电容和电感要点
分析电感和电容之间的关系

分析电感和电容之间的关系电感和电容是电路中常见的两种元件,它们在电子设备中发挥着重要的作用。
本文将对电感和电容之间的关系进行分析,探讨它们相互之间的影响以及在电路中的应用。
一、电感和电容的基本概念和特性电感和电容都属于被动元件,分别用来存储和释放电磁场能量。
电感通过将电流产生磁场来存储电能,而电容则通过在两个导体之间存储电荷来存储电能。
在交流电路中,电感和电容具有不同的特性。
电感对交流电具有阻抗,即随着频率的增加而增加。
而电容对交流电具有导纳,即随着频率的增加而减小。
这使得电感和电容可以在电路中起到不同的作用。
二、电感和电容的互补关系电感和电容在一些情况下也存在互补关系,可以相互抵消或增强对电路的影响。
1. 互补抵消:当电感和电容并联连接时,它们可以相互抵消,从而减小或甚至消除电路的总阻抗。
这在滤波电路中很常见,通过合理设计电感和电容的数值,可以达到对特定频率的信号进行滤波的效果。
2. 互补增强:当电感和电容串联连接时,它们可以相互增强,从而增大电路的总阻抗或导纳。
这在谐振电路中常见,通过合理选择电感和电容的数值,可以实现对特定频率的信号放大或增强的效果。
三、电感和电容在电路中的应用电感和电容在电路中有着广泛的应用,下面将分别介绍它们在不同电路中的作用。
1. 电感的应用:- 电源滤波器:电感可以用来过滤电源中的高频噪声,提供干净的电源信号给其他电路模块,以保证电路的正常工作。
- 变频器:电感可以用于变频器中的电能转换,将直流电能转化为交流电能或改变交流电的频率。
- 信号传输:电感可以用于信号传输系统中,通过调节电感的数值来调整信号的幅度和频率。
2. 电容的应用:- 耦合和解耦:电容可以用来耦合不同电路模块之间的信号,实现信号的传递和共享。
同时,电容也可以用来解耦,隔离不同电路模块的干扰信号。
- 滤波器:电容可以用来构建滤波电路,通过选择不同数值的电容来滤除特定频率的信号,使得输入信号更加稳定。
- 能量存储:电容可以用来存储电能,在需要短时间内释放大量电能的场景中发挥重要作用。
注意电容和电感的串并联关系

注意电容和电感的串并联关系电容和电感是电路中常见的元器件,它们在电路中起着非常重要的作用。
在电路设计和应用中,了解电容和电感的串并联关系是非常重要的。
首先,让我们来了解一下电容和电感的基本概念。
电容是一种可以存储电荷的元器件。
当两个带有电荷的导体之间存在电势差时,它们之间就会形成一个电场。
电容器就是利用电场将电荷存储起来的器件。
通常,电容的单位是法拉(F)。
电感是一种可以存储磁能的元器件。
当通电的导线形成一个线圈时,会在周围产生一个磁场。
电感器就是利用磁场将能量存储起来的器件。
通常,电感的单位是亨利(H)。
在电路中,电容和电感可以串联或并联连接。
首先,我们来看一下电容的串并联关系。
当电容器串联连接时,它们的电容值会减小。
如果有n个相同的电容器C串联连接,总的电容值CT可以用以下公式来计算:CT = 1 /(1/C1 + 1/C2 + ... + 1/Cn)这意味着当电容器串联连接时,总的电容值会小于任何一个单独电容器的电容值。
这是因为串联连接会增加电容器之间的等效距离,从而降低了电容值。
当电容器并联连接时,它们的电容值会增加。
如果有n个相同的电容器C并联连接,总的电容值CT可以用以下公式来计算:CT = C1 + C2 + ... + Cn这意味着当电容器并联连接时,总的电容值会等于所有电容器的电容值之和。
这是因为并联连接会使电容器之间的等效电场增加,从而提高了电容值。
接下来,我们来看一下电感的串并联关系。
当电感器串联连接时,它们的电感值会增加。
