五年级数学思维训练——逻辑推理
五年级思维训练逻辑推理题

逻辑推理(A)一、填空题1. 甲、乙、丙三人进行跑步比赛.A、B、C三人对比赛结果进行预测.A说:“甲肯定是第一名.”B 说:“甲不是最后一名.”C说:“甲肯定不是第一名.”其中只有一人对比赛结果的预测是对的.预测对的是 .2. A、B、C、D、E和F六人一圆桌坐下.B是坐在A右边的第二人.C是坐在F右边的第二人.D坐在E的正对面,还有F和E不相邻.那么,坐在A和B之间的是 .3. 甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了盘,得了分.4. 曹、钱、刘、洪四个人出差,住在同一个招待所.一天下午,他们分别要找一个单位去办事.甲单位星期一不接待,乙单位星期二不接待,丙单位星期四不接待,丁单位只在星期一、三、五接待,星期日四个单位都不接待.曹:“两天前,我去误了一次,今天再去一次,还可以与老洪同走一条路.”钱:“今天我一定得去,要不明天人家就不接待了.”刘:“这星期的前几天和今天我去都能办事.”洪:“我今天和明天去,对方都接待.”那么,这一天是星期 ,刘要去单位,钱要去单位,曹要去单位,洪要去单位.5. 四位外国朋友住在十八层高的饭店里,他们分别来自埃及、法国、朝鲜和墨西哥.(1)A住的层数比C住的层数高,但比D住的层数低;(2)B住的层数比朝鲜人住的层数低;(3)D住的层数恰好是法国人住的层数的5倍;(4)如果埃及人住的层数增加2层,他与朝鲜人相隔的层数,恰好和他与墨西哥人相隔的层数一样;(5)埃及人住的层数是法国人和朝鲜人住的层数的和.根据上述情况,请你确定A是人,住在层;B是人,住在层;C是人,住在____层;D是人,住在层.6. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小张说:“它是84261.”小王说:“它是26048.”小李说:“它是49280.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们每人都猜对了位置不相邻的两个数字.”这个电话号码是 .7. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小王说:“它是93715.”小张说:“它是79538.”小李说:“它是15239.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们三人猜对的数字个数都一样,并且电话号码上的每一个数字都有人猜对.而每个人猜对的数字的数位都不相邻”.这个电话号码是 .的父母戴帽子的颜色是、、 .8. A、B、C、D四人定期去图书馆,四人中A、B二人每隔8天(中间空7天,下同)、C每隔6天、D每隔4天各去一次,在2月份的最后一天,四人刚好都去了图书馆,那么从3月1日到12月31日只有一个人来图书馆的日子有____ 天.9. 六年级六个班组织乒乓球单打比赛,每班派甲、乙两人参赛,根据规则每两人之间至多赛一场,且同班的两人之间不进行比赛.比赛若干场后发现,除一班队员甲以外,其他每人已比赛过的场数各不相同,那么一班队员乙已赛过____场.10. 人的血型通常为A型,B型,O型,AB型.子女的血型与其父母血型间的关系如下表所示:父母的血型子女可能的血型O,O OO,A A,OO,B B,OO,AB A,BA,A A,OA,B A,B,AB,OA,AB A,B,ABB,B B,OB,AB A,B,ABAB,AB A,B,AB现有三个分别身穿红,黄,蓝上衣的孩子,他们的血型依次为O,A,B.每个孩子的父母都戴着同颜色的帽子,颜色也分红,黄,蓝三种,依次表示所具有的血型为AB,A,O.那么穿红、黄、蓝上衣的孩子———————————————答案——————————————————————1. CA、C的预测截然相反,必一对一错.因为只有一人对,不论A、C谁对,B必错,所以甲是最后一名,C对.2. E如右图,E坐在A、B之间.3. 