吉林省长春市普通高中2020届高三数学一模考试试题 理(含解析)

合集下载

2020-2021长春市高三数学下期末一模试卷(附答案)

2020-2021长春市高三数学下期末一模试卷(附答案)
x
转化为 xex a 0 在 (1, ) 上有不等于 2 的解,令 g x xex ,利用奥数求得函数的单
调性,得到 a g 1 e 且 a g 2 2e2 ,又由 f (x) 在 (1, 2) 上单调递增,得到
f x 0 在 (1, 2) 上恒成立,进而得到 a xex 在 (1, 2) 上恒成立,借助函数 g x xex 在
25.如图,在四面体 ABCD 中,△ABC 是等边三角形,平面 ABC⊥平面 ABD,点 M 为棱
AB 的中点,AB=2,AD= 2 3 ,∠BAD=90°.
(Ⅰ)求证:AD⊥BC; (Ⅱ)求异面直线 BC 与 MD 所成角的余弦值; (Ⅲ)求直线 CD 与平面 ABD 所成角的正弦值.
26.已知椭圆
式 an ____;
14.若正数 a, b 满足 ab a b 3,则 a b 的取值范围_______________。
15.若三点 A(2,3), B(3, 2),C(1 , m) 共线,则 m的值为

2
16.在 ABC 中,角 A, B,C 的对边分别为 a,b, c , c 4 , a 4 2 sin A ,且 C 为锐 角,则 ABC 面积的最大值为________.
即 a xex 在 (1, 2) 上恒成立,
又由函数 g x xex 在 (1, ) 为单调递增函数,所以 a g(2) 2e2 ,
综上所述,可得实数 a 的取值范围是 a 2e2 ,即 a (2e2, ) ,故选 C.
【点睛】 本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计 算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲 线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参 数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合 思想的应用.

吉林省长春市2024届高三质量监测(一)数学试题

吉林省长春市2024届高三质量监测(一)数学试题

一、单选题二、多选题1. 已知数列满足:,,其中为的前项和.若对任意的均有恒成立,则的最大整数值为( )A .2B .3C .4D .52. 设函数f (x )=则=( )A .-1B .1C.-D.3. 据调查,目前对于已经近视的小学生,有两种佩戴眼镜的方式可供选择,一种是佩戴传统的框架眼镜;另一种是佩戴角膜塑形镜,这种眼镜是晚上睡觉时佩戴的一种特殊的隐形眼镜(因其在一定程度上可以减缓近视的发展程度,越来越多的小学生家长选择角膜塑形镜控制孩子的近视发展).A 市从当地小学生中随机抽取容量为100的样本,因近视佩戴眼镜的有24人,其中佩戴角膜塑形镜的有8人.若从样本中随机选取一名小学生,已知这名小学生佩戴眼镜,那么,他佩戴的是角膜塑形镜的概率是( )A.B.C.D.4.过点的直线经过圆的圆心,则直线的倾斜角大小为A .150°B .60°C .30°D .120°5. 已知复数为纯虚数(其中为虚数单位),则实数a =( )A .1B .-1C .2D .-26. 某运动队由足球运动员18人,篮球运动员12人,乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为 的样本,若分别采用系统抽样法和分层抽样法,都不用删除个体,那么样本容量 的最小值为A .6B .12C .18D .247.已知是关于的方程的一个根,则复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.设且,则( )A.B.C .12D.9. 下列说法:①对于回归分析,相关系数的绝对值越小,说明拟合效果越好;②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则,的值分别是和;③已知随机变量,若,则的值为;④通过回归直线及回归系数,可以精确反映变量的取值和变化趋势.其中正确的选项是( )A .①B .②C .③D .④10. 已知棱长为的正方体的所有顶点均在体积为的球上,动点在正方形内运动(包含边界),若直线与直线所成角的正弦值为,则( )A.B.点运动轨迹的长度为C.三棱锥体积的取值范围为吉林省长春市2024届高三质量监测(一)数学试题三、填空题四、填空题五、填空题六、解答题七、解答题D.线段长度的最小值为11. 已知圆柱的上、下底面的中心分别为O ,,其高为2,为圆O的内接三角形,且,P 为圆上的动点,则( )A .若平面,则三棱锥外接球的表面积为B.若,则C.三棱锥体积的最大值为D .点A 到平面距离的最大值为12.设函数________.13. 若椭圆上一点到两个焦点的距离之和为,则此椭圆的离心率为__________.14. 已知圆与抛物线的准线相切,则的值为________.15. 已知抛物线,弦过抛物线的焦点,过两点分别作准线的垂线,垂足分别为、,设的中点为,线段的垂直平分线交轴于,则______;若的中点为,则______.16. 用表示不超过的最大整数,已知数列满足:,,.若,,则________;若,则________.17. 直线与轴交于点,交圆于,两点,过点作圆的切线,轴上方的切点为,则__________;的面积为__________.18. 化简或求值:(1);(2).19. 已知函数,.(1)在给出的坐标系中画出函数的图像;(2)若关于的不等式恒成立,求实数的取值范围.八、解答题九、解答题十、解答题20. 如图,已知平面平面,平面平面,,,,.(1)求证:;(2)若是线段上的动点,求直线与平面所成角正弦值的取值范围.21.年月日,神舟十三号载人飞船返回舱成功着陆,航天员翟志刚、王亚平、叶光富完成在轨驻留半年的太空飞行任务,标志着中国空间站关键技术验证阶段圆满完成.并将进入建造阶段某地区为了激发人们对天文学的兴趣,开展了天文知识比赛,满分分(分及以上为认知程度高),结果认知程度高的有人,这人按年龄分成组,其中第一组:,第二组:,第三组:,第四组:,第五组:,得到如图所示的频率分布直方图,已知第一组有人.(1)根据频率分布直方图,估计这人的第百分位数(中位数第百分位数);(2)现从以上各组中用分层随机抽样的方法抽取人,担任“党章党史”的宣传使者.①若有甲(年龄),乙(年龄)两人已确定入选宣传使者,现计划从第四组和第五组被抽到的使者中,再随机抽取名作为组长,求甲、乙两人至少有一人被选上的概率;②若第四组宣传使者的年龄的平均数与方差分别为和,第五组宣传使者的年龄的平均数与方差分别为和,据此估计这人中岁所有人的年龄的平均数和方差.22. 为迎接2020年国庆节的到来,某电视台举办爱国知识问答竞赛,每个人随机抽取五个问题依次回答,回答每个问题相互独立.若答对一题可以上升两个等级,回答错误可以上升一个等级,最后看哪位选手的等级高即可获胜.甲答对每个问题的概率为,答错的概率为.(1)若甲回答完5个问题后,甲上的台阶等级数为,求的分布列及数学期望;(2)若甲在回答过程中出现在第个等级的概率为,证明:为等比数列.。

