轴对称平移旋转定义总结
四年级上册平移旋转和轴对称的手抄报内容

手抄报的内容应该简洁明了,同时要有视觉吸引力。
对于四年级上册的平移、旋转和轴对称这个主题,以下是一个手抄报内容设计:
标题:"平移旋转和轴对称的奇妙世界"
第一部分:平移
定义:平移是物体在方向上移动一定的距离,但形状和大小保持不变的操作。
例子:火车在铁轨上直线行驶,电梯上下移动等。
插图:可以画一个简单的图形(如正方形或三角形)并展示其平移的过程。
第二部分:旋转
定义:旋转是物体围绕一个点(旋转中心)转动的过程,物体的形状和大小保持不变。
例子:门打开和关闭,风车转动等。
插图:可以画一个图形(如圆形或星形)并展示其旋转的过程。
第三部分:轴对称
定义:如果一个图形关于一条直线(对称轴)对称,那么在这条直线的两侧,图形的形状和大小都是相同的。
例子:蝴蝶的翅膀,许多建筑的设计等。
插图:可以画一些轴对称的图形(如心形,蝴蝶等)并标注出对称轴。
结语:
描述平移、旋转和轴对称在日常生活和自然界中的常见性,以及它们在艺术、工程和科学中的重要性。
在手抄报的视觉上,可以使用彩色笔和插图来增强吸引力。
同时,确保文字简洁明了,以便读者(尤其是四年级的学生)容易理解。
平移旋转与对称平移旋转与对称的定义与性质

平移旋转与对称平移旋转与对称的定义与性质平移、旋转和对称是几何学中重要的概念和操作。
它们是描述和变换图形位置和形状的基本工具。
本文将详细介绍平移、旋转和对称的定义及其性质。
一、平移的定义与性质平移是指将一个图形沿着一定方向移动一定距离,而不改变其形状和方向。
下面是平移的定义与性质:定义:平移是指将一个图形中的所有点,按照同样的方向和距离,同时保持相对位置的变换操作。
性质:1. 平移不改变图形的大小、形状和方向。
2. 平移后的图形与原图形之间的对应关系保持不变。
3. 平移是一个向量运算,可以用向量表示平移的方向和距离。
4. 任意两个平移可以合成为一个平移。
二、旋转的定义与性质旋转是指将一个图形绕着某个固定点旋转一定角度,使得旋转后的图形与原图形相似但方向和位置发生变化。
下面是旋转的定义与性质:定义:旋转是指将一个图形绕着固定点旋转一定角度,使得旋转前后图形中的对应点的距离保持不变。
性质:1. 旋转不改变图形的大小、形状和方向。
2. 旋转后的图形与原图形之间的对应关系保持不变。
3. 旋转可以按顺时针或逆时针方向进行。
4. 旋转是一个变换操作,可以用旋转中心和旋转角度来描述。
三、对称的定义与性质对称是指将一个图形分割成两个部分,使得两个部分关于某条直线、点或中心对称。
下面是对称的定义与性质:定义:对称是指将一个图形按照某个轴线或点进行折叠或旋转,使得折叠或旋转后的图形与原图形重合。
性质:1. 对称不改变图形的大小、形状和方向。
2. 对称后的图形与原图形之间的对应关系保持不变。
3. 图形关于对称轴对称时,对称轴上的点不动;图形关于对称中心对称时,对称中心不动。
4. 对称操作是可逆的,即对称两次会得到原来的图形。
综上所述,平移、旋转和对称是几何学中常用的图形变换操作。
它们各自有着特定的定义和性质,可以描述和变换图形的位置和形状。
理解和掌握平移、旋转和对称的定义与性质,将有助于我们在解决几何问题和应用几何知识时进行准确的操作和分析。
轴对称平移与旋转轴对称轴对称的再认识

2023-10-30•轴对称平移•旋转轴对称•轴对称的再认识目录•总结与展望01轴对称平移轴对称平移是指将图形以某条直线为轴,将图形上所有点沿该直线方向作对应平移。
定义轴对称平移不改变图形的形状和大小,只改变图形的位置和方向。
性质定义与性质轴对称平移的应用图像处理在图像处理中,轴对称平移可用于对图像进行平移、旋转等操作,实现图像的几何变换。
晶体学在晶体学中,轴对称平移是描述晶体结构的重要工具之一,可以帮助科学家更好地理解晶体的性质和结构。
图形设计在图形设计中,轴对称平移是一种常见的变换方式,可以用来创建新的图形或图案。
实例展示矩形平移将一个矩形以某条直线为轴,将矩形上所有点沿该直线方向作对应平移,得到一个新的矩形。
螺旋图案通过连续的轴对称平移和旋转操作,可以创建一个美丽的螺旋图案。
雪花图案通过多个轴对称平移和旋转操作,可以创建一个雪花图案。
02旋转轴对称定义旋转轴对称是指图形绕某一直线旋转一定的角度后,自身重合的现象。
性质旋转轴对称具有旋转不变性和对称性。
定义与性质旋转对称在建筑、雕塑、绘画等艺术领域中有着广泛的应用。
艺术领域自然界中许多现象,如雪花、螺旋壳等,都呈现出旋转对称性。
自然界中在计算机图形学中,旋转对称被广泛应用于图像处理和动画制作。
计算机科学旋转轴对称的应用螺旋图案是典型的旋转对称图形,其结构具有旋转不变性。
螺旋图案六角形雪花是一种典型的具有旋转对称性的自然结构。
雪花圆形花坛是常见的旋转对称建筑,其设计具有旋转不变性。