2,3.由题意可画出比赛图,已赛过的两人之间用线段引连(见右图).由图看出小明赛了2盘.因为一共赛了六盘,共得12分,所以小明得了12-(2+4+1+2)=3(分).4. 三,丙,丁,甲,乙.由刘的讲话,知这一天是星期三,刘要去丙单位.钱要去丁单位,曹去的是甲单位,洪去的是乙单位.5.埃及,8;法国,3;朝鲜,5;墨西哥,15.容易知道,墨西哥人住得最高,埃及人次之,朝鲜人又次之,法国人最低,各层次分别15,8,5和3.由(2)知B是法国人,由(3)和D是墨西哥人,由(1)知A是埃及人,而C是朝鲜人.6.86240. 因为每人猜对两个数字,三人共猜对张:842 12⨯3=6(个)数字,而电话号码只有5位, 王:26048所以必有一位数字被两人同对猜对.如右李:4980图所示,猜对的是左起第三位数字2.因为每人猜对的两个数字不相邻,所以张、李猜对的另一个数字分别在两端,推知王猜对的数字是6和4,进一步推知张猜对8,李猜对0.电话号码是86240.7. 19735.因为每个数字都有人猜对,所以每人至少猜对两个数字.下页右上图中,同一位数中只有方框中的两个数相同,如果每人猜对的数字多于两位,相同的数字至少有3⨯3-5=4(组),所以每人恰好猜对两个数字. 王: 9 3 7 1 5三人共猜对2⨯3=6(个)数字,因为电话号码只有张: 7 9 5 3 85位,所以相同的一组是正确的,即左起第四位是李: 1 5 2 3 93.因为每人猜对的数字不相邻,所以张、李猜对的另一个数字都在前两位,王猜对的两个数字是7和5,进而推知张猜对9,李猜对1.电话号码是19735.8. 51天.因为[8,6,4]=24,所以四人去图书馆的情况每24天循环一次(见下表):1 2 3 4 5 6 7 8D C A、B、D9 10 11 12 13 14 15 16C、D A、B、D17 18 19 20 21 22 23 24C D A、B、C、D甲乙丙丁小明每24天有4天只有1人去图书馆.3月1日至12月31日有306天,306÷24=12…18,所以所求天数为4⨯12+3=51(天).9. 5根据题意,有11名队员比赛场数各不相同,并且每人最多比赛10场,所以除甲外的11名队员比赛的场数分别为0~10.已赛10场的队员与除已赛0场外的所有队员都赛过,所以已赛10场的队员与已赛0场的队员同班;已赛9场的队员与除已赛0、1场外的所有队员都赛过,所以已赛9场的队员与已赛1场的队员同班;同理,已赛8、7、6场的队员分别与已赛2、3、4场的队员同班;所以甲与已赛5场的队员同班,即乙赛过5场.注本题可以求出甲也赛了5场,分别与已赛10、9、8、7、6场的队员各赛1场.10. 蓝、黄、红.解法一题中表明,每个孩子的父母是同血型的.具有B型血的孩子,其父母同血型时,由表中可见,只能是B 型或AB型,但题中没有同具B型血的父母,所以戴红帽子的父母的孩子穿蓝上衣.具有A型血的孩子的同血型的父母,只可能同为A型血或同为AB型血.今已知有一对父母为AB型血者,所以穿黄上衣的孩子的父母戴黄帽子.由表中可见,其孩子为O型血时,父母血型只能同为A型或B型或O 型.今已知不具有同为B型血的父母,而同为A型血的父母的孩子已知具有A型血.把代表孩子的点与他的可能双亲的代表点之间连一直线段,便可得下面的图;由于孩子与其父母之间是唯一搭配的,所以,保存下来的只有连着红、蓝;黄,黄及蓝,红的三条边.所以,穿红上衣(O型血)孩子的父母戴蓝帽子. 孩子衣服颜色父母帽子颜色(O型血)红红(AB型血)(A型血)黄黄(A型血)(B型血)蓝蓝(O型血)所以,穿红上衣的孩子的父母戴蓝帽子;穿黄上衣的孩子的父母戴黄帽子;穿蓝上衣的孩子的父母戴红帽子.。
小学奥数思维训练-逻辑推理问题(通用,含答案)