长春普通高中2020届高三质量检测数学文理(一)

长春普通高中2020届高三质量检测数学文理(一)

长春市普通高中2019届高三质量监测(一) 数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. C2. D3. A4. B5.C6. C7. D8. B9. D 10. D 11. C12. A简答与提示:1. 【命题意图】本题考查复数的运算. 【试题解析】C (13)(3)10i i i -+-=.故选C.2. 【命题意图】本题考查集合运算. 【试题解析】D M N M =U 有N M ⊆.故选D.3. 【命题意图】本题考查三角函数的相关知识.【试题解析】A . 故选A. 4. 【命题意图】本题主要考查函数的性质. 【试题解析】B 由函数是偶函数,排除C ,在(0,)+∞上是减函数,排除A ,D.故 选B.5. 【命题意图】本题考查平面向量的相关知识.【试题解析】C 由题意知2120,cos ,2⋅-=<>=a b b a b .故选C. 6. 【命题意图】本题主要考查等差数列的相关知识.【试题解析】C 9475S S a -=.故选C 7. 【命题意图】本题考查线面成角.【试题解析】D 由题意知成角为6π.故选D. 8. 【命题意图】本题主要考查计数原理的相关知识.【试题解析】B 由题意可分两类,第一类,甲与另一人一同分到A ,有6种;第二类,甲单独在A ,有6种,共12种.故选B.9. 【命题意图】本题主要考查统计相关知识.【试题解析】D 由统计学常识可知,D 选项正确.故选D. 10. 【命题意图】本题主要考查中华传统文化.【试题解析】D 由题可知10k =.故选D. 11. 【命题意图】本题考查双曲线的相关知识.【试题解析】C 由题意可知22222223,13y x y x a a a =-=-,从而渐近线方程为 y =.故选C. 12. 【命题意图】本题是考查导数在研究函数单调性上的应用.【试题解析】A 令()(),()(()())0xxg x e f x g x e f x f x ''==+>,所以()g x 在定义域内单调递增,从而(0)(ln 2)(1)g g g <<,得(0)2(ln 2)(1)f f ef <<,即a b c <<. 故选A. 二、填空题(本大题共4小题,每小题5分,共20分)13.5214.1215. 10 16. 简答与提示:13. 【命题意图】本题考查对数运算.【试题解析】由题意可知值为52. 14. 【命题意图】本题考查椭圆的相关知识.【试题解析】12,1,2a b c e ====. 15. 【命题意图】本题考查等比数列的相关知识.【试题解析】由题意可得263396()()S S S S S -=-,得310S =. 16. 【命题意图】本题考查球的相关知识.【试题解析】由题意可知其2142S =⨯⨯=.三、解答题17. (本小题满分12分)【命题意图】本题考查解三角形的基本方法. 【试题解析】解:(1)由c C a b 21cos +=可得1sin sin cos sin 2B A C C =+,所以1cos ,23A A π== .(2)由(1)及3=⋅得6bc =,所以222222cos 6a b c bc A b c =+-=+-266bc ≥-=,当且仅当=b c 时取等号,所以a.18. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力. 【试题解析】解:(1)连接BD ,由2PA PD ==,E 是AD 的中点,得PE AD ⊥, 由平面⊥PAD 平面ABCD ,可得PE ⊥平面ABCD ,PE BE ⊥,又由于四边形 ABCD 是边长为2的菱形,ο60=∠A ,所以BE AD ⊥,从而⊥BE 平面PAD .(2)以E 为原点,,,EA EB EP 为,,x y z 轴,建立空间直角坐标系,P,(1,0,0),(A B C -,有(1,0,PA PB ==u u u r u u u r,(PC =-u u u r,令平面PAB 的法向量为n r ,由00PA n PB n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r r ,可得一个n =r ,同理可得平面PBC 的一个法向量为(0,1,1)m =u r ,所以平面PAB 与平面PBC所成锐二面角的余弦值为||5||||m n m n ⋅=u r ru r r .19. (本小题满分12分)【命题意图】本小题考查抛物线的相关知识. 【试题解析】答案:(1)设00000(,),(,0),||||,||,Q x y H x QH y OH x ==||2AB p =,从而2200||2||||QH y px AB OH ===.(2)由条件可知,:4MN y x =-+,联立直线MN 和抛物线C ,有242y x y px=-+⎧⎨=⎩,有2280y py p +-=,设1122(,),(,)M x y N x y ,由OM ON ⊥有12120x x y y +=,有1212(4)(4)0y y y y --+=,由韦达定理可求得2p =,所以抛物线2:4C y x =.20. (本小题满分12分)【命题意图】本题考查离散型随机变量的分布列及数学期望. 【试题解析】(1)由题意知,X 所有可能取值为200,300,500,由表格数据知()2162000.290P X +===,()363000.490P X ===,()25745000.490P X ++===. 因此X(2200,因此只需考虑 200500n ≤≤. 当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-=; 若最高气温位于区间[)20,25,则()63002300412002Y n n n =⨯+--=-; 若最高气温低于20,则()6200220048002Y n n n =⨯+--=-; 因此()()20.4120020.480020.26400.4EY n n n n =⨯+-⨯+-⨯=-. 当200300n <≤时,若最高气温不低于20,则642Y n n n =-=;若最高气温低于20,则()6200220048002Y n n n =⨯+--=-; 因此()()20.40.480020.2160 1.2EY n n n =⨯++-⨯=+.所以n =300时,Y 的数学期望达到最大值,最大值为520元. 21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力.【试题解析】解:(1)由题可得()x f x e x a '=-+,设()()x g x f x e x a '==-+,则()1x g x e '=-, 所以当0x >时()0g x '>,()f x '在()0,+∞上单调递增, 当0x <时()0g x '<,()f x '在(),0-∞上单调递减, 所以()()01f x f a ''≥=+,因为1a >-,所以10a +>,即()0f x '>,所以函数()f x 在R 上单调递増.(4分) (2)由(1)知()f x '在[)1,+∞上单调递増,因为 1a e <-,所以()1 10f e a '=-+<, 所以存在()1,t ∈+∞,使得()0f t '=,即0t e t a -+=,即t a t e =-, 所以函数()f x 在[)1,t 上单调递减,在(),t +∞上单调递増,所以当[)1,x ∈+∞时,()()()()222min 1111222t t t t f x f t e t at e t t t e e t t ==-+=-+-=-+.令()()2111,2x h x e x x x =-+>,则()1()0x x x h e =-<'恒成立,所以函数()h x 在()1,+∞上单调递减,所以()()21111122h x e <-+⨯=,所以()211122t e t t -+<,即当[)1,x ∈+∞时()min 12f x <,故函数()f x 在[)1,+∞上的最小值小于12. (8分)(3)()212x f x e bx ax =-+,()x f x e bx a '=-+由()f x 为R 上的单调函数,可知()f x 一定为单调增函数因此()0x f x e bx a '=-+≥,令()()xg x f x e bx a '==-+,()x g x e b '=-当0b =时,0ab =;当0b <时,()0xg x e b '=->,()y g x =在R 上为增函数 x →-∞时,()g x →-∞与()0g x ≥矛盾当0b >时,()0ln ,()0ln g x x b g x x b ''>⇔><⇔<当ln x b =时,min ()ln 0g x b b b a =-+≥,22ln (0)ab b b b b - >≥令22()ln (0)F x x x x x =->,则()(2ln 1)F x x x '=-()0()00F x x F x x ''>⇔><⇔<<当x =,min ()2e F x =-,ab 的最小值为2e-.