圆形花坛实例展示03轴对称的再认识轴对称是指一个物体关于某一直线(对称轴)对称,即物体在该直线的两侧或一侧,沿直线折叠后,物体两部分能够互相重合。
轴对称的定义轴对称的深入理解轴对称具有唯一性、反身性和对称性。
轴对称的性质可以通过观察物体的形状、位置、方向等是否关于对称轴对称来进行判断。
轴对称的判断如雪花、树叶等自然物的形状呈现出轴对称的特点。
自然界中的轴对称许多艺术品和建筑在设计时也会利用轴对称,如教堂、寺庙等。
三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。
平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。
知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。
旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。
注意:旋转分为顺时针旋转和逆时针旋转。
知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。
轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。
三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。
A.B.C.D.2.在括号中填“平移”或“旋转”。
(1)小明进教室开门时,门的运动是()。
(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。
(3)小红拉开窗帘,窗帘的运动是()。
(4)老师将课桌拖到最后一排,桌子的运动是()。
3.观察下面的图形,然后填空。
(1)小汽车向()平移了()格。
(2)小船向()平移了()格。
(3)飞机向()平移了()格。
4.如图所示。
(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。
(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。
A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。
7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。
用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。
观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。
图形的轴对称平移与旋转

姓名: 中考复习提升组22图形的轴对称 平移与旋转☻☻☻知识回顾1.轴对称轴对称 轴对称图形: (1)轴对称图形:如果一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形称为轴对称图形,这条直线称为这条直线称为 ,对称轴一定为直线. (2) 轴对称: 如果一个图形沿某一条直线翻折过去,如果它能与另一个图形重合,那么就称这两个图形那么就称这两个图形 性质:(1)对应线段相等,对应角对应角 ;对称点的连线被对称轴对称点的连线被对称轴 . 轴对称图形变换的特征是不改变图形的形状和轴对称图形变换的特征是不改变图形的形状和 ,只改变图形的位置,新旧图形具有对称性. (2)轴对称的两个图形,它们对应线段或延长线相交,交点在交点在2.中心对称中心对称 中心对称图形中心对称图形(1)中心对称:把一个图形绕着某一点旋转把一个图形绕着某一点旋转 ,如果它能与另一个图形重合,那么这两个图形成中心对称,该点叫做点叫做(2)中心对称图形:一个图形绕着某一点旋转一个图形绕着某一点旋转 后能与自身重合,这种图形叫这种图形叫 ,该点叫对称中心该点叫对称中心(3)性质:在中心对称的两个图形中,连结对称点的线段都经过对称中心且被连结对称点的线段都经过对称中心且被 平分. 3.图形的平移: (1)定义:在平面内,将某个图形沿某个方向移动一定的将某个图形沿某个方向移动一定的 ,这样的图形运动称为平移. (2)特征:①平移后①平移后,,对应线段相等且平行对应线段相等且平行,,对应点所连的线段对应点所连的线段 且且②平移后②平移后,,对应角对应角 且对应角的两边分别平行方向相同且对应角的两边分别平行方向相同且对应角的两边分别平行方向相同. .③平移不改变图形的③平移不改变图形的 和大小和大小和大小,, 只改变图形的位置,平移后新旧两个图形全等. 4.