小学奥数思维训练-逻辑推理问题学校:___________姓名:___________班级:___________考号:___________一、填空题1.填数使下列竖式成立:(1)(2)二、排序题2.200米赛跑,张强比李军快0.2秒,王明的成绩是39.4秒,赵刚的成绩比王明慢0.9秒,但比张强快0.1秒,林林比张强慢3秒,请你给这五人排出名次来。
三、解答题3.有三个和尚,一个讲真话,一个讲假话,另外一个有时讲真话,有时讲假话。
一天,一位智者遇到这三个和尚,他先问左边的那个和尚:“你旁边的是哪一位?”和尚回答说“讲真话的。
”他又问中间的和尚:“你是哪一位?”和尚答:“我是半真半假的。
”他最后问右边的和尚:“你旁边是哪一位?”答:“讲假话的。
”根据他们的回答,智者马上分清了他们,你能分清吗?4.一次全校数学竞赛,A、B、C、D、E五位同学取得了前五名,发奖后有人问他们的名次,回答是:A说:“B是第三名,C是第五名.”B说:“D是第二名,E是第四名.”C说:“A是第一名,E是第四名.”D说:“C是第一名,B是第二名.”E说:“D是第二名,A是第三名.”最后,他们都补充说:“我们的话半真半假.”请你判断一下他们每个人的名次.5.老师有一黑两白三顶帽子,给两个学生看后,让他们闭上眼睛,从中取出两顶给他们戴上,然后让他们睁开眼睛,互相看清对方戴的帽子,并立即说出自己头上戴的帽子是什么颜色,两位同学都不能立即说出,请问你知道这两位学生戴的各是什么颜色的帽子吗?6.曾实、张晓、毛梓青在一起,一位是工程师、一位是医师、一位是教师。
现在只知道:(1)毛梓青比教师年龄大;(2)曾实和医师不同岁;(3)医师比张晓年龄小。
你能确定谁是工程师?谁是医师?谁是教师吗?7.某公安人员需查清甲、乙、丙三人谁先进办公室,三人口供如下:甲:丙第二个进去,乙第三个进去。
乙:甲第三个进去,丙第一个进去。
丙:甲第一个进去,乙第三个进去。
五年级下册数学思维拓展训练较复杂的逻辑推理 全国通用

全部选手的总分应该是偶数
排除1979和1985
我们用图表来表示比赛场次和总分数
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
1 1+2= 3 1+2+3= 6 1+2+3+4 =10
1×2=2 3×2=6 6×2=12 10×2=20
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
例6:象棋比赛中,每位选手都与其他选手赛 一场,赢者得2分,负者得0分,平局两人各得1分。 现在有四位学生统计全部选手总分,分别为 1979,1980,1984,1985,但只有一个统计正确。问 共有多少位选手比赛?
不管比赛结果怎样,每场比赛选手的总分都是2分。
每人都与其他棋 手赛一场
例7:某工厂有六名棋手进行单循环比赛。比 赛分三场同时进行,共赛五天,每人每天赛一场。 已知在第一天C和E对弈,第二天B和D对弈,第三天 A和C对弈,第四天D和E对弈。试问:F在第五天与 谁对弈?
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
假设法:可以首先假设某种结果 正确,并以此为起点利用已知条件进 行推理论证。如果推理产生矛盾,说 明假设的结果是错误的,再重新提出 一个假设,直至得到符合要求的结论 为止。
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
答:A在化妆,B在看书,C在修指甲,D在做头发。
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
排除法: 就是根据已知条件, 不断排除不可能的情况。
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
小学生数学思维逻辑推理

小学生数学思维逻辑推理数学思维逻辑推理是数学学习中重要的一部分,对小学生的发展至关重要。
通过培养小学生的数学思维逻辑能力,不仅可以帮助他们更好地理解和应用数学知识,还能够培养他们的分析问题、解决问题的能力,提高整体学习能力。