(12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】 (1)圆C 的直角坐标方程为222410x y x y +--+=.(2)将直线l 的参数方程代入到圆C 的直角坐标方程中,有24sin 0t t α-=,由32=AB 得sin α=,所以3πα=或23πα=. 23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到基本不等式等内容. 本小题重点考查化归与转化思想.【试题解析】(1)2221()22a b a b +≥+=.(2)2212133(2()22224a b b a a b a b a b +++=⨯+=++≥+=,12≥+. 长春市普通高中2019届高三质量监测(一)数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. C2. D3. A4. B5.C6. C7. D8. B9. D 10. D 11. C12. A简答与提示:17. 【命题意图】本题考查复数的运算. 【试题解析】C (13)(3)10i i i -+-=.故选C. 18. 【命题意图】本题考查集合运算. 【试题解析】D M N M =U 有N M ⊆.故选D. 19. 【命题意图】本题考查三角函数的相关知识.【试题解析】A . 故选A. 20. 【命题意图】本题主要考查函数的性质. 【试题解析】B 由函数是偶函数,排除C ,在(0,)+∞上是减函数,排除A ,D.故 选B.21. 【命题意图】本题考查平面向量的相关知识.【试题解析】C 由题意知2120,cos ,2⋅-=<>=a b b a b .故选C. 22. 【命题意图】本题主要考查等差数列的相关知识.【试题解析】C 9475S S a -=.故选C 23. 【命题意图】本题考查线面成角.【试题解析】D 由题意知成角为6π.故选D. 24. 【命题意图】本题主要考查计数原理的相关知识.【试题解析】B 由题意可分两类,第一类,甲与另一人一同分到A ,有6种;第二类,甲单独在A ,有6种,共12种.故选B.25. 【命题意图】本题主要考查统计相关知识.【试题解析】D 由统计学常识可知,D 选项正确.故选D. 26. 【命题意图】本题主要考查中华传统文化.【试题解析】D 由题可知10k =.故选D. 27. 【命题意图】本题考查双曲线的相关知识.【试题解析】C 由题意可知22222223,13y x y x a a a =-=-,从而渐近线方程为 y =.故选C. 28. 【命题意图】本题是考查导数在研究函数单调性上的应用.【试题解析】A 令()(),()(()())0xxg x e f x g x e f x f x ''==+>,所以()g x 在定义域内单调递增,从而(0)(ln 2)(1)g g g <<,得(0)2(ln 2)(1)f f ef <<,即a b c <<. 故选A. 二、填空题(本大题共4小题,每小题5分,共20分)13.5214.1215. 10 16. 简答与提示:29. 【命题意图】本题考查对数运算.【试题解析】由题意可知值为52. 30. 【命题意图】本题考查椭圆的相关知识.【试题解析】12,1,2a b c e ====.31. 【命题意图】本题考查等比数列的相关知识.【试题解析】由题意可得263396()()S S S S S -=-,得310S =. 32. 【命题意图】本题考查球的相关知识.【试题解析】由题意可知其21422S =⨯⨯⨯=. 三、解答题24. (本小题满分12分)【命题意图】本题考查解三角形的基本方法. 【试题解析】解:(1)由c C a b 21cos +=可得1sin sin cos sin 2B A C C =+,所以1cos ,23A A π== .(2)由(1)及3=⋅AC AB 得6bc =,所以222222cos 6a b c bc A b c =+-=+-266bc ≥-=,当且仅当=b c 时取等号,所以a.25. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力. 【试题解析】解:(1)连接BD ,由2PA PD ==,E 是AD 的中点,得PE AD ⊥, 由平面⊥PAD 平面ABCD ,可得PE ⊥平面ABCD ,PE BE ⊥,又由于四边形 ABCD 是边长为2的菱形,ο60=∠A ,所以BE AD ⊥,从而⊥BE 平面PAD .(2)以E 为原点,,,EA EB EP 为,,x y z 轴,建立空间直角坐标系,P,(1,0,0),(A B C -,有(1,0,PA PB ==u u u r u u u r,(PC =-u u u r,令平面PAB 的法向量为n r ,由0PA n PB n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur r ,可得一个n =r ,同理可得平面PBC 的一个法向量为(0,1,1)m =u r ,所以平面PAB 与平面PBC所成锐二面角的余弦值为||5||||m n m n ⋅=u r ru r r .26. (本小题满分12分)【命题意图】本小题考查抛物线的相关知识. 【试题解析】答案:(1)设00000(,),(,0),||||,||,Q x y H x QH y OH x ==||2AB p =,从而2200||2||||QH y px AB OH ===.(2)由条件可知,:4MN y x =-+,联立直线MN 和抛物线C , 有242y x y px=-+⎧⎨=⎩,有2280y py p +-=,设1122(,),(,)M x y N x y ,由OM ON ⊥有12120x x y y +=,有1212(4)(4)0y y y y --+=,由韦达定理可求得2p =,所以抛物线2:4C y x =.27. (本小题满分12分)【命题意图】本题考查离散型随机变量的分布列及数学期望. 【试题解析】(1)由题意知,X 所有可能取值为200,300,500,由表格数据知()2162000.290P X +===,()363000.490P X ===,()25745000.490P X ++===. 因此X(2200,因此只需考虑 200500n ≤≤. 当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-=; 若最高气温位于区间[)20,25,则()63002300412002Y n n n =⨯+--=-; 若最高气温低于20,则()6200220048002Y n n n =⨯+--=-; 因此()()20.4120020.480020.26400.4EY n n n n =⨯+-⨯+-⨯=-.当200300n <≤时,若最高气温不低于20,则642Y n n n =-=;若最高气温低于20,则()6200220048002Y n n n =⨯+--=-; 因此()()20.40.480020.2160 1.2EY n n n =⨯++-⨯=+.所以n =300时,Y 的数学期望达到最大值,最大值为520元. 28. (本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力.【试题解析】解:(1)由题可得()x f x e x a '=-+,设()()x g x f x e x a '==-+,则()1x g x e '=-, 所以当0x >时()0g x '>,()f x '在()0,+∞上单调递增, 当0x <时()0g x '<,()f x '在(),0-∞上单调递减, 所以()()01f x f a ''≥=+,因为1a >-,所以10a +>,即()0f x '>,所以函数()f x 在R 上单调递増.(4分) (2)由(1)知()f x '在[)1,+∞上单调递増,因为 1a e <-,所以()1 10f e a '=-+<, 所以存在()1,t ∈+∞,使得()0f t '=,即0t e t a -+=,即t a t e =-, 所以函数()f x 在[)1,t 上单调递减,在(),t +∞上单调递増,所以当[)1,x ∈+∞时,()()()()222min 1111222t t t t f x f t e t at e t t t e e t t ==-+=-+-=-+.令()()2111,2x h x e x x x =-+>,则()1()0x x x h e =-<'恒成立,所以函数()h x 在()1,+∞上单调递减,所以()()21111122h x e <-+⨯=,所以()211122t e t t -+<,即当[)1,x ∈+∞时()min 12f x <,故函数()f x 在[)1,+∞上的最小值小于12. (8分)(3)()212x f x e bx ax =-+,()x f x e bx a '=-+由()f x 为R 上的单调函数,可知()f x 一定为单调增函数因此()0x f x e bx a '=-+≥,令()()xg x f x e bx a '==-+,()x g x e b '=-当0b =时,0ab =;当0b <时,()0xg x e b '=->,()y g x =在R 上为增函数 x →-∞时,()g x →-∞与()0g x ≥矛盾当0b >时,()0ln ,()0ln g x x b g x x b ''>⇔><⇔<当ln x b =时,min ()ln 0g x b b b a =-+≥,22ln (0)ab b b b b - >≥令22()ln (0)F x x x x x =->,则()(2ln 1)F x x x '=-()0()00F x x F x x ''>⇔><⇔<<当x =,min ()2e F x =-,ab 的最小值为2e-.