如果有n个相同的电感器L串联连接,总的电感值LT可以用以下公式来计算:LT = L1 + L2 + ... + Ln这意味着当电感器串联连接时,总的电感值会等于所有电感器的电感值之和。
串联连接会使电感器之间的等效磁场增加,从而提高了电感值。
当电感器并联连接时,它们的电感值会减小。
如果有n个相同的电感器L并联连接,总的电感值LT可以用以下公式来计算:1 / LT = 1 / L1 + 1 / L2 + ... + 1 / Ln这意味着当电感器并联连接时,总的电感值会小于任何一个单独电感器的电感值。
物理学概念知识:电容和电感

物理学概念知识:电容和电感电容和电感是电学中常见的两个重要概念,它们在电路、通讯、能量转换等领域都扮演着重要的角色。
本文将从电容和电感的定义、原理及其在实际应用中的应用举例等方面进行详细阐述。
一、电容的定义和原理电容是指在电路中能够储存电荷的一种装置,通常由两个导体板之间隔以电介质而构成,如平行板电容器、球形电容器等。
电容的单位为法拉(F),其中1法拉等于1库仑/伏,即在1伏特电压下,1库仑的电荷能够存储在电容器中。
电容的原理是基于电介质介电常数的概念,介电常数是描述介质对电场强度影响的一个参数。
当两个导体板之间的电介质填充后,其介电常数不同于空气或真空,所以导电板之间的电场强度就会减弱。
因此,在外加电压的作用下,导体板上就会储存电荷,这就是电容的原理。
二、电感的定义和原理电感是指在电路中能够储存磁能量的一种元件,通常由线圈等导体制成。
而电感的单位为亨(H),其中1亨等于1秒/安培,即在1安培的电流下,1秒的时间内在电感中储存的磁能量。
电感的原理是基于磁感应定律,根据磁感线在闭合线圈中的情况,可以得出闭合线圈中磁场的大小和方向。
当线圈中有电流流过时,就会产生磁通量,这就是电感储存磁能的原理。
三、电容和电感的区别虽然电容和电感都是能量储存器,但是它们却有着很大的区别。
首先,电容储存的是电荷能量,而电感储存的则是磁能量。
其次,电容对电流的改变有很高的响应速度,而电感对电流的改变响应较慢。
最后,电容可以让交流信号通过,而电感却可以抵消掉交流信号。
四、电容和电感的实际应用举例电容和电感的实际应用非常广泛,下面将从通讯、能量转换、电路等角度举例说明。
1、通讯:在通讯系统中,电容和电感分别用于信号的滤波和匹配。
使用电容器可以过滤掉高频噪声信号从而提高信噪比,而使用电感器可以匹配阻抗,实现信号强度的最大输出。
2、能量转换:电容和电感在能量转换中也发挥着重要的作用。
例如,在直流电源与交流电网之间需要一个更好的能量转换器来升高或降低电压,此时电容、电感等电路元件可以升高能量效率,提高能源利用率,减少功率损失。
电路中的电感与电容的相互作用

电路中的电感与电容的相互作用在电路中,电感和电容是两个非常重要的元件,它们在电路中起到了相互作用的作用。
本文将详细介绍电路中电感和电容的特性、作用以及相互作用。
一、电感的特性与作用电感是一种能够储存磁能的元件,通常由线圈或绕组构成。
当电流通过电感时,会产生磁场,而当电流变化时,电感会产生电动势来阻碍电流的变化。
电感的作用主要有以下几个方面:1. 滤波器:电感可以用来构建滤波器,通过对特定频率的信号进行阻隔或通过,从而实现对电路中信号频率的调整和控制。
2. 阻抗元件:电感本身是一种阻抗元件,具有阻碍交流电流通过的特性。
在电路中,电感可以起到限制电流的作用,降低电路中的电流峰值。
3. 能量储存:电感能够储存磁场能量,当电流通过电感时,电感中存储的能量会逐渐增加,当电流减小或消失时,电感会释放能量。
二、电容的特性与作用电容是能够储存电荷的元件,通常由两个导体板之间隔绝的绝缘层组成。
当电压施加在电容上时,会在导体板之间产生电场,而电容的作用主要有以下几个方面:1. 信号耦合:电容可以用来进行信号的耦合,将一个电路的信号传递到另一个电路中。