本文将从培养数学思维逻辑的重要性、培养数学思维逻辑的方法和小学生数学思维逻辑能力的发展等方面进行论述。
一、培养数学思维逻辑的重要性数学思维逻辑是数学学科中最基本的思维模式,它是数学思维的核心。
培养小学生的数学思维逻辑能力,对其德智体美全面发展具有重要意义。
首先,培养数学思维逻辑能力,有助于提高小学生的数学学习能力。
数学作为一门科学,强调逻辑推理和抽象思维能力,只有培养了这些能力,小学生才能更好地理解和运用数学知识。
其次,培养数学思维逻辑能力,也有助于小学生的认知发展。
数学思维逻辑能力的培养,需要小学生深入思考、分析和解决问题,这样可以提高他们的观察力、分析力和判断力,对他们的认知能力有着积极的影响。
最后,培养数学思维逻辑能力,还能够促进小学生的综合素质培养。
数学思维逻辑能力的培养需要运用各种思维方法和技巧,这些方法和技巧的学习过程中,也能够促进小学生的思维能力、创新能力等综合素质的培养。
二、培养数学思维逻辑的方法1. 提供适当的数学教材和学习资源。
为了培养小学生的数学思维逻辑能力,学校和家长要提供适当的数学教材和学习资源,让小学生有足够的材料进行思考和练习。
可以选择一些数学思维锻炼的题目,帮助小学生进行思维训练。
可以适时引导小学生使用互联网等现代技术,获取更多的数学学习资源。
2. 引导小学生进行探究学习。
在数学学习中,引导小学生进行探究学习是培养数学思维逻辑的有效方法之一。
通过提出问题、搜集信息、分析问题、解决问题等步骤,培养小学生的思维能力和逻辑推理能力。
可以通过小组合作、课堂讨论等方式,鼓励小学生独立思考和表达自己的观点。
3. 培养小学生解决问题的能力。
解决问题是培养小学生数学思维逻辑的核心目标之一。
数学思维训练方案帮助小学生提高数学成绩

数学思维训练方案帮助小学生提高数学成绩一、激发兴趣,奠定基础兴趣是最好的老师。
为了激发小学生对数学的兴趣,可以从日常生活入手,让他们发现数学无处不在。
比如,在购物时计算商品的价格和折扣,在游戏中运用数学知识进行得分计算,或者通过讲述有趣的数学故事和谜题,引发他们的好奇心。
同时,要注重基础知识的扎实掌握。
从数字的认识、简单的加减法到乘法口诀,每一个基础环节都要让学生理解透彻。
可以通过反复练习和多样化的教学方法,如使用实物教具、动画演示等,帮助学生建立清晰的数学概念。
二、逻辑推理训练逻辑推理是数学思维的核心之一。
可以通过一些简单的逻辑推理游戏和题目来锻炼小学生的思维能力。
例如,数独游戏就是一个很好的选择,它需要学生根据已知数字,通过推理和排除,填满整个九宫格。
还有一些推理谜题,比如“在一个班级里,小明比小红高,小红比小刚高,那么谁最高?”这类题目能够培养学生的顺序思维和比较能力。
在教学中,老师可以引导学生逐步分析问题,找出关键信息,培养他们有条理地思考问题的习惯。
三、空间想象训练空间想象能力对于学习几何知识非常重要。
可以让学生通过搭积木、折纸等活动,直观地感受空间形状和结构。
比如,让学生用积木搭建出不同的立体图形,然后描述它们的特征;或者通过折纸制作出各种几何形状,如正方体、长方体等,加深对空间概念的理解。
此外,还可以利用一些图形谜题,如拼图游戏、一笔画问题等,锻炼学生的空间感知和想象能力。
四、数学阅读与表达数学阅读能力的培养有助于学生理解数学问题和概念。
可以提供一些适合小学生的数学科普读物、数学故事书,让他们在阅读中提高对数学语言的理解和运用能力。
同时,鼓励学生用自己的语言表达数学思路和解题过程。
无论是课堂发言还是书面作业,都要求他们清晰地阐述自己的想法。
这不仅能够加深他们对知识的理解,还能锻炼他们的逻辑表达能力。
五、问题解决策略训练教给学生一些常见的问题解决策略,如画图法、列表法、假设法等。
当遇到复杂的数学问题时,引导他们选择合适的策略来解决。
五年级数学解题策略:代入法、图形法、逻辑推理与分解组合