(12分)29. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】 (1)圆C 的直角坐标方程为222410x y x y +--+=.(2)将直线l 的参数方程代入到圆C 的直角坐标方程中,有24sin 0t t α-=,由32=AB 得sin 2α=,所以3πα=或23πα=. 30. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到基本不等式等内容. 本小题重点考查化归与转化思想.【试题解析】(1)2221()22a b a b +≥+=.(2)2212133(2()22224a b b a a b a b a b +++=⨯+=++≥+=,1≥+.长春市2019高三第一次质量检测题【数学文科】2018-9-12长春市普通高中2019届高三质量监测(一)数学(文科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. C2. D3. C4. B5.C6. A7. B8. A9. D 10. D 11. C12. D简答与提示:33. 【命题意图】本题考查复数的运算.【试题解析】C (13)(3)10i i i -+-=.故选C.34. 【命题意图】本题考查集合运算.【试题解析】D M N M =U 有N M ⊆.故选D.35. 【命题意图】本题考查三角函数的相关知识.【试题解析】C 由题意可知函数最大值为故选C.36. 【命题意图】本题主要考查函数的性质.【试题解析】B 由函数是偶函数,排除C ,在(0,)+∞上是减函数,排除A ,D.故选B. 37. 【命题意图】本题考查平面向量的相关知识.【试题解析】C 由题意知2120,cos ,2⋅-=<>=a b b a b .故选C. 38. 【命题意图】本题主要考查等比数列的相关知识.【试题解析】A 由条件可知,所求算式等于13.故选A 39. 【命题意图】本题考查线面成角.【试题解析】B 由题意知成角为3π,余弦值为12.故选B. 40. 【命题意图】本题主要考查解三角形的相关知识. 【试题解析】A 由正弦定理可知1cos ,602A A ==︒.故选A. 41. 【命题意图】本题主要考查统计相关知识.【试题解析】D 由统计学常识可知,D 选项正确.故选D.42. 【命题意图】本题主要考查中华传统文化.【试题解析】D 由题可知10k =.故选D.43. 【命题意图】本题考查双曲线的相关知识.【试题解析】C 由题意可知22222223,13y x y x a a a=-=-,从而渐近线方程为 y =.故选C. 44. 【命题意图】本题是考查函数图象的对称性.【试题解析】D 函数()()g x f x ,的图象关于(2,1)点对称,则()0F x =共有8个零点,其和为16. 故选D.二、填空题(本大题共4小题,每小题5分,共20分) 13. 52 14. 12 15. 21y x =- 16. 13简答与提示:45. 【命题意图】本题考查对数运算.【试题解析】由题意可知值为52. 46. 【命题意图】本题考查椭圆的相关知识.【试题解析】12,1,2a b c e ====. 47. 【命题意图】本题考查导数的几何意义的相关知识.【试题解析】由题意可得1()1,(1)2,(1)1,21f x f f y x x''=+===-.48. 【命题意图】本题考查三棱锥的相关知识.【试题解析】由题意可知其211132233V =⨯⨯⨯=. 三、解答题31. (本小题满分12分)【命题意图】本题考查数列的相关知识.【试题解析】解:(1)由1127,3327a d a d +=+=,解得111,2a d ==-,可得132n a n =-.(2)由(1)2n b n =,111111()4(1)41n n b b n n n n +==-++,所求式等于 1223341111111(1)41n n b b b b b b b b n ++++⋅⋅⋅+=-+. 32. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力.【试题解析】解:(1)连接BD ,由2PA PD ==,E 是AD 的中点,得PE AD ⊥, 由平面⊥PAD 平面ABCD ,可得PE ⊥平面ABCD ,PE BE ⊥,又由于四边形 ABCD 是边长为2的菱形,ο60=∠A ,所以BE AD ⊥,从而⊥BE 平面PAD .(2)在PAB ∆中,2,PAB PA AB PB S ∆====,1111322P ABE V -=⨯=,所以点E 到平面PAB的距离为5. 33. (本小题满分12分)【命题意图】本小题考查抛物线的相关知识.【试题解析】答案:(1)设00000(,),(,0),||||,||,Q x y H x QH y OH x ==||2AB p =,从而2200||2||||QH y px AB OH ===.(2)由条件可知,:4MN y x =-+,联立直线MN 和抛物线C ,有242y x y px=-+⎧⎨=⎩,有2280y py p +-=,设1122(,),(,)M x y N x y ,由OM ON ⊥有12120x x y y +=,有1212(4)(4)0y y y y --+=,由韦达定理可求得2p =,所以抛物线2:4C y x =.34. (本小题满分12分)【命题意图】本题考查离散型随机变量的分布列及数学期望.【试题解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.690++=, 所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6450-4450=900;若最高气温位于区间 [20,25),则Y =6300+2(450-300)-4450=300;若最高气温低于20,则Y =6200+2(450-200)-4450= -100.所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为0.8.35. (本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力.【试题解析】解:(1)由题可得()x f x e x a '=-+,设()()x g x f x e x a '==-+,则()1x g x e '=-,所以当0x >时()0g x '>,()f x '在()0,+∞上单调递增,当0x <时()0g x '<,()f x '在(),0-∞上单调递减,所以()()01f x f a ''≥=+,因为1a >-,所以10a +>,即()0f x '>,所以函数()f x 在R 上单调递増. (6分)(2)由(1)知()f x '在[)1,+∞上单调递増,因为 1a e <-,所以()1 10f e a '=-+<,所以存在()1,t ∈+∞,使得()0f t '=,即0t e t a -+=,即t a t e =-, 所以函数()f x 在[)1,t 上单调递减,在(),t +∞上单调递増,所以当[)1,x ∈+∞时()()()()222min 1111222t t t t f x f t e t at e t t t e e t t ==-+=-+-=-+, 令()()2111,2x h x e x x x =-+>,则()1()0x x x h e =-<'恒成立,所以函数()h x 在()1,+∞上单调递减,所以()()21111122h x e <-+⨯=,所以()211122t e t t -+<,即当[)1,x ∈+∞时()min 12f x <, 故函数()f x 在[)1,+∞上的最小值小于12. (12分)36. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识.【试题解析】 (1)圆C 的直角坐标方程为222410x y x y +--+=.(2)将直线l 的参数方程代入到圆C 的直角坐标方程中,有24sin 0t t α-=,由32=AB 得sin α=,所以3πα=或23πα=. 37. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到基本不等式等内容. 本小题重点考查化归与转化思想.【试题解析】(1)2221()22a b a b +≥+=.(2)212133()2222a b b a a b a b a b ++=⨯+=++≥+= 12≥+.。