图形的旋转: (1)定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个将一个图形绕一个定点沿某个方向旋转一个 ,这样的图形运动称为旋转,这个定点称为旋转中心,转动的转动的 称为旋转角. (2)特征:图形旋转过程中,图形上每一个点都绕旋转中心沿相向方向转动了相同角度;注意每一对对应点与旋转中心的连线所成的角度都旋转角,旋转角都旋转角都 ;对应点到旋转中心的距离相等对应点到旋转中心的距离相等☻☻☻限时集训一 选择题选择题选择题1.(2010甘肃)观察下列银行标志甘肃)观察下列银行标志,,从图案看既是轴从图案看既是轴对称图形又是中心对称图形的有对称图形又是中心对称图形的有( )( )( )个个A .1B 1B..2C 2C..3D.42(2010浙江宁波)下列各图是选自历届世博会浙江宁波)下列各图是选自历届世博会会徽中的图案, 其中是中心对称图形的是( ) 3.(2011广东广州市,4,3)将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是(的坐标是( )A.(0,1)B.(2,-1)C.(4,1)D.(2,3) 4.(2011江苏扬州,8,3)如图,在Rt △ABC 中,∠ACB=90ºACB=90º,,∠A=30ºA=30º,BC=2,,BC=2,将△ABC 绕点C 按顺按顺 时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图的大小和图中阴影部分的面积分别为(中阴影部分的面积分别为( A. 30,2 B.60,2 C. 60,23 D. 60,3 5. (2011山东菏泽,5,3)如图所示,已知在三角形纸片ABC 中,BC =3,AB =6,∠BCA =90°,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为的长度为 ( ) A .6 B .3 C . 23 D . 36. (2011 浙江湖州,8,3)如图,已知△OAB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕点O 按逆时针 方向旋转,使得OA 与OC 重合,得到△OCD ,则旋转的角度是( )A .150° B .120° C.90° D .60°7.(011山东济宁,9,3)如图,△ABC 的周长为30cm,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 上,则三角板上,则三角板 2343682的图象③一段圆弧④平行四边个的余角为的余角为 度.度. 的度数为的度数为 .ABC 绕A 点 则图中阴影部分的面积是______. ABD 某乡镇为了解决抗旱问题,要在某河道要在某河道工程人员设计图纸时,以河道上的大桥以河道上的大桥 ? 2010(本小题满分在平面直角坐标系中放置一矩形ABCO ,其顶点为A (0,1)、33,133,0(-3(-433,0)的直线EF 向右下300C D A B【答案】【答案】【答案】解:(1)作点B关于x轴的对称点E,连接AE,则点E为(12,-7),,则设直线AE的函数关系式为y=kx+b,则等.。
第十单元 图形的轴对称、平移和旋转

∴∠DAE等于旋转角,
数学
∴∠DAE=60°.
首页
末页
首页
末页
数学
首页 末页
数学
考点1
图形的对称
3.(2014深圳)下列图形中是轴对称图形但不是中心对称图形的 是( B ) A. B. C. D.
首页
末页
数学
考点1
图形的对称
4如图所示的矩形纸片,先沿虚线按箭头方向向右对 折,接着将对折后的纸片沿虚线剪下一个小圆和一个 小三角形,然后将纸片打开是下列图中的哪一个(
首页
末页
数学
考点1
A.
图形的对称
B. C. D.
2. (2014梅州)下列电视台的台标,是中心对称图形的是( A )
解析:A.∵此图形旋转180°后能与原图形重合,∴此图形是中心对 称图形,故此选项正确; B.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称 图形,故此选项错误; C.此图形旋转180°后不能与原图形重合,此图形不是中心对称图形 ,故此选项错误; D.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称 图形,故此选项错误.
首页 末页
数学
7.下列图形中,既是中心对称图形又是轴对称图形的是( A ) A. B. C. D.
解析:A、此图形既是轴对称图形又是中心对称图形,符合题意; B、此图形既不是轴对称图形又不是中心对称图形,不符合题意; C、此图形是轴对称图形,不是中心对称图形,不符合题意; D、此图形是轴对称图形,不是中心对称图形,不符合题意;
6.如图,所给图形中是中心对称图形但不是轴对称图形的是 ( C ) A. B. C. D.