五年级数学解题策略:代入法、图形法、逻辑推理与分解组合当然可以。
下面我会针对几个不同的解题方法举例说明,以及如何通过这些方法来提高五年级下册的数学能力。
1. 代入法例子:解方程 3x + 2 = 5解题步骤:1.移项,使等式一侧只剩x的项:3x = 5 - 22.简化等式:3x = 33.使用代入法解x的值:x = 3 ÷ 34.得到答案:x = 1如何应用:●代入法常用于解方程。
首先,将方程中的未知数单独放在一侧,然后将已知数代入到等式的另一侧。
●通过反复练习,学生将能够更快地识别何时使用代入法,并更熟练地解决方程问题。
2. 图形法例子:计算平行四边形的面积解题步骤:1.确定平行四边形的底和高。
2.使用公式:面积 = 底×高3.代入数值进行计算。
如何应用:●在处理与几何形状有关的题目时,使用图形法非常有帮助。
它可以帮助学生更好地理解和解决问题。
●通过绘制图形,学生可以更直观地看到问题的结构,并更容易找到解决问题的方法。
3. 逻辑推理例子:判断哪个数最大:3/4, 5/6, 7/8解题步骤:1.将所有分数转换为具有相同分母的分数。
2.比较分子的大小来确定哪个数最大。
如何应用:●逻辑推理在数学中非常常见,尤其是在处理比较和排序问题时。
●通过训练学生的逻辑思维能力,他们可以更好地理解和解决复杂的问题。
4. 分解与组合例子:计算 24 × 125解题步骤:1.将24分解为3 × 8。
2.使用乘法结合律:(3 × 8) × 125 = 3 × (8 × 125)。
3.计算8 × 125 = 1000。
4.最后计算3 × 1000 = 3000。
如何应用:●分解与组合是一种有效的策略,特别是在处理复杂计算时。
●通过将问题分解为更小的部分,学生可以更容易地找到解决方案,并提高他们的计算能力。
综上所述,通过不断练习和应用这些解题方法,五年级学生可以逐渐提高他们的数学能力,并更好地理解和解决各种问题。
小学五年级数学学习中的逻辑思维训练

小学五年级数学学习中的逻辑思维训练数学作为一门精确科学,逻辑思维在其中占据着重要的地位。
在小学五年级的数学学习中,逻辑思维的训练是非常关键的。
它不仅有助于培养学生的思维能力,还能提升他们的解决问题的能力。
本文将探讨小学五年级数学学习中逻辑思维训练的重要性及方法。
一、逻辑思维在数学学习中的作用逻辑思维是一种推理和判断的能力,它需要学生运用正确的思维规则来组织和处理信息。
在数学学习中,逻辑思维帮助学生理解和应用数学概念、方法和原理。
通过逻辑思维的训练,学生能够培养良好的数学思维方式,提高解题的准确性和效率。
逻辑思维对于学生在数学学习中的作用主要有以下几个方面:1. 推理能力:逻辑思维能够帮助学生进行准确的推理和演绎,从而推断出问题的答案。
学生能够分析问题的条件和要求,运用逻辑关系进行推理,找到正确的解题方法。
2. 问题解决能力:逻辑思维能够帮助学生分析和解决问题。
学生能够根据问题的特点和条件进行分类和归纳,找出问题的关键点,并运用逻辑思维解决问题。
3. 创新思维:逻辑思维能够激发学生的创造力和想象力。
通过运用逻辑规则和推理方法,学生能够寻找问题的新解决办法,培养创新思维的能力。
二、小学五年级数学学习中逻辑思维训练的方法1. 练习逻辑推理题:逻辑推理题是培养学生逻辑思维能力的重要手段。
通过解答逻辑推理题,学生能够强化逻辑推理的过程和方法,提高自己的逻辑思维能力。
2. 进行实际问题训练:将数学知识与实际问题相结合,培养学生分析和解决实际问题的能力。
通过让学生运用逻辑思维解决实际问题,可以加深他们对逻辑思维的理解和应用。
3. 提供思维导图工具:使用思维导图工具可以帮助学生整理和归纳数学知识,促进逻辑思维的发展。
学生可以将问题和解决方案以思维导图的形式呈现,加深对问题和解决方法的理解。
4. 进行团队合作学习:鼓励学生进行团队合作学习,通过合作解决问题,培养学生的逻辑思维能力。
学生可以在小组中共同思考、讨论和解决问题,相互交流和借鉴思维方式,提高逻辑思维的水平。