吉林省长春市2020届高三数学一模考试试题文(含解析)

吉林省长春市2020届高三数学一模考试试题文(含解析)

【分析】
分析每个数的正负以及与中间值1的大小关系.
【详解】因为 a
(1)3 3
(1)0 3
1

1
33
30
1

log
1 3
3
log1 1
3
0

所以 0 a 1,b 1, c 0 ,∴ c a b ,
故选:C. 【点睛】指数、对数、幂的式子的大小比较,首先确定数的正负,其次确定数的大小(很多
C. 充要条件
D. 既不充分也不必要条件
【答案】B
【解析】
【分析】
利用集合间的关系推出 p、q 之间的关系.
【详解】{x | x 1} Ý {x | x 2} ,则 p 是 q的必要不充分条件,
故选:B.
【点睛】 p 成立的对象构成的集合为 A , q成立的对象构成的集合为 B : p 是 q的充分不必要条件则有: A Ü B ;
故选:D. 【点睛】对于用符号语言描述的问题,最好能通过一个具体模型或者是能够画出相应的示意 图,这样在判断的时候能更加直观.
9.函数 y 2 sin( x ) ( 0,| | ) 的图象(部分图象如图所示) ,则其解析式为( ) 2
A.
f
(x)
2
sin(2x
)
6
C. f (x) 2sin(4x ) 6
∴ A B {x | x 3, 或 x ≤ -2}
故选:B. 【点睛】本题考查集合间的基本运算,难度容易,求解的时候注意等号是否能取到的问题.
3.已知等差数列{an} 的前 n 项和为 Sn , S5 15 , a4 5 ,则 S9 ( )
A. 45
B. 63
C. 54

吉林省长春市市第一中学2020年高三数学理上学期期末试卷含解析

吉林省长春市市第一中学2020年高三数学理上学期期末试卷含解析

吉林省长春市市第一中学2020年高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知双曲线的焦距为,双曲线C的渐近线为,则双曲线C的方程为()A. B. C. D.参考答案:C略2. 已知两个向量集合M={︱=(cos,),∈R},N={︱=(cos,+sin)∈R},若M∩N≠,则的取值范围是A.(-3,5]B.[,5]C.[2,5]D.[5,+∞)参考答案:B3. 的展开式中常数项为A.-30B.30C. -25D.25参考答案:C的展开式中常数项为,答案选C.4. 执行如图1所示的程序框图,如果输入的,则输出的属于()A. B. C. D.参考答案:D5. 已知复数则= ()A. B. C. D.参考答案:B6. 已知双曲线右支上的一点到左焦点的距离与到右焦点的距离之差为8,且到两渐近线的距离之积为,则双曲线的离心率为()ks5uA. B. C. D.参考答案:A7. 已知函数在R上单调递减,则实数a的取值范围是A.a>一2 B.一2<a<一1 C.a≤一2 D.a≤一参考答案:C8. 已知函数的周期为4,且当时,其中.若方程恰有5个实数解,则的取值范围为 ( )A. B. C. D.参考答案:B9. 在某次乒乓球单打比赛中,原计划每两名选手都进行一场比赛,但有3名选手各比赛了2场之后就退出了比赛,这样全部比赛只进行了50场,那么在上述3名选手之间比赛的场数是()A.0 B.1 C.2D.3参考答案:B试题分析:设一共有个选手,故总场次,其中为上述名选手之间比赛的场数,则,经验证,当时,.考点:排列组合.10. 已知是函数的图象与轴的两个不同交点,其图象的顶点为,则面积的最小值是()A.1B.C.D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 在平面四边形中,已知,则的值为.参考答案:1012. 若,且,则.参考答案:因为,所以为第三象限,所以,即。