通过电容的引入,两个电路之间可以实现信号的传递和交流。
2. 能量储存:电容能够储存电荷和电场能量。
当电压施加在电容上时,电容会储存电场能量,并在电源失去电压或变化时释放能量。
3. 频率器件:电容在电路中具有频率响应的特性,可以用来调节和控制电路中的信号频率。
三、电感与电容的相互作用在电路中,电感和电容之间存在着相互作用的关系。
当电流通过电感时,电感会阻碍电流的变化,从而导致电容器之间的电压发生变化。
而当电容器的电压发生变化时,会导致电流的变化,进而影响电感中的磁场。
这种相互作用被称为“电感与电容的相互耦合”。
电感和电容的相互耦合可以应用在许多电路中,例如振荡器和滤波器。
在振荡器中,电容和电感的相互作用导致电荷在电容器和电感之间的来回移动,产生振荡现象。
在滤波器中,通过电感与电容的组合,可以选择性地通过或阻塞不同频率的信号。
电容与电感的充放电过程知识点总结

电容与电感的充放电过程知识点总结在电子电路中,电容和电感是两个非常重要的元件,它们的充放电过程对于理解电路的工作原理和性能有着至关重要的作用。
一、电容的充放电过程电容是一种能够储存电荷的元件,它由两个导体极板中间夹着一层绝缘介质组成。
当电容两端加上电压时,就会开始充电过程。
在充电开始的瞬间,电容两端的电压为零,电流最大。
随着充电的进行,电容极板上的电荷逐渐积累,电压逐渐升高,而电流则逐渐减小。
当电容两端的电压达到外加电压时,充电过程结束,电流变为零,此时电容储存了一定的电荷量。
电容的充电过程可以用公式 I = C×(dV/dt) 来描述,其中 I 是充电电流,C 是电容的容量,dV/dt 是电压随时间的变化率。
电容的放电过程则是充电过程的逆过程。
当电容与一个负载连接时,电容开始放电。
在放电开始的瞬间,电流最大,电压等于充电结束时的电压。
随着放电的进行,电容极板上的电荷逐渐减少,电压逐渐降低,电流也逐渐减小。
当电容两端的电压降为零时,放电过程结束。
电容放电过程的电流可以用公式 I = C×(dV/dt) 来描述。
电容的充放电时间取决于电容的容量和电路中的电阻。
时间常数τ= RC,其中 R 是电路中的电阻。
时间常数越大,充放电过程就越缓慢。
在实际应用中,电容常用于滤波、耦合、定时等电路中。
例如,在电源滤波电路中,电容可以平滑电源电压的波动,去除其中的交流成分,提供稳定的直流电压。
在耦合电路中,电容可以传递交流信号,而阻止直流信号通过。
二、电感的充放电过程电感是一种能够储存磁场能量的元件,它由绕在铁芯或空心骨架上的线圈组成。
当电感中通过电流时,就会产生磁场,从而储存能量。
电感的充电过程是指电流逐渐增大的过程。
在充电开始的瞬间,电感中的电流为零,电感两端会产生一个很大的感应电动势,其方向与外加电压相反,阻碍电流的增加。
随着电流的逐渐增大,感应电动势逐渐减小,直到电流达到稳定值,感应电动势变为零。
《电容以及电感》课件

电感的应用场景和实例
滤波
电感常用于滤波电路中,如电 源滤波器和信号滤波器。
振荡
电感与电容配合使用,可构成 LC振荡电路,用于产生特定频 率的信号。
磁屏蔽
大电流的导线绕在铁氧体磁芯 上,可构成磁屏蔽,用于减小 磁场对周围电子设备的干扰。
传感器
利用电感的磁路和电路特性, 可制成位移、速度、加速度等
传感器。
。
信号处理
电容和电感在信号处理中起到关键 作用,能够实现信号的过滤、耦合 和转换等功能。
电路稳定性
电容和电感在电路中起到稳定电流 的作用,有助于提高电路的可靠性 和稳定性。
电容和电感的发展趋势和未来展望
微型化
随着电子技术的不断发展,电容和电感元件正朝着微型化 、高密度集成方向发展,以满足现代电子产品对小型化和 轻量化的需电源滤波电 路中,滤除交流成分,保 持直流输出平稳。