五年级数学几何逻辑思维能力题

五年级数学几何逻辑思维能力题在五年级学习数学的过程中,几何和逻辑思维能力是非常关键的内容。
这一阶段的数学教育不仅要求学生掌握基本的几何图形和运算符号,还需要培养他们的逻辑思维能力,帮助他们更好地理解和解决数学问题。
五年级的数学几何逻辑思维能力题是非常重要的一部分。
本文将对此进行全面评估,并撰写一篇有价值的文章。
我们来看一些常见的五年级数学几何逻辑思维能力题样例:1. 请画出一个直角三角形,并计算其两个锐角的度数。
2. 如果一个长方形的周长是24厘米,其中一条边长是4厘米,另一条边长是多少?3. 以下几个图形中,哪一个不是四边形?请用逻辑推理解决这个问题。
4. 在一个正方形田地的四个角上各有一只鸽子,它们之间的距离相等。
请计算正方形田地的边长。
以上是一些常见的五年级数学几何逻辑思维能力题样例,这些题目涉及了几何图形的认识和计算、周长和面积的计算、逻辑推理能力的培养等内容。
通过解决这些题目,学生不仅可以巩固所学的知识,还能培养自己的逻辑思维能力和解决问题的能力。
在解决这些题目的过程中,学生需要通过观察和分析,找出问题的关键点,并进行合理的推理和计算。
这些过程不仅有助于他们掌握数学知识,还能培养他们的思维能力和解决问题的能力。
五年级数学几何逻辑思维能力题对学生的数学素养和综合能力的提高起着非常重要的作用。
关于这个主题,我个人认为,五年级数学几何逻辑思维能力题既是对学生知识储备的考验,也是对他们综合能力的挑战。
在解决这些题目的过程中,学生需要不断地思考、推理和尝试,从而提高自己的数学能力和解决问题的能力。
教师在教学中可以适当增加一些这样类型的题目,帮助学生更好地提高他们的数学素养和综合能力。
五年级数学几何逻辑思维能力题是非常重要的一部分。
它不仅可以帮助学生巩固所学的知识,还可以培养他们的思维能力和解决问题的能力。
希望通过这篇文章的撰写,您能更全面、深刻和灵活地理解这个有价值的主题。
以上是本人根据您提供的主题所撰写的文章,希望能够对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识导航1.在近年来的许多竞赛试题中,常常会见到这样的一类题目,没有或很少给出什么数量关系;他们的解决方法主要不是依靠数学概念、法则、公式进行运算,较少用到专门的数学知识,而是根据条件和结论之间的逻辑关系,进行合理的推理,做出正确的判断,最终找到问题的答案,这就是逻辑推理问题。
2.逻辑推理问题的条件一般说来都具有一定的隐蔽性和迷惑性命且没有一定的解题模式。
因此,要正确解决这类问题,不仅需要始终抱地灵活的头脑,更需要遵循逻辑思维的基本规律------同一律、矛盾律和排中律。
(1)“矛盾律”指的是在逻辑推理过程中,对同一结论的推理不能自相矛盾。
(2)“排中律”值的是在逻辑推理过程中,一个思想或为真或为假,不能既不真或为假,不能既不真也不假。
(3)“同一律”指的是在逻辑推理过程中,同一对象的内涵必须是确定的,在进行判断和推理的过程中,每一概念都必须在同一意义下使用,不许偷换。
3.逻辑推理问题解题的方法一般有:《(1)列表画图法(2)假设推理法(3)枚举筛选法精典例题例1:一次网球邀请赛,来自湖北,广西,江苏,北京,上海的五名运动员相遇在一起,据了解:(1)王平仅与另外两名运动员比赛过;(2)上海运动员和另外三名运动员比赛过;(3)李兵没有和广西运动员比赛过;(4)江苏运动员和凌华比赛过;(5)广西,江苏,北京的三名运动员相互之间都比赛过;$(6)赵林仅与一名运动员比赛过。
问:张俊是哪个省市的运动员|思路点拨此题可用列表画图法来解答。
“赵林仅与一名运动员比赛过”,说明赵林只比赛过1场,由(2)、(5)可得知上海、广西、江苏、北京运动员至少都比赛过2场或以上,赵林只能是湖北运动员;由(3)、(5)知李兵不是广西运动员,也不是江苏、北京运动员,李兵只能是上海运动员;又由(2)、(3)、(6)知,赵林(湖北)与李兵(上海)比赛过,李兵(上海)与赵林(湖北)、江苏、北京运动员比赛过,可以知道王平肯定是广西运动员;由(4)知凌华不是江苏运动员,只能是北京运动员(如下表);据此采用列表法如下(用“×”表示否定,用“√”表示肯定)。