吉林省长春市普通高中2020届高三质量监测(一)理数参考答案

吉林省长春市普通高中2020届高三质量监测(一)理数参考答案

长春市2020届高三质量监测(一) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分)1. B2. C3. C4. C5. D6. A7. D8. A9. C 10. B 11. C 12. C二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分)13. 112 14. 215. 20π16.221n n +,1(1)(1)nn n -++三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的相关知识,特别是三角函数中的取值范围问题. 【试题解析】解:(Ⅰ)由题可知sin sin sin cos AA B A=⋅,即sin cos B A =, 由a b >,可得2A B π+=,即ABC △是直角三角形.(6分)(Ⅱ)ABC ∆的周长1010sin 10cos L A A =++,10)4L A π=++,由a b >可知,42A ππ<<sin()14A π<+<,即2010S <<+(12分)18. (本小题满分12分)【命题意图】本题考查立体几何相关知识. 【试题解析】解:(Ⅰ)取PA 中点M ,连结EM 、DM ,//////EM CD CE DM CE PAD EM CD DM PAD ⎫⎫⇒⎬⎪⇒=⎬⎭⎪ ⊂⎭平面平面.(6分) (Ⅱ)以A 为原点,以AD 方面为x 轴,以AB 方向为y 轴,以AP 方向为z 轴,建立坐标系.可得(2,0,0)D ,(2,1,0)C ,(0,0,4)P ,(0,2,0)B ,(0,1,2)E ,(0,1,0)CD =-,(2,0,2)CE =-,平面CDE 的法向量为1(1,0,1)n =; 平面ABCD 的法向量为2(0,0,1)n =;因此1212||cos ||||n n n n θ⋅==⋅ 即平面CDE 与平面ABCD 所成的锐二面角为4π. (12分)19. (本小题满分12分)【命题意图】本题考查概率的相关知识.【试题解析】解:(Ⅰ)该考生本次测验选择题得50分即为将其余4道题无法确定 正确选项的题目全部答对,其概率为11111(50)223336P X ==⋅⋅⋅=. (4分)(Ⅱ)设该考生本次测验选择题所得分数为X , 则X 的可能取值为30,35,40,45,50.11224(30)223336P X ==⋅⋅⋅=112211221112112112(35)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11221112112111121121111113(40)22332233223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111111112111126(45)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111(50)223336P X ==⋅⋅⋅=选择题所得分数为X 的数学期望为3EX =. (12分)20. (本小题满分12分)【命题意图】本小题考查圆锥曲线中的最值问题等知识. 【试题解析】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=. (4分)(Ⅱ)设直线l 的方程为x ty =-与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得 22(34)30t y +--=,即12y y+=,122334y y t -=+. AOB ∆面积可表示为1211||||2AOB S OQ y y =⋅-=△216234t ==+u =,则1u ≥,上式可化为26633u u u u=++当且仅当u =3t =±因此AOB ∆l 的方程为3x y =±. (12分)21. (本小题满分12分)【命题意图】本小题考查函数与导数的相关知识. 【试题解析】解:(Ⅰ)由题可知1()ln 1f x x x'=+-, ()f x '单调递增,且(1)0f '=,当01x <<时,()0f x '<,当1x ≥时,()0f x '≥;因此()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (4分)(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知由11()(1ln )1h x m x x x'=+-+-且0m >可知,当01x <<时,()0h x '<,当1x ≥时,()0h x '≥;即()h x 的最小值为3(1)10h e=-<,因此当1x e =时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->,可知()h x 在(1,)e 上也存在一个零点;因此211x x e e -<-,即121x e x e+>+. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=.(5分) (Ⅱ)联立直线l 的参数方程与圆C 的直角坐标方程可得22(1)(2)4(1)30222-++---=,化简可得220t +-=. 则12||||||2PA PB t t ⋅==. (10分)23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识. 【试题解析】(Ⅰ)由题意 (3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ---- <-- <-⎧⎧⎪⎪=+-- - =+ -⎨⎨⎪⎪+-- > >⎩⎩≤≤≤≤当3x <-时,41x -+≥,可得5x -≤,即5x -≤.当31x -≤≤时,221x x ++≥,可得1x -≥,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤.综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--. (5分) (Ⅱ)由(Ⅰ)可得函数)(x f 的最大值4M =,且14ab a b +++=,即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立,可得2(2)16a b ++≥,即2a b +≥,因此b a +的最小值为2. (10分)。

吉林省长春市普通高中2020届高三质量监测理科数学试卷(含答案)

吉林省长春市普通高中2020届高三质量监测理科数学试卷(含答案)

所以 an+1

an
=
3n ,
an
=
(an
− an−1)
+
(an−1
− an−2 )
+ ......+ (a2

a1) +
a1
=
3n −1 2
.
.
(6 分)
(Ⅱ)由(Ⅰ)得: bn = n 3n − n ,
Tn = 1 31 + 2 32 + ...... + n 3n , ①
3Tn = 1 32 + 2 33 + ...... + (n −1) 3n + n 3n+1 , ②
①-②可得
−2Tn
=
31
+
32
+
...... +
3n

n 3n+1
=
3n+1 − 2
3

n
3n+1

则 Tn
=

3n+1 − 3 4
+
n 3n+1 2
=
(2n
−1) 3n+1 4
+
3

Sn
=
(2n
−1) 3n+1 4
+
3

n(n +1) 2
.
20. (本小题满分 12 分)
(12 分)
【参考答案与评分细则】解:(Ⅰ)已知点 P 在椭圆 C :
(4 分)
(Ⅱ)设直线 AP 的方程为: y = k(x + 2) ,则直线 OM 的方程为 y = kx .

