小学三年级数学重叠问题
完整版三年级重叠问题

重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5 份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理一一包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?【思路导航】根据题意,画出下图:从图上可以看出,从前数起红旗是第8面,从后数起是第10面,这样红旗就数了两次,重复了一次,所以这行彩旗共有8+ 10 —仁17面。
练习1 :1. 小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2. 学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?3. 同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。
这一排共有多少个同学?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?【思路导航】根据题意,画出下图:0OO0OO0OOO OOCOOOOOOO IOOOOOOOOOO B roooooooooo^ OOOOO00OO0 OOOOOOOQD0 左由图可看出:小明的位置从左数第4个,右数第3个,说明横行有4 + 3 —仁6个人;从前数第5个,从后数第6个,说明竖行有5 + 6 —仁10人,所以做操的同学共有:6X 10=60人。
三年级---重叠问题

优优教育重叠问题一:例题1:有四块各长80 厘米的木板,把它们钉成一块木板(如图),中间钉在一起重叠的部分是10厘米,钉成的木板长多少厘米?2、把四根一样长的铁丝,每根长40 厘米,绑成一根长130厘米的长铁丝,那么每两根中间的重叠部分长多少厘米?3、二⑴班同学人人参加课外活动,有20人参加英语班,有26人参加电脑班。
其中4人两个班都参加。
二⑴班一共有多少人?4、20个同学报名参加美术组和舞蹈组,其中有16 人参加了美术组,12人参加了舞蹈组。
问两个小组都参加的有多少个同学?5、学校开设了自然和趣味数学两门选修课,每个同学至少要选一门,二(3) 班共有48 人,有30 人选了自然课,有13人两门都选了,那么选趣味数学课的同学有多少人?二:练习题1、把两根长20厘米的筷子用绳子捆成一根长筷子,中间捆在一起的重叠部分是3厘米,捆成的长筷子长多少厘米?2、小玲用胶水将两张同样长的纸黏成了一张长为80厘米的长纸条,其中黏在一起的部分长10厘米,这两张纸条各长多少厘米?3、史老师出了两道测试题,全班每个同学都至少答对了一道,答对第一道题的有30人,答对第二道题的有28人,两道都答对的有16人,那么全班同学总共有多少人?4、在一群小朋友中,有12人看过动画片《黑猫警长》,有21人看过动画片《大闹天宫》,并且有8人两部动画片都看过。
请问:这群小朋友一共有多少人?5、三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。
已知参加赛跑的有36人,参加跳绳的有38人。
两项比赛都参加的有几人?优优教育三:测试题1、有两块一样长的木板,钉在一起,如果每块木板长25厘米,中间钉在一起的长5厘米,现在长木板有多长?2、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?3、张老师出了两道题,做对第一题的有13人,做对第二题的有22人,两道题都做对的有8人,这个班一共有多少人?4、三(4)班做完语文作业的有37人,做完数学作业的有42人,两种作业都完成的有31人,每人至少完成一种作业。
《重叠问题》说课稿(通用3篇)