高频信号处理
陶瓷电容和云母电容用于 高频信号处理电路中,如 调频收音机和电视机的信 号处理。
耦合
电容用于信号耦合,将信 号从一个电路传输到另一 个电路,如音频信号的传 输。
03 电感的工作原理和应用
电感的磁路和电路特性
02 电容的工作原理和应用
电容的充电和放电过程
充电过程
当直流电压加在电容两端时,电容开 始充电,正电荷在电场力的作用下向 电容的一极移动,负电荷向另一极移 动,在极板上形成电荷积累。
放电过程
当充电后的电容两端接上负载电阻时 ,电容开始放电,电荷通过负载电阻 释放,电流逐渐减小,最终电容内的 电荷完全释放。
在RC振荡器中,通过改变电容的容量或电阻的阻值,可以调节振荡器的 输出频率。在LC振荡器中,通过改变电感的量或电容的容量,也可以调
电容与电感的性质知识点总结

电容与电感的性质知识点总结在电子电路的世界里,电容和电感是两个非常重要的元件,它们具有独特的性质,对电路的性能和功能起着至关重要的作用。
接下来,让我们一起深入了解一下电容与电感的性质。
一、电容的性质电容,简单来说,就是能够储存电荷的元件。
它由两个导体极板以及中间的绝缘介质组成。
1、电容的定义式电容(C)等于电荷量(Q)与极板间电压(U)的比值,即 C = Q / U 。
这意味着,给定一个电容,当加上一定的电压时,它所能储存的电荷量是固定的。
2、电容的单位电容的单位是法拉(F),但在实际应用中,常用的单位还有微法(μF)、纳法(nF)和皮法(pF)。
3、电容的充电与放电当电容连接到电源时,它会充电,电流逐渐减小,直到电容两端的电压等于电源电压,充电完成。
而当电容与负载连接时,它会放电,释放储存的电荷。
4、电容对电流的阻碍作用电容对交流电流呈现出一定的容抗(Xc),容抗的大小与电容值(C)和交流信号的频率(f)有关,其计算公式为 Xc = 1 /(2πfC) 。
频率越高,容抗越小,电容对电流的阻碍作用就越小;反之,频率越低,容抗越大,电容对电流的阻碍作用就越大。
5、电容的储能特性电容储存的能量(W)等于 1/2 × C × U²。
在充电过程中,电能被转化为电场能储存起来;放电时,电场能又被释放出来。
6、电容在滤波电路中的应用由于电容对交流信号的频率特性,它常被用于滤波电路中。
例如,在电源电路中,通过并联一个大电容,可以滤除低频噪声,使输出电压更加稳定;而在音频电路中,通过串联或并联不同电容,可以调整音频信号的频率响应。
7、电容的串联与并联多个电容串联时,总电容的倒数等于各个电容倒数之和;多个电容并联时,总电容等于各个电容之和。
二、电感的性质电感,是能够储存磁能的元件,通常由线圈组成。
1、电感的定义电感(L)是指当通过线圈的电流发生变化时,线圈产生的自感电动势(ε)与电流变化率(ΔI /Δt)的比值,即 L =ε /(ΔI /Δt) 。
《电容和电感》课件

用于储存电能,常用于应急电源、蓄电池等场合。
储能元件
用于抑制电磁干扰,提高电子设备的电磁兼容性。
电磁干扰抑制
04
CHAPTER
电容和电感在电路设计中的应用
电容器可以吸收电路中的交流成分,起到滤波作用,使电路中的直流成分通过。
滤波作用
电容器可以存储电荷,在电路中提供瞬时大电流,如闪光灯等。
储能作用
瓷介电容器、薄膜电容器、电解电容器、纸质电容器等。
种类
具有固定容量,容抗与频率成反比,主要用于滤波、耦合、旁路等。
特性
容量较小,介质常数较高,稳定性较好。
瓷介电容器
容量较大,介质损耗较小,绝缘性能好。
薄膜电容器
容量较大,内阻较小,适用于低频交流电路。
电解电容器
容量较小,介质损耗较大,适用于高频电路。
在信号传输过程中,电容器可以将前级信号传递给后级电路,同时隔断直流成分。
耦合作用