2020届长春地区高三一模(理数)答案

2020届长春地区高三一模(理数)答案

长春市 2020 届高三质量监测(一) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12 小题,每小题 5 分,共 60 分)1. B2. C3. C4. C5. D6. A7. D8. A9. C10. B 11. C 12. C二、填空题(本大题共 4 小题,每小题5 分, 16 题第一空 2 分,第二空 3 分,共 20 分)13. 11214. 215. 20 16. 2 n ,( 1) n 1 2n n n1)1 ( 三、解答题17. (本小题满分 12 分 )【命题意图】 本题考查三角函数的相关知识,特别是三角函数中的取值范围问题.【试题解析】 解:(Ⅰ)由题可知 sin A sin Bsin A,即 sin Bcos A ,cos A由 ab ,可得 A B,即 △ ABC 是直角三角形 . (6 分)2(Ⅱ)ABC 的周长 L10 10sin A 10cos A , L10 10 2 sin( A) ,4由 ab 可知,A,因此2 sin( A ) 1,即 20 S 1010 2 .2424(12 分)18. (本小题满分 12 分 )【命题意图】 本题考查立体几何相关知识 .【试题解析】 解:(Ⅰ)取 PA 中点 M ,连结 EM 、 DM ,EM // CD CE // DMEM CD(6 分)CE //平面PAD .DM 平面PAD(Ⅱ)以 A 为原点,以 AD 方面为 x 轴,以 AB 方向为 y 轴,以 AP 方向为 z 轴,建立坐标系 .可得 D (2,0,0) , C (2,1,0) , P(0,0,4) , B(0,2,0), E(0,1,2) ,CD (0, 1,0) , CE( 2,0,2) ,平面 CDE 的法向量为 n 1 (1,0,1) ;平面 ABCD 的法向量为 n 2 (0,0,1) ;| n 1 n 2 |2因此cos.| n 1 | | n 2 |2即平面 CDE 与平面 ABCD 所成的锐二面角为.(12 分)4数学(理科)试题参考答案及评分标准 第 1页(共 4页)19.( 本小题满分 12 分) 【命题意图】 本题考查概率的相关知识 .【试题解析】解:(Ⅰ)该考生本次测验选择题得50 分即为将其余 4 道题无法确定正确选项的题目全部答对,其概率为P( X50) 1 1 1 1 1 . (4 分)X ,2 23 336(Ⅱ)设该考生本次测验选择题所得分数为则 X 的可能取值为30, 35, 40, 45, 50.P( X30) 1 1 2 242 23 336P( X35)1 12 2 1 1 2 21 1 12 1 1 2 1 122 23 32 23 32 23 32 23 3 36P(X40) 1 1 2 2 1 1 1 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 132 23 3 2 2 3 32 23 32 23 3 2 2 3 3 2 2 3 3 36P(X45)1 1 1 11 1 1 1 1 12 1 1 1 1 2 62 23 32 23 32 23 32 23 336P(X50)1 1 1 1 12 23 336X 的分布列为该考生本次测验选择题所得分数为X 30 35 4045 50P412 13613636363636选择题所得分数为X 的数学期望为 EX115. ( 12 分)320. (本小题满分 12 分 )【命题意图】 本小题考查圆锥曲线中的最值问题等知识.【试题解析】 解:( Ⅰ)由定义法可得, P 点的轨迹为椭圆且 2a 4 , c 1 .因此椭圆的方程为x 2y 2(4 分)41 .322( Ⅱ)设直线 l 的方程为 xty3 与椭圆xy1交于点 A( x 1, y 1) ,4 3B(x 2 , y 2 ) ,联立直线与椭圆的方程消去 x 可得226 3ty 3 0 ,即 y 1y 26 3t ,y 1y 2 3.(3t4) yt 2t 243 43AOB 面积可表示为 S △ AOB1| OQ | | y 1y 2 | 1 3 ( y 1 y 2 )24 y 1 y 22213 ( 6 3 24 33 2 39t 23t26 2122 t ) 2224 4 23t3t 4 3t 4 3t3t4令3t 2u ,则 u ≥ 1 ,上式可化为6u6≤,12 333u uu数学(理科)试题参考答案及评分标准 第 2页(共 4页)当且仅当 u3 ,即 t6时等号成立,3因此 AOB 面积的最大值为3 ,此时直线 l 的方程为 x6y3 . ( 12 分)321. (本小题满分 12 分 )【命题意图】 本小题考查函数与导数的相关知识.【试题解析】 解:(Ⅰ)由题可知 f ( x)ln x1 1 ,f ( x) 单调递增,且f (1) 0 ,x当 0 x 1 时, f (x) 0 ,当 x ≥ 1时, f ( x) ≥ 0 ;因此 f ( x) 在 (0,1) 上单调递减,在 [1, ) 上单调递增 .(4 分)(Ⅱ)由 h( x) m(x 1)ln xx ln x3有两个零点可知1) 11e由 h ( x) m(1 ln x且 m 0 可知,x x当 0 x 1 时, h ( x) 0 ,当 x ≥ 1时, h (x) ≥ 0 ;即 h( x) 的最小值为 h(1) 1 30 ,em ee因此当 x1时, h(1) m(11)( 1) 1( 1) 1)2 0 ,3(e eeee e可知 h( x) 在 ( 1,1) 上存在一个零点;e当 x e 时, h(e) m(e 1) e 13 0 ,e可知 h( x) 在 (1,e) 上也存在一个零点;因此 x 2 x 1 e1,即 x 1 e x 2 1 . (12 分)ee22.(本小题满分 10 分 )【命题意图】 本小题主要考查极坐标与参数方程的相关知识. 【试题解析】 解:(Ⅰ)直线 l 的普通方程为 x y 3 0 ,圆 C 的直角坐标方程为 x 2y 2 4x 3 0 .(5 分)(Ⅱ)联立直线 l 的参数方程与圆 C 的直角坐标方程可得(12t)2(22t)24(12t ) 30 ,化简可得 t 2 3 2t 2 0 .22 2则| PA | | PB | |t 1t 2 | 2 .(10 分)数学(理科)试题参考答案及评分标准第 3页(共 4页)23. (本小题满分 10 分 )【命题意图】 本小题主要考查不等式的相关知识 . 【试题解析】( Ⅰ)由题意( x 3) (1 x),x 34, x 3 f (x)( x 3) (1 x),3 ≤ x ≤12x2,3 ≤ x ≤1(x 3) (x 1), x 14, x 1 当 x 3 时, 4 ≥ x 1,可得 x ≤ 5 ,即 x ≤ 5 . 当 3 ≤ x ≤ 1时, 2x 2 ≥ x 1,可得 x ≥ 1,即 1 ≤ x ≤ 1 . 当 x 1 时, 4 ≥ x 1 ,可得 x ≤ 3 ,即 1 x ≤ 3 . 综上,不等式 f (x) ≥ x 1的解集为 ( , 5] [ 1,3] .(5 分)( Ⅱ)由( Ⅰ)可得函数 f ( x) 的最大值 M 4 ,且 ab a b 1 4 ,即 3 (ab)ab ≤ (ab ) 2 ,当且仅当 a b 时“ =”成立,2) 22可得 ( a b ≥ 16 ,即 ab ≥ 2 ,因此 a b 的最小值为2. (10 分)数学(理科)试题参考答案及评分标准 第 4页(共 4页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,点 的极坐标为 ,若直线过点 ,且倾斜角为 ,圆 以 圆心,3 为半径.
(Ⅰ)求直线的参数方程和圆 的极坐标方程;
(Ⅱ)设直线与圆 相交于 两点,求

【答案】(Ⅰ)
为参数),
;(Ⅱ) .
【解析】试题分析:(1)根据直线参数方程形式直接写出直线的参数方程,根据直角三角形
关系得
,即为圆 的极坐标方程(2)利用
A. 4 立方丈 B. 5 立方丈 C. 6 立方丈 D. 12 立方丈
【答案】B
【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为 3,四棱锥的体
积为 2,则刍甍的体积为 5.故选 B.
9. 已知矩形
的顶点都在球心为 ,半径为 的球面上,
,且四棱

的体积为 ,则 等于( )
A. 4 B.