《重叠问题》说课稿(通用3篇)在教学工作者实际的教学活动中,往往要写一份优秀的说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。
那末优秀的说课稿是什么样的呢?下面是作者为大家采集的《重叠问题》说课稿(通用3篇),欢迎大家借鉴与参考,希翼对大家有所匡助。
《重叠问题》说课稿1我说课的内容是:人教版义务教育课程标准实验教科书三年级《数学》下册第108页的数学广角例1,也就是重叠问题。
我先说说对教材的理解和认识。
一、说教材1、数学广角是新课程增设的内容,也是新教材的一大特色,其实它是属于小学奥数的一个教学内容,但是现在要拿来面对班学生进行教学,无疑在内容上要进行简化,在教学上要进行细化,不然的话就不能达到教学目标。
这节课的重叠问题是日常生活中应用比较广泛的数学知识。
集合的知识体系集合是比较系统、抽象的数学思想方法,是数学中最基本的思想。
从学生一开始学习数学,其实就已经在运用集合思想方法了,所以对集合有一定的生活经验和知识基础。
但还没有抽象成集合的思想。
而以后学习的平面图形之间的关系都要用到集合的思想,如,把一堆图形分类,需要一定的标准,这种分类思想就是集合理论的基础,所以集合的重要性由此可见一斑。
但这些都只是单独的一个集合圈。
本节课教材例1借助学生熟悉的题材,渗透了集合的有关思想,并利用直观图的方式求出两个小组的总人数。
教学要使学生理解用直观图(集合圈)表示“重叠现象”的方法,了解到直观图各部份的意义,特殊是重叠部份(交集)的意义,掌握根据直观图列式计算总数(两个集合的并集)的方法。
对于三年级学生来说,学习这部份内容,思维力度较强,有一定的挑战性。
2、说教学目标结合本课的教材内容和三年级学生认知水平,我制定了如下目标:知识与技能:使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。
过程与方法:使学生感知集合图的产生过程,初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。
人教版小学三年级数学下册第九单元重叠问题练习题

三年级数学第九单元重叠问题练习题1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?3、同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。
这一排共有多少个同学?4、同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?5、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?6、三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第 6个,从后数是第5个;从左数、从右数都是第3个。
三(4)班共有学生多少人?7、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?8、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
中间重合部分长11厘米,这两块木板各长多少厘米?9、两根木棍放在一起(如图),从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。
另一根木棍长多少厘米?10、三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。
已知参加赛跑的有36人,参加跳绳的有38人。
两项比赛都参加的有几人?11、两块木板各长75厘米,像下图这样钉成一块长130厘米的木板,中间重合部分是多少厘米?12、三(5)班有42名同学,会下象棋的有21名同学,会下围棋的有17名,两种棋都不会的有10名。
两种棋都会下的有多少名?13、三(4)班做完语文作业的有37人,做完数学作业的有42人,两种作业都完成的有31人,每人至少完成一种作业。
三(4)班共有学生多少人?14、两块木板各长90厘米,像下图这样钉成一块木板,中间重合部分是15厘米,这块钉在一起的木板总长多少厘米?15、三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种。
小学三年级奥数第19讲 重叠问题(含答案分析)

3、三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种。三年级既带矿泉水又带水果的小朋友有多少人?
4、三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。三(4)班共有学生多少人?
【思路导航】把等长的两块木板的一端钉起来,钉在一起的长度就是重叠部分,重叠的部分是16厘米,所以这两块木板的总长度是120+16=136厘米,每块木板的长度是136÷2=68厘米。
练习3:
1.把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
【思路导航】根据题意,画出下图:
图中间重叠部分表示两道题都做对的人数,把做第一道题和做对第二道题的人数加起来得21+18=39人,这39人比全班总人数36多出了39-36=3人,这多出的3人既在做对第一题的人数中算过,也在做对第二道题的人数中算过,即表示两道题都做对的人数。
练习4:
1.三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。已知参加赛跑的有36人,参加跳绳的有38人。两项比赛都参加的有几人?
2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。鲜花队共多少人?
【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?
练习3:
1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
【小学三年级奥数讲义】重叠问题

【小学三年级奥数讲义】重叠问题一、知识要点三( 1)班准备给参加班级绘画比赛的 16 位同学和参加朗读比赛的 12 位同学每人发一份纪念品,当中队长玲玲将 28 份纪念品发下去时,却多出 5 份,这是怎么回事?对了,因为有 5 位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了 5 份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练【例题 1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第 8 面;从后数起,红旗是第 10 面。
这行彩旗共多少面?练习 1:1、小朋友排队做操,小明从前数起排在第 4 个,从后数起排在第7 个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12 个,从右数起是第21 个。
这一行座位有多少个?【例题 2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第 4 个,从右数起是第 3 个,从前数起是第 5 个,从后数起是第 6 个。
做操的同学共有多少个?练习 2:1、同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第 4 个。
跳舞的共有多少人?2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2 个,从右数第 4 个;从前数第3 个,从后数第 5 个。
鲜花队共多少人?【例题 3】把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长 120 厘米,中间重叠部分是 16 厘米,这两块木板各长多少厘米?练习 3:1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30 厘米,中间重叠部分是 6 厘米,原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起,钉成一块长35 厘米的木板。
三年级重叠问题