电感器对交流信号具有阻碍作用,而对直流信号则可视为短路。
阻交流、通直流
在电源电路中,电感器可构成扼流圈,用于抑制电磁干扰和射频干扰。
扼流圈
在振荡器和调谐器中,电感器是关键元件,用于确定振荡频率。
调谐电路
相位补偿
在复杂电路中,电容和电感可以相互补偿,以实现电路的相位平衡。
《电容和电感》ppt课件
目录
电容和电感的基本概念电容的种类和特性电感的种类和特性电容和电感在电路设计中的应用电容和电感的测量与检测
01
CHAPTER
电容和电感的基本概念
电容是存储电荷的物理量,表示电容器容纳电荷的本领。
定义
充电和放电
隔直流通交流
当电容器两端加上电压时,电容器内部产生电荷,实现充电;当电压移除时,电荷释放,实现放电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电感电感是闭合回路的一种属性,是一个物理量。
当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。
这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”,以美国科学家约瑟夫·亨利命名。
它是描述由于线圈电流变化,在本线圈中或在另一线圈中引起感应电动势效应的电路参数。
电感是自感和互感的总称。
提供电感的器件称为电感器。
[1]中文名电感外文名inductance实质闭合回路的一种属性,一种物理量单位亨利(H)目录1. 1定义2. ▪自感3. ▪互感1. 2单位及换算2. 3计算公式3. ▪自感1. ▪互感2. ▪三相制均衡输电线的电感定义编辑导体的一种性质,用导体中感生的电动势或电压与产生此电压的电流变化率之比来量度。
稳恒电流产生稳定的磁场,不断变化的电流(交流)或涨落的直流产生变化的磁场,变化的磁场反过来使处于此磁场的导体感生电动势。
感生电动势的大小与电流的变化率成正比。
比例因数称为电感,以符号L表示,单位为亨利(H)。
[2]电感是闭合回路的一种属性,即当通过闭合回路的电流改变时,会出现电动势来抵抗电流的改变。
这种电感称为自感(self-inductance),是闭合回路自己本身的属性。
假设一个闭合回路的电流改变,由于感应作用而产生电动势于另外一个闭合回路,这种电感称为互感(mutual inductance)。
自感当线圈中有电流通过时,线圈的周围就会产生磁场。
当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。
互感两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。
互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度,利用此原理制成的元件叫做互感器。
单位及换算编辑电感符号:L电感单位:亨(H)、毫亨(mH)、微亨(μH),换算关系为:1H=1000mH计算公式编辑自感一个通有电流为I的线圈(或回路),其各匝交链的磁通量的总和称作该线圈的磁链ψ。
如果各线匝交链的磁通量都是Φ,线圈的匝数为N,则线圈的磁链ψ=NΦ。
线圈电流I随时间变化时,磁链Ψ也随时间变化。
根据电磁感应定律,在线圈中将感生自感电动势EL,其值为定义线圈的自感L为自感电动势eL和电流的时间导数dI/dt的比值并冠以负号,即以上二式中,ψ和eL的正方向,以及ψ和I的正方向都符合右手螺旋规则。
已知电感L,就可以由dI/dt计算自感电动势。
此外,自感还可定义如下线性磁媒质下四种自感计算公式从工程观点看,除铁磁材料以外的媒质可认为是线性磁媒质,它们的磁导率近似等于真空磁导率μ0。
置于这种媒质中的线圈的自感,只和线圈及其线匝导体的形状、尺寸有关,和电流的量值无关。