;模仿练习红、黄、蓝、白、紫五种颜色的珠子各一颗,分别用纸包着,在桌子上排成一行,有A、B、C、D、E五个人,猜各包珠子的颜色,每人只猜两包。
A猜:第二包是紫的,第三包是黄的;B猜:第二包是蓝的,第四包是红的;C猜:第一包是红的,第五包是白的;D猜:第三包是蓝的,第四包是白的;E猜:第二包是黄的,第五包是紫的。
、猜完后,打开各纸包一看发现每人都只猜对了一包,并且每包只有一人猜对。
请你判断他们各猜对了哪一包`例2:有四人打桥牌(牌中不含大、小王牌,每人共13张牌),已知某一人手中的牌如下:①红桃、黑桃、方块、梅花四种花色的牌都有;②各种花色的牌,张数不同;③红桃和黑桃合起来共6张;④红桃和方块和起来有5张;⑤有两张主牌。
]试问这手牌以什么花色为主牌)思路点拨由于主牌不外乎四种花色之一,因此可以采用假设推理法。
第一步:设红桃为主牌。
依题意,红桃为两张,则黑桃为4张,方块为3张。
一共有13张牌,梅花只能为44张,与黑桃张数相同,矛盾。
第二步:设方块为主牌。
依题意,方块为两张,则红桃为3张,黑桃也为3张,矛盾。
第三步:设梅花为主牌。
因为主牌为两张,所以黑桃、红桃,方块应总共为11张,但根据条件③、④知,这三种花色的总和应少于11张,又出现矛盾。
得出:只能是黑桃为主牌,此时红桃4张,方块1张,梅花6张。
总结:推理的方法很多,如果题目中所涉及的情况只有有限种,我们可以先假设一个前提正确,以此为起点,如果推理导致矛盾,说明假设的前提不正确,再重新提出一个假设,直至得到符合要求的结论为此。
这种方法叫做“假设推理法”。
~模仿练习从前有三个和尚,一个讲真话,一个讲假话,另一个有时讲真话,有时讲假话。
一天,一位智者遇到这三个和尚,他问第一位和尚:“你后面是哪位和尚”和尚回答:“讲真话的。
”他又问第二位和尚:“你是哪一位”得到的回答是:“有时讲真话,有时讲假话。
”他问第三位和尚:“你前面的是哪位和尚”第三位和尚回答说:“讲假话的。
”根据他们的回答,智者马上分清了他们各是哪一位和尚。
请你说出智者的答案。
例3:房间里有12个人,其中有些人总说假话,其余的人说真话。
其中一个人说:“这里没有一个老实人。
”第二个人说:“这里至多有一个老实人。
”第三个人说:“这里至多有两个老实人。
”如此往下,至第十二个人说:“这里至多有11个老实人。
”问房间里有多少个老实人%思路点拨此题的情况比较多,而且各种情况有一定的规律。
可用枚举筛选法:根通常直接采用假设推理,逐一分析,枚举所有可能出现的情况,利用矛盾律舍弃不合理的情况,筛选出最后的答案。
假设这房间里没有老实人,那么第1个人的话正确,说正确话的人应该是老实人,矛盾;¥假设这房间里只有1个老实人,那么第2~12个人的话都正确,那么应该有11个老实人,矛盾;假设这房间里只有2个老实人,那么第3~12个人的话都正确,那么应该有lO个老实人,矛盾;假设这房间里只有3个老实人,那么第4~12个人的话都正确,那么应该有9个老实人,矛盾;假设这房间里只有4个老实人,那么第5~12个人的话都正确,那么应该有8个老实人,矛盾;假设这房间里只有5个老实人,那么第6~12个人的话都正确,那么应该有7个老实人,矛盾;假设这房间里只有6个老实人,那么第7~12个人的话都正确,那么应该有6个老实人,满足;…………以下假设有7~12个老实人,均矛盾,所以这个房间里只有6个老实人。
、模仿练习有5个人各说了一句话:第1个人说:我们中间每一个人都说谎话;第2个人说:我们中间只有一个人说谎话;第3个人说:我们中间有两个人说谎话;第4个人说:我们中间有三个人说谎话;第5个人说:我们中间有四个人说谎话;请问:五个人中,谁说谎话,谁说真话)例4:小赵、小钱、小孙、小李四人中有两人在双休日为社区做好事,社区主任把这四人找来了解情况,四人分别回答如下:小赵:“小孙、小李中有人做了好事。