1、学校组织看文艺表演,冬冬的座位从左数是第7个,从右数是第10个,这一行座位有多少个?2、为庆祝六一,小朋友们排成方形的鲜花队,无论从前、从后数,还是从左、从右数,李丽都在第5个,鲜花队一共有多少个小朋友?3、同学们排成方形的队伍跳集体舞,无论从前从后数,还是从左从右数,赵英都是第4个。
跳集体舞的一共有多少个同学?4、三(5)班同学参加了音乐、美术这两个课外兴趣小组。
已知参加音乐组的有32人,参加美术组的有30人,两个小组都参加的有10人。
三(5)班共有学生多少人5、三(1)班订《数学报》的有32人,订《语文报》的有30人,两份报纸都订的有10人,全班每人至少订一种报纸,三(1)班有学生多少人?6、、三(1)班有学生55人,每人至少参加跳绳和踢毽子比赛的一种,已知参加跳绳的有36人,参加踢毽子的有38人。
两项都参加的有几人?7、三(5)班有42名同学,会下象棋的有21名同学,会下围棋的有17名同学,两种都不会的有10名同学。
两种都会下的有多少名同学?8、学校乐器队招收了42名新学员,其中会拉小提琴的有25名,会弹电子琴的有22名,两项都不会的有3名。
两项都会的有多少名?9、三(6)班有学生55人,参加学校绘画比赛的有20人,既参加绘画比赛又参加书法比赛的有12人,两项比赛没参加的有14人。
参加书法比赛的有多少人?10、乐器兴趣小组有42人其中会弹钢琴的有27人,既会弹钢琴又会弹古筝的有16人,两项都不会的只有1人。
会弹古筝的有多少人?11、同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个;从前数是第5个,从后数是第6个。
做操的同学一共有多少个?12、三(4)班有学生56人,做对第一道思考题的有29人,做对第二道思考题的有27人,两道题都做错的有7人。
两道思考题都做对的有几人?13、学校排球、篮球共62个,排球比篮球多12个,排球、篮球各有多少个?14、甲、乙两车间共有工人260人,甲车间比乙车间少30人,甲、乙两车间各有工人多少人?15、某校五、六年级共有324人,六年级的人数比五年级多46人,这个学校五、六年级各有多少人?。
三年级奥数举一反三专题 第19讲 重叠问题