四种几何形状简单的线圈或回路的自感L的计算公式如下:(1)长螺线管的自感(忽略端部效应和线匝径向尺寸)式中l为螺线管的长度;S为螺线管的截面积;N为总匝数。
(2)无磁芯环形密绕线圈的自感(环的截面为正方形,环的平均半径为R)式中b为正方形截面的边长;N为总匝数。
若R≫b,则近似有L≈μ0Nb/2πR,形式上与长螺线管自感计算式相同。
(3)同轴电缆的自感(忽略端部效应)式中R1、R2分别为同轴电缆内外导体的半径;l为电缆长度;Li和Lo分别称为同轴电缆的内自感和外自>感,其中内自感Li的值仅与电缆内导体的长度有关,而与其半径无关。
(4)二线传输线的自感(忽略端部效应)式中R为两导线的半径;l为传输线长度;D为两导线轴线间距离。
互感设线性磁媒质中有两个相邻的线圈。
线圈1中有电流I1。
I1产生的与线圈2交链的那部分磁通量形成互感磁链ψ21。
电流I1随时间变化时,ψ21也随之变化;由电磁感应定律,线圈2中将出现互感电动势M2定义线圈1对线圈2的互感M21为或类似的,若线圈2中有电流I2,它产生互感磁链ψ12与线圈1交链。
I2变化时,线圈1中出现互感电动势E M1式中M12称线圈2对线圈1的互感。
上式是M12的定义式。
若电流I1是恒定电流,或I1是变化率较低的时变电流,互感磁链ψ12和I1成正比,此比例系数(正常数)即线圈1对线圈2的互感M21,且ψ21=M21I1类似的,若电流I2是恒定电流或变化率较低的时变电流,ψ2和I2成正比,比例系数即线圈2对线圈1的互感M12,且ψ12=M12I2理论证明,M12=M21,用M代表它们,则在线圈1、2中同时通以时变电流,它们分别是I1、I2时,线圈中的感应电动势e1,e2是自感电动势和互感电动势之和线性磁媒质下二种互感计算公式互感M不仅和线圈及其导体的形状、尺寸、真空磁导率μ0有关,还和两线圈的相互位置有关。
(1)两同轴长螺线管间的互感(忽略端部效应,近似认为两螺线管半径为同一数值R,设两螺线管长度分别为l1和l2,且l1>l2)式中N1,N2分别为两螺线管的匝数。
(2)两对传输线间的互感(设两对二线传输线AA′和BB′相互平行,忽略端部效应及导线半径的影响)式中DAB′、DA′B、DAB、DA′B′分别为两对传输线间相应导线间的距离,如图示;l为传输线长度。
三相制均衡输电线的电感三根输电线之间有互感。
在采用三相输电线换位技术后,各相均衡。
在考虑了自感磁链和互感磁链的效应后,可得每一相两对平行的传输线输电线单位长度的等效电感L为式中D=(DAB、DBC、DCA分别为相应相线间的距离)称几何平均距离;R为导线半径。
感抗编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。
简单来说,当线圈中有电流通过时,就会在线圈中形成感应电磁场,而感应电磁场又会在线圈中产生感应电流来抵制通过线圈中的电流。
因此,我们把这种电流与线圈之间的相互作用称其为电的感抗,也就是电路中的电感。
中文名感抗外文名Inductive reactance产生由感应电流产生单位欧姆目录1. 1简介2. 2公式详解1. 3详细说明2. 4计算公式1. 5在电路中的作用2. 6是否可消耗电能简介编辑交流电也可以通过线圈,但是线圈的电感对交流电有阻碍作用,这个阻碍叫做感抗。
交流电越难以通过线圈,说明电感量越大,电感的阻碍作用就越大;交流电的频率高,也难以通过线圈,电感的阻碍作用也大。
实验证明,感抗和电感成正比,和频率也成正比。
如果感抗用X L表示,电感用L 表示,频率用f表示,那么其计算公式为:X L= 2πfL=ωL感抗的单位是欧。
知道了交流电的频率f(Hz)和线圈的电感L(H),就可以用上式把感抗计算出来。
电感的单位是“亨利(H)”我们可利用电流与线圈的这种特殊性质来制成不同大小数值的电感器件,以组成不同功能的电路系统网络.公式详解编辑XL = ωL= 2πfL,X L 就是感抗,单位为欧姆,ω 是交流发电机运转的角速度,单位为弧度/秒,f是频率,单位为赫兹,L 是线圈电感,单位为亨利。
详细说明编辑①当交流电通过电感线圈的电路时,电路中产生自感电动势,阻碍电流的改变,形成了感抗。
自感系数越大则自感电动势也越大,感抗也就越大。
如果交流电频率大则电流的变化率也大,那么自感电动势也必然大,所以感抗也随交流电的频率增大而增大。
交流电中的感抗和交流电的频率、电感线圈的自感系数成正比。
在实际应用中,电感是起着“阻交、通直”的作用,因而在交流电路中常应用感抗的特性来旁通低频及直流电,阻止高频交流电。
②在纯电感电路中,电感线圈两端的交流电压(u)和自感电动势(εL)之间的关系是u=-εL,而εL =-Ldi/dt,所以u=Ldi/dt。
正弦交流电作周期性变化,线圈内自感电动势也在不断变化。
当正弦交流电的电流为零时,电流变化率最大,所以电压最大。
当电流为最大值时,电流变化率最小,所以电压为零。
由此得出电感两端的电压位相超前电流位相π/2 (如图)。
在纯电感电路中,电流和电压的频率是相同的。
电感元件的阻抗就是感抗(XL=ωL=2πfL),它和ω、L都成正比。
当ω=0时则XL =0,所以电感起“通直流、阻交流”或者“通低频,阻高频”的作用。
③在纯电感电路中,感抗不消耗电能,因为在任何一个电流由零增加到最大值的1/4周期的过程中,电路中的电流在线圈附近将产生磁场,电能转换为磁场能储藏在磁场里,但在下一个1/4周期内,电流由大变小,则磁场随着逐渐减弱,储藏的磁场能又重新转化为电能返回给电源,因而感抗不消耗电能(电阻发热忽略不计)。
计算公式缠绕小电压变压器,感抗的计算公式推导如下:2πfL=R初级负载(1)其中R初级负载包括变压器初级线圈的阻抗和感抗。
因为我只要缠绕10匝左右,所以阻抗可以看做近似为0;所以R初级负载主要是由感抗引起的。
知道R初级负载和f(频率已知为500KHz)的大小,那么:L= R初级负载/(2πf) (2)那么怎么得到R初级负载的值呢?这个值是由静态电流和初级电压推导出来的:R初级负载= V初级/ I静态(3)初级电压是已知的,而静态电流(次级开路时的初级线圈中存在的电流)的经验值是:I静态=5%*I初级满负载(4)I初级满负载* V初级= I次级满负载* V次级(5)因为初、次级电压比为已知量,那么只要知道I次级满负载的值就可以知道I初级满负载的值。
我要做的变压器初、次级电压比是1:1.2,I次级满负载是200毫安。
那么I初级满负载=240毫安,把这个值带入(4)式,可以求出I静态大约是10毫安。
V初级是已知量,在这里我的变压器初级电压是V初级=5V。
把V初级=5V,I静态=10毫安代入(3)式,得出R初级负载=500欧姆。
把R初级负载=500欧姆,代入(2)式,可以求出:L=500/(2πf)=500/(2π*500000)=159(微亨)在电路中的作用电感:“通直流,阻交流;通低频,阻高频”[1]由感抗产生的原因知:电感线圈对直流电流没有阻碍作用,即“通直流,阻交流”[1]。
由感抗的表达式X L= 2πfL知:自感系数大的电感线圈,对频率小的交变电流就会有明显的感抗,更不用说是高频交变电流了。
我们把这种电感线圈叫低频扼流圈。
只要是交流通过低频扼流圈都会有较大的感抗,而对直流没有阻碍作用。
即低频扼流圈“通直流,阻交流”[1]。
而自感系数小的电感线圈,对频率小的交变电流感抗很小,只有高频交变电流通过时才会有明显的感抗作用。
把这种线圈叫高频扼流圈。
高频扼流圈“通低频,阻高频”[1]。
是否可消耗电能感抗不消