶点之间存在一条边,则称这两个顶点是:A. 相邻的B. 相连的C. 相等的D. 相异的答案:A3. 在有向图中,如果从顶点A到顶点B有一条有向边,则称顶点A是顶点B的:A. 父顶点B. 子顶点C. 邻接顶点D. 非邻接顶点答案:B4. 一个图的度是指:A. 图中顶点的总数B. 图中边的总数C. 一个顶点的边数D. 图的连通性答案:C5. 一个图是连通的,当且仅当:A. 图中任意两个顶点都是相邻的B. 图中任意两个顶点都可以通过边相连C. 图中任意两个顶点都可以通过路径相连D. 图中任意两个顶点都可以通过子顶点相连答案:C二、填空题1. 在图论中,一个顶点的度数是该顶点的________。
答案:边数2. 如果一个图的任意两个顶点都可以通过边相连,则称该图为________。
答案:完全图3. 一个图中,如果存在一个顶点到其他所有顶点都有边相连,则称该顶点为________。
答案:中心顶点4. 图论中,最短路径问题是指在图中找到两个顶点之间的________。
答案:最短路径5. 如果一个图的任意两个顶点都可以通过有向路径相连,则称该图为________。
答案:强连通图三、简答题1. 请简述图论中的欧拉路径和哈密顿路径的定义。
答案:欧拉路径是指在图中经过每条边恰好一次的路径,而哈密顿路径是指在图中经过每个顶点恰好一次的路径。
2. 什么是图的着色问题?答案:图的着色问题是指将图中的顶点用不同的颜色进行标记,使得相邻的两个顶点颜色不同。
四、计算题1. 给定一个无向图G,顶点集为{A, B, C, D, E},边集为{AB, BC, CD, DE, EA},请画出该图,并计算其最小生成树的权重。
答案:首先画出图G的示意图,然后使用克鲁斯卡尔算法或普里姆算法计算最小生成树的权重。
图论期末复习题

17.任何简单平面图,均有. G 3
二、解答题
1.同构的判定及理由
3.左图称作什么图?两图是否同 构?为什么?
x
y
z
x
c
a
a
b
c
z
y b
2、给定图 :
(1)给出图 的一个生成树 。 (2)给出图 的顶点的最大度数 。
(3)给出图 的最长链。 (4)给出图 的一个边数最多的割集。
d
f
a
e1 b
在或不存在〕完美匹配.
35.在计算平面图面的次数之和时,每条边边计算了______ 次.
36.一个图是平面图当且仅当它既没有收缩到K5的子图, 也没有收缩到 的子图.
37.如果一个平面图有一个面的次数为4,那么该图______ 〔填是或不是〕极大平面图.
三、判断题
1.假设途径中的所有点互不相同,那么称此途径为一 条链.
31.设M1和M2是图G的两个不同匹配, 由M1 M2导出的G的边导出子图记作H, 那么H的任意连通分支是以下情况之一: (1)边在M1和M2中交错出现的偶圈;(2)边 在M1和M2中交错出现的 .
32.二部图G中假设满足V1= V2,那么G必有完美匹配. 33. (G)=2 G是 . 34.假设最大匹配的边数为p(G)/2,那么说明该图___〔填存
点连通度、边连通度与最小顶点的度数。
四、应用题
1. (蚂蚁比赛问题)甲、乙两只蚂蚁分别位于如以下图 中的顶点A,B处,并设图中的边长度是相等的。甲、 乙进行比赛:从它们所在的顶点出发,走过图中的所 有边最后到达顶点C处。如果它们的速度相同,问谁 先到达目的地?
甲A
乙
C
B
2.某地要兴建5个工厂,拟修筑道路连接这5 处。经勘测其道路可依如以下图无向边铺设。 为使这5处都有道路相通,问至少要铺几条路?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
(A)
(B)
(C)
(D)
3.关于欧拉图与哈密尔顿图的关系,下面说法正确的是( C (A) 欧拉图一定是哈密尔顿图; (B) 哈密尔顿图一定是欧拉图; (C) 存在既不是欧拉图又不是哈密尔顿图的图; (D) 欧拉图与哈密尔顿图都可以进行圈分解。 4.下列说法中正确的是( B ) (A)任意一个图均存在完美匹配; (B)k( k 1) 正则偶图一定存在完美匹配;
四.(8 分)求下图的最小生成树(不要求中间过程,只要求画出最 小生成树, 并给出 T 的权和) 。 解:T=1+1+1+1+1+4+3=12
2
五.(8 分)求下图的 k 色多项式。
G
解:该图的补图������ 如下图所示:
H2 H1
它有两个分支,对于h ������1 , x = ������ + ������ 2 对于 H2:N4 (G) = 1,N3 (G) = 4,N2 (G) = 2,N1 (G) = 0, h ������2 , x = 2������ 2 + 4������ 3 + ������ 4 所以 h ������ , x = (2������ 2 + 4������ 3 + ������ 4 )(������ + ������ 2 ) = 2������ 3 + 6������ 4 + 5������ 5 + ������ 6 于是 G 的色多项式 ������������ G = 2[������]3 + 6[������]4 + 5[������]5 + [������]6 六.(8 分)设 G 是一个边赋权完全图。如何求出 G 的最优哈密尔顿圈的权值的一 个下界?为什么? 解:参考教材 P88