解析:A.不是轴对称图形,也不是中心对称图形.故本选项
中考数学知识点总结:平移与旋转

中考数学知识点总结:平移与旋转
旋转
1、旋转的定义:
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
2、旋转的*质:
旋转后得到的图形与原图形之间有:对应点到旋转中心的距离相等,旋转角相等。
中心对称
1、中心对称的定义:
如果一个图形绕某一点旋转180度后能与另一个图形重合,那么这两个图形叫做中心对称。
2、中心对称图形的定义:
如果一个图形绕一点旋转180度后能与自身重合,这个图形叫做中心对称图形。
3、中心对称的*质:
在中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。
轴对称
1、轴对称的定义:
如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称图形的*质:
①角的平分线上的点到这个角的两边的距离相等。
②线段垂直平分线上的点到这条线段两个端点的距离相等。
③等腰三角形的三线合一。
轴对称平移旋转定义总结

一、轴对称1、轴对称图形概念轴对称图形:一个图形如果沿某条直线对折,对折后的两部分能完全重合,那么就称这样的图形为轴对称图形,这条直线叫作这个图形的对称轴.注:错误!对称轴是一条直线,不是线段,也不是射线.错误!一个轴对称图形的对称轴可以有一条,也可以有多条.错误!判断图形是不是轴对称图形的方法是折叠法,关键是看对折后的两部分能否完全重合.2、轴对称的概念把一个图形沿着某一条线直线翻折过去,如果它能够与另一个图形完全重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形的对应点叫作对称点.注:错误!对应点指两个图形重合时互相重合的点.错误!成轴对称的两个图形能够完全重合,这两个图形的形状和大小是相同的.错误!成轴对称是指两个图形某条直线成轴对称,只有一条对称轴.3、轴对称图形的性质轴对称图形或成轴对称的两个图形沿对称轴对折后的两部分是完全重合的,所以轴对称图形或成轴对称的两个图形的对应线段对折后重合的线段相等,对应角对折后重合的角相等.注:错误!轴对称图形或成轴对称的两个图形,如果对应线段或对应线段的延长线相交,那么交点在对称轴上.对应点的连线垂直于对称轴并且被对称轴分成相等的两部分.错误!成轴对称的两个图形的面积也相等.4、线段和角的轴对称性错误!线段是轴对称图形.把垂直并且平分一条线段的直线称为这条线段的垂直平分线.错误!角是轴对称图形,对称轴是它的角平分线所在的直线注:角平分线是一条射线,三角形的角平分线是一条线段,而角是轴对称图形,对称轴是角的平分线所在的直线.5、画图形的对称轴图形对称轴画法:错误!找出轴对称图形的任意一组对称点;错误!连接这组对称点;错误!画出对称点所连接线段的垂直平分线,这条垂直平分线就是该轴对称图形的对称轴.轴对称图形的性质:如果一个图形是轴对称图形,那么连接对称点的线段的垂直平分线就是该图形的对称轴.注:错误!画出轴对称图形的对称轴,关键是选取一些对称点如线段的端点、角的顶点,然后画对称点连线的垂直平分线.错误!轴对称图形的对称轴是一条直线,有时不只一条,甚至有无数条,如圆.6、画轴对称图形错误!先观察已知图形,并确定能代表已知图形的关键点;错误!分别作出这些关键点对称轴的对称点;错误!根据已知图形连接这些对称点,即可得到与已知图形成轴对称图形.二、平移1、平移的概念平面图形在平面上沿着一定的方向移动一定的距离,这种图形的平行移动称为平移;图形上每个点都沿同一个方向移动相同的距离;平移的方向:任意一对对应点从始点到终点的方向都可以看成平移的方向.平移的距离:连接任意一对对应点的线段长度都可以表示平移的距离对应点:平移前后,互相重合的点称为对称点;对应线段:平移前后,互相重合的线段称为对应线段;对应角:平移前后,互相重合的角称为对应角.注:错误!平移的前提示图形沿直线运动,而不是图形在曲面上沿曲线运动.错误!平移由平移的方向和距离决定.错误!平移可以是左右平移,也可以是上下平移,还可以按任意指定的方向对图形进行平移.错误!找平移图形的对应元素的关键是找对应点,由对应点确定对应角、对应线段.2、平移的特征平移特征:平移前后,图形的形状和大小不变,只是位置发生变化.对应点:对应点所连的线段平行或在同一条直线上且相等.对应角:对应角相等,对应角的两边分别平行或共线且方向一致.对应线段:对应线段平行或共线且相等.注:错误!对应线段、对应角必须在平移前后的两个图形中去找.错误!平移过程中,对应线段有可能在同一条直线上,对应点的连线也有可能在同一条直线上.错误!对应点所连的线段与对应线段不同.3、平移作图平移作图条件:1图形原来的位置;2平移方向;3平移距离平移步骤:1分析题目要求,找出平移方向和平移距离;2分析图形,找出构成图形的关键点;3沿一定的方向与距离平移各个关键点,确定关键点的对应点; 4顺次连接所作的各个对应点,并标上相应字母.5写出结论注:错误!图形上的每个点、每条线段平移的方向与距离一致的,所以确定图形的平移方向与距离,只要选择容易确定的一对对应点或一对对应线段即可.错误!作图过程要细心、认真,使作出的图形美观、正确.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称平移旋转定义总