即二面角
的余弦值为 .
【方法点晴】本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于难题.空 间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2) 写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂 直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理 结论求出相应的角和距离.
将圆 的极坐
标方程化为直接坐标方程,将直线参数方程代入,利用韦达定理及参数几何意义得 |=7
试题解析:(Ⅰ)直线的参数方程为
(t 为参数),
圆的极坐标方程为
.
(Ⅱ)把
代入
,得

,设点 对应的参数分别为 ,

,
23. 选修 4-5:不等式选讲 设不等式 (Ⅰ)求集合 ;
的解集为 .
(Ⅱ)若
,求证:.【答案】来自Ⅰ)求剪辑时间 的分布列与数学期望.
【答案】(Ⅰ) ;(Ⅱ) .
【解析】试题分析:(Ⅰ)因为 36 节云课中采用分层抽样的方式选出 6 节,所以 节应选

节;(Ⅱ) 的所有可能取值为
,根据古典概型概率公式分别求出各
随机变量的概率,从而可得分布列,由期望公式可得结果.. 试题解析:(Ⅰ)根据分层抽样,选出的 6 节课中有 2 节点击量超过 3000. (Ⅱ) 的可能取值为 0,20,40,60
节数
6
18
12
(Ⅰ)现从 36 节云课中采用分层抽样的方式选出 6 节,求选出的点击量超过 3000 的节数.
(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间
内,则需
要花费 40 分钟进行剪辑,若点击量在区间
内,则需要花费 20 分钟进行剪辑,
点击量超过 3000,则不需要剪辑,现从(Ⅰ)中选出的 6 节课中随机取出 2 节课进行剪辑,
C.
D.
【答案】A
【解析】由题意可知球心到平面 ABCD 的距离 2,矩形 ABCD 所在圆的半径为
的半径
.故选 A.
10. 已知某算法的程序框图如图所示,则该算法的功能是( )
,从而球
A. 求首项为 1,公差为 2 的等差数列前 2020 项和
B. 求首项为 1,公差为 2 的等差数列前 2020 项和
13. 已知角 满足

,则
的取值范围是__________.
【答案】
【解析】结合题意可知:

且:

利用不等式的性质可知:
的取值范围是
.
点睛:利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变
量的取值范围.解决此类问题一般是利用整体思想,通过“一次性”不等关系的运算求得待
求整体的范围,是避免错误的有效途径.
长春市普通高中 2020 届高三质量监测(一)
数学试题卷(理科)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1. 设为虚数单位,则
()
A.
B.
C. 5 D. -5
【答案】A
【解析】由题意可得:
.
本题选择 A 选项.
2. 集合
的子集的个数为( )
【解析】试题分析:(Ⅰ)求出 与 ,由

解方程组可求
的值;(Ⅱ)
恒成立等价于
恒成立,先证明当
时恒成
立,再证明
时不恒成立,进而可得结果;(Ⅲ))由
,令


,即
即可得结果.
,令
,各式相加
试题解析:(Ⅰ)由题意可知, 和 在
即在 处


解得
.
(Ⅱ)现证明
,设
处有相同的切线, ,

,即

因此
,即
恒成立,

的斜率 的取值范围是 k= .
试题解析:
(1)由椭圆定义
,有


,从而
.
(2)设直线
,有
,整理得



,有




由于
,所以

,解得
.

,由已知
.
21. 已知函数


(Ⅰ)若函数 与
(Ⅱ)当
时,
的图像在点
处有相同的切线,求 的值;
恒成立,求整数 的最大值;
(Ⅲ)证明:

【答案】(Ⅰ) ;(Ⅱ) ;(Ⅲ)证明见解析.
14. 已知平面内三个不共线向量 两两夹角相等,且

,则
__________.
【答案】
【解析】因为平面内三个不共线向量 两两夹角相等,所以由题意可知, 的夹角为
,又知

,所以


故答案为 .
15. 在
中,三个内角
的对边分别为 ,若


【答案】
面积的最大值为__________.
【解析】由
可得
, ,
则 的分布列为 0
20
40
60

.
19. 如图,四棱锥
中,底面
为菱形,
平面
, 为 的中点.
(Ⅰ)证明: 平面 ;
(Ⅱ)设
,三棱锥
的体积为 ,求二面角
的余弦
值.
【答案】(Ⅰ)证明见解析;(Ⅱ) .
【解析】试题分析:(Ⅰ) )连接 交 于点 ,连接 ,根据中位线定理可得

由线面平行的判定定理即可证明 平面 ;(Ⅱ)以点 为原点,以 方向为 轴,以
A. 4 B. 7 C. 8 D. 16
【答案】C
【解析】集合
含有 3 个元素,则其子集的个数为
.
本题选择 C 选项. 3. 若图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩 关于测试序号 的函数图像,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图像,给出 下列结论: ①一班成绩始终高于年级平均水平,整体成绩比较好; ②二班成绩不够稳定,波动程度较大; ③三班成绩虽然多数时间低于年级平均水平,但在稳步提升. 其中正确结论的个数为( )
概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止
条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.
11. 已知 为坐标原点,设 分别是双曲线
的左、右焦点,点 为双曲线上任
一点,过点 作
的平分线的垂线,垂足为 ,则
()
A. 1 B. 2 C. 4 D.
【答案】A

同理可证
.
由题意,当
时,





时,
成立.

时,
,即
因此整数 的最大值为 2.
(Ⅲ)由
,令
不恒成立. ,

,即
由此可知,当
时,


时,


时,
……

时,
综上:
, .
.

.
(二)选考题:请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分. 22. 选修 4-4:坐标系与参数方程 以直角坐标系的原点 为极点, 轴的正半轴为极轴建立极坐标系,已知点 的直角坐标为
;(Ⅱ)证明见解析.
【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并
集(2)利用分析法证明,将所求不等式转化为
,再根据

证明
试题解析:(1)由已知,令


.
(2)要证
,只需证

只需证
,只需证
只需证
,由
,则
恒成立.
点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、 基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径, 使用分析法证明的关键是推理的每一步必须可逆. (2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.
A. 95,94 B. 92,86 C. 99,86 D. 95,91 【答案】B 【解析】 由茎叶图可知,中位数为 92,众数为 86. 故选 B. 6. 若角 的顶点为坐标原点,始边在 轴的非负半轴上,终边在直线 取值集合是( )
A.
B.
上,则角 的
C. 【答案】D 【解析】因为直线
D. 的倾斜角是 ,所以终边落在直线
20. 已知椭圆 的两个焦点为
,且经过点

(Ⅰ)求椭圆 的方程;
(Ⅱ)过 的直线与椭圆 交于 两点(点 位于 轴上方),若
相关文档
最新文档