”}小钱:“小孙做了好事,我没有。
”小孙:“小赵、小李中只有1人做了好事。
”小李:“小钱说的是实话。
”最后通过仔细分析调查,发现四人中有两人说的是事实,另两人说的与事实有出入,到底是谁做了好事《思路点拨此题运用一般的假设推理法,关键是如何去假设。
仔细分析得出小钱与小李要不同真、要不同假,是我们解题的突破口。
题目说四人中两人说的是事实,另两人说的与事实有出入,注意,此处的“与事实有出入”表示不完全与事实相符,比如,当小钱、小孙都做了好事,或小钱、小孙都没有做好事,或小钱做了好事而小孙没做好事时,小钱说的话与事实有出入。
因为小钱与小李说的是一样的,所以只有两种可能:要么小钱与小李正确,另两人错;要么小钱、小李错,另两人正确。
(1)假设小钱、小李说的正确,这时小孙做了好事,小赵说小孙、小李中有人做了好事,小赵说的话也正确,这与只有两人说的是事实矛盾,所以假设不对。
(2)假设小赵与小孙说的话是正确的,那么做好事的是小赵和小孙,或小钱与小李,或小孙与小李。
若做好事的是小赵和小孙,或小孙和小李,则小钱的话也是正确的,与题意不符;若做好事的是小钱与小李,则小钱说的话与事实不符,符合提议,综上所述做好事的是小钱和小李。
(总结:运用假设推理法,如果假设的不好,可能会给推理带来麻烦,陷入僵局。
因此选择哪一个条件进行假设有一定的技巧,平时解题的时候应事先做分析,找出关键的突破口再做假设。
模仿练习有三只盒子,甲盒装了两个1克的砝码;乙盒装了两个2克的砝码;丙盒装了一个1克、一个2克的砝码。
每只盒子外面所贴的标明砝码重量的标签都是错的。
聪明的小明只从一只盒子里取出一个砝码,放到天平上称了一下,就把所有标签都改正过来了。
你知道这是为什么吗!巩固练习1.在一个年级里,甲、乙、丙三位老师分别讲授数学、物理、化学、生物、语文、历史,每位老师教两门课.现知道:(1)化学老师和数学老师住在一起;(2)甲老师是三位老师中最年轻的;。
(3)数学老师和丙老师是一对优秀的国际象棋手;(4)物理老师比生物老师年长,比乙老师又年轻;(5)三人中最年长的老师住家比其他二位老师远.问甲、乙、丙三位老师分别教哪两门课。
2.李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。
事先规定.兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
{、3.某校数学竞赛,A、B、C、D、E、F、G、H八位同学获前八名,老师让他们猜一下谁是第一名A:“或者F是第一名,或者H是第一名。
”B:“我是第一名。
”C:“G是第一名。
”D:“B不是第一名。
”E:“A说的不对。
”F:“我不是第一名,H也不是第一名。
”G:“C不是第一名。
”^H:“我同意A的意见。
”老师指出,八人中有三人猜对了,那么谁是第一名4. 在每星期的七天中,甲在星期一、二、三讲假话,其余四天都讲真话:乙在星期四、五讲假话,其余各天都讲真话。
今天甲:“昨天是我说谎的日子。
”乙说:“昨天也是我说谎的日子。
”今天是星期几。
5.公路上按一路纵队排列着五辆大客车。
每辆车的后面都贴上了该车的目的地的标志。
每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志。
调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断。
他先让第三个司机猜猜自己的车是开往哪里的。
这个司机看看前两辆车的标志,想了想说“不知道”。
第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道。
第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地。