结
文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)
一、轴对称
1、轴对称图形概念
轴对称图形:一个图形如果沿某条直线对折,对折后的两部分能完全重合,那么就称这样的图形为轴对称图形,这条直线叫作这个图形的对称轴。
注:○1对称轴是一条直线,不是线段,也不是射线。
○2一个轴对称图形的对称轴可以有一条,也可以有多条。
○3判断图形是不是轴对称图形的方法是折叠法,关键是看对折后的两部分能否完全重合。
2、轴对称的概念
把一个图形沿着某一条线直线翻折过去,如果它能够与另一个图形完全重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形的对应点叫作对称点。
注:○1对应点指两个图形重合时互相重合的点。
○2成轴对称的两个图形能够完全重合,这两个图形的形状和大小是相同的。
○3成轴对称是指两个图形关于某条直线成轴对称,只有一条对称轴。
3、轴对称图形的性质
轴对称图形(或成轴对称的两个图形)沿对称轴对折后的两部分是完全重合的,所以轴对称图形(或成轴对称的两个图形)的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等。
注:○1轴对称图形(或成轴对称的两个图形),如果对应线段或对应线段的延长线相交,那么交点在对称轴上。
对应点的连线垂直于对称轴并且被对称轴分成相等的两部分。
○2成轴对称的两个图形的面积也相等。
4、线段和角的轴对称性
○1线段是轴对称图形。
把垂直并且平分一条线段的直线称为这条线段的垂直平分线。
○2角是轴对称图形,对称轴是它的角平分线所在的直线
注:角平分线是一条射线,三角形的角平分线是一条线段,而角是轴对称图形,对称轴是角的平分线所在的直线。
5、画图形的对称轴
图形对称轴画法:
○1找出轴对称图形的任意一组对称点;
○2连接这组对称点;
○3画出对称点所连接线段的垂直平分线,这条垂直平分线就是该轴对称图形的对称轴。
轴对称图形的性质:如果一个图形是轴对称图形,那么连接对称点的线段的垂直平分线就是该图形的对称轴。
注:○1画出轴对称图形的对称轴,关键是选取一些对称点(如线段的端点、角的顶点),然后画对称点连线的垂直平分线。
○2轴对称图形的对称轴是一条直线,有时不只一条,甚至有无数条,如圆。
6、画轴对称图形
○1先观察已知图形,并确定能代表已知图形的关键点;
○2分别作出这些关键点关于对称轴的对称点;
○3根据已知图形连接这些对称点,即可得到与已知图形成轴对称图形。
二、平移
1、平移的概念
平面图形在平面上沿着一定的方向移动一定的距离,这种图形的平行移动称为平移;
图形上每个点都沿同一个方向移动相同的距离;
平移的方向:任意一对对应点从始点到终点的方向都可以看成平移的方向。
平移的距离:连接任意一对对应点的线段长度都可以表示平移的距离对应点:平移前后,互相重合的点称为对称点;
对应线段:平移前后,互相重合的线段称为对应线段;
对应角:平移前后,互相重合的角称为对应角。
注:○1平移的前提示图形沿直线运动,而不是图形在曲面上沿曲线运动。
○2平移由平移的方向和距离决定。
○3平移可以是左右平移,也可以是上下平移,还可以按任意指定的方向对图形进行平移。
○4找平移图形的对应元素的关键是找对应点,由对应点确定对应角、对应线段。
2、平移的特征
平移特征:平移前后,图形的形状和大小不变,只是位置发生变化。
对应点:对应点所连的线段平行(或在同一条直线上)且相等。
对应角:对应角相等,对应角的两边分别平行或共线且方向一致。
对应线段:对应线段平行(或共线)且相等。
注:○1对应线段、对应角必须在平移前后的两个图形中去找。
○2平移过程中,对应线段有可能在同一条直线上,对应点的连线也有可能在同一条直线上。
○3对应点所连的线段与对应线段不同。
3、平移作图
平移作图条件:(1)图形原来的位置;(2)平移方向;(3)平移距离
平移步骤:(1)分析题目要求,找出平移方向和平移距离;
(2)分析图形,找出构成图形的关键点;
(3)沿一定的方向与距离平移各个关键点,确定关键点的对应点;
(4)顺次连接所作的各个对应点,并标上相应字母。
(5)写出结论
注:○1图形上的每个点、每条线段平移的方向与距离一致的,所以确定图形的平移方向与距离,只要选择容易确定的一对对应点或一对对应线段即可。
○2作图过程要细心、认真,使作出的图形美观、正确。