第19讲重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?练习1:1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?练习2:1、同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?练习3:1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重叠问题
学法指导:解答重叠问题,必须从条件入手认真分析,有时可以根据条件画一画图来帮助我们思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解题的方法。
例1、学校组织看文艺表演,冬冬的座位从左数是第7个,从右数是第10个,这一行座位有多少个?
分析与解答:根据题意画出图。
例2、为庆祝六一,小朋友们排成方形的鲜花队,无论从前、从后数,还是从左、从右数,李丽都在第5个,鲜花队一共有多少个小朋友?
[分析与解答]根据题意,画出下图:
这是一个方形的鲜花队,从图中可以看出;从前数或从后数,李丽都在第5个,所以李丽在的那竖行有5+5-1=9(个)小朋友;从左数或从右数,李丽也在第5个,所以李丽在的那横行也有5+5-1=9(个)小朋友。
在根据题中“排成方形的鲜花队”这个条件可以知道鲜花队有9行,每行有9个小朋友。
所以,鲜花队一共有9×9=81(个)小朋友,列式如下
试一试2、同学们排成方形的队伍跳集体舞,无论从前从后数,还是从左从右数,赵英都是第4个。
跳集体舞的一共有多少个同学?
例题3、三(5)班同学参加了音乐、美术这两个课外兴趣小组。
已知参加音乐
组的有32人,参加美术组的有30人,两个小组都参加的有10人。
三(5)班共有学生多少人
[分析与解答]根据题意,画出下图:
上图中,阴影部分表示两个都参加的10人,这10人既被包括在音乐组的32人,又被包括在美术组的30人,共被算过两次,重复多算了一次,所以要求三(5)班共有学生多少人,必须从32+30=62(人)中去掉多算了一次的10人,全班人数应是62-10=52(人)。
想一想:这道题还可以怎样解答?
试一试3、三(1)班订《数学报》的有32人,订《语文报》的有30人,两份报纸都订的有10人,全班每人至少订一种报纸,三(1)班有学生多少人?
例4、、三(1)班有学生55人,每人至少参加跳绳和踢毽子比赛的一种,已知参加跳绳的有36人,参加踢毽子的有38人。
两项都参加的有几人?
从上图可以看出,中间的重叠部分(阴影部分)表示两项比赛都参加的人数。
如果把跳绳的36人与踢毽子的38人加起来得36+38=74(人),这74人比全班总人数多了74-55=19(人),为什么会多19人?原来图中阴影部分表示的人数既在跳绳的人数中算过,又在踢毽子的人数中算过,这部分人数多算了一次,才多出了19人,所以这19人就是两项都参加的人数。
想一想:看看上图,说一说下面的算式分别求的是什么样?
55-36=19(人)55-38=17(人)38-(55-36)=19(人)
试一试4、三(1)有学生62人,订《小学生语文报》的有48人,订《小生数学报》的有52人,每人至少订一份报纸,两份报纸都订的有多少人才?
例题5、三(5)班有42名同学,会下象棋的有21名同学,会下围棋的有17名同学,两种都不会的有10名同学。
两种都会下的有多少名同学?
[分析与解答]根据“三(5)班有42名同学”和“两种棋都不会下的有21+17=38(名),这38名比会下一种棋的32名多了38-32=6(名),这多出的6名既在会下象棋的人数中算过,又在会下围棋的人数中算过,也就是两种棋都会下的同学人数。
试一试5、
学校乐器队招收了42名新学员,其中会拉小提琴的有25名,会弹电子琴的有22名,两项都不会的有3名。
两项都会的有多少名?
例题6、三(6)班有学生55人,参加学校绘画比赛的有20人,既参加绘画比赛又参加书法比赛的有12人,两项比赛没参加的有14人。
参加书法比赛的有多少人?
[分析与解答]根据“三(6)班有学生55人”和“两项比赛都参加的有14人这两个条件,可以得出至少参加一项比赛的有55-14=41(人),画出下图:
从上图可以看出,参加书法比赛的人数包括两个部分:一部分是没有参加绘画比赛,只参加书法比赛的人数,第二部分是两项比赛都参加的12人。
如果从
41人里面去掉参加绘画比赛的20人,得到41-20=21(人),就得到只参加书法比赛的人数是21人,再根据两项比赛都参加的有12人,用21+12=33(人)就算出了参加书法比赛的人数。
列式如下:
想一想:下面的解法有没有道理?为什么?
55-14-(20-12)=33(人)
试一试6、乐器兴趣小组有42人其中会弹钢琴的有27人,既会弹钢琴又会弹古筝的有16人,两项都不会的只有1人。
会弹古筝的有多少人?
课内练习
1.同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个;从前数是第5个,从后数是第6个。
做操的同学一共有多少个?
2.三(4)班有学生56人,做对第一道思考题的有29人,做对第二道思考题的有27人,两道题都做错的有7人。
两道思考题都做对的有几人?
3.三(4)班有学生56人,做对第一道思考题的有29人,两道思考题都做对的有7人。
做对第二道思考题的有多少人?
4.三(1)班做完语文作业的有37人,做完数学作业的有42人,两种作业都完成的有31人,每人至少完成了一种作业。
三(1)班共有学生多少人?
5.101个同学带着矿泉水和水果去春游,其中矿泉水的78人,带水果的有71人,只带矿泉水和只带水果的各有多少人?。