u
2
1
4 1 2 3
5
3 6
(k )
2
4.设 A (aij )nn 是图 G 的推广的邻接矩阵,则 Ak (aij )nn (k 是正整数) G1 (k ) 的 aij 表示的意义为_由 vi 到 vj 的长度为 n 的通道数目; 5. 设 G K n ,则 G 的谱 SpecA(G) = −1
)
(C)匈牙利算法不能求出偶图的最大匹配,只能用它求偶图的完美匹配; (D)图 G 的一个完美匹配实际上就是它的一个 1 因子。 三. (10 分)若阶为 25 且边数为 62 的图 G 的每个顶点的度只可能为 3,4,5 或 6, 且有两个度为 4 的顶点,11 个度为 6 的顶点,求 G 中 5 度顶点的个数。 解:设 5 度顶点的个数为 x,则 2 ∗ 4 + 11 ∗ 6 + 5x + 3 25 − 11 − 4 − x = 2 ∗ 62 解得,x=?,所以……
……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………
电子科技大学研究生试卷
(考试时间:至,共__2_小时) 课程名称图论及其应用教师学时 60 学分 教学方式讲授考核日期_2010__年___月____日成绩 考核方式: (学生填写)
九.(10 分)一家公司计划建造一个动物园,他们打算饲养下面这些动物:狒狒(b)、 狐狸(f)、山羊(g)、土狼(h)、非洲大羚羊(k)、狮子(l)、豪猪(p)、兔子(r)、鼩鼱 (s)、羚羊(w)和斑马(z)。根据经验,动物的饮食习惯为:狒狒喜欢吃山羊、非洲大 羚羊(幼年)、兔子和鼩鼱;狐狸喜欢吃山羊、豪猪、兔子和鼩鼱;土狼喜欢吃山羊、 非洲大羚羊、羚羊和斑马;狮子喜欢吃山羊、非洲大羚羊、羚羊和斑马;豪猪喜欢 吃鼩鼱和兔子;而其余的则喜欢吃虫子、蚯蚓、草或其它植物。公司将饲养这些动 物,希望它们能自由活动但不能相互捕食。求这些动物的一个分组,使得需要的围 栏数最少。(要求用图论方法求解) 解:略
十.(8 分)求证,每个 5 连通简单可平面图至少有 12 个顶点。 证明:设 G 是 5 连通图,则:k(G) ≥ 5 由惠特尼定理得:δ(G) ≥ k(G) ≥ 5 所以2������ =
������ϵv(G) ������
v ≥ 5������
另一方面:G 是 5 连通简单可平面图,所以有 m ≤ 3n − 6, 联立两个不等式得,2.5n ≤ m ≤ 3n − 6 所以n ≥ 12
七.(8 分)求证:设 Gl 是赋权完全偶图 G Kn,n 的可行顶点标号 l 对应的相等子图, 若 M 是 Gl 的完美匹配,则它必为 G 的最优匹配。
八.(8 分) 求证:若 n 为偶数,且 (G )
n 1,则 G 中存在 3 因子。 2
3
证明:因δ (G)≥n/2+1 ,由狄拉克定理:n 阶图 G 有 H 圈 C .又因 n 为偶数,所以 C 为偶圈。于是由 C 可得到 G 的两个 1 因子。设其中一个为 F1。考虑 G1=G-F1。则 δ(G1)≥n/2。于是 G1 中有 H 圈 C1.作 H=C1∪F1。显然 H 是 G 的一个 3 因子。
n−1 n−1 ; 1
v
学号姓名学院
6.设 8 阶图 G 中没有三角形,则 G 能够含有的最多边数为___16___; 7. 三角形图的生成树的棵数为___3___; 8. G2 的点连通度与边连通度分别为__3 和 3__;
9.n=5 的度极大非 H 图族为������1,5 , ������2,5 ; 10. n 方体( n 1 )的点色数为___2__;边色数为___n__。
G2
1
二.单项选择(每题 3 分,共 12 分) 1.下面命题正确的是( D ) (A) 任意一个非负整数序列均是某图的度序列; (B) 设非负整数序列 (d1, d2 ,, dn ) ,则 是图序列当且仅当 d i 为偶数;
i 1 n
(C) 若非负整数序列 (d1, d2 ,, dn ) 是图序列,则 对应的不同构的图一定 唯一; (D) n 阶图 G 和它的补图 G 有相同的频序列. 2.下列有向图中是强连通图的是( A )
一.填空题(每题 2 分,共 20 分) 1.若自补图 G 的顶点数是 n ,则 G 的边数 m(G) =
������(������−������) ������
;
2. 若图 G1 (n1 , m1 ) , 则它们的联图 G G1 G2 的顶点数=������1 + ������2 ; G2 ቤተ መጻሕፍቲ ባይዱn2 , m2 ) , 边数=_������1 + ������2 + ������1 ������2 ; 3.下图 G1 中 u 与 v 间的最短路的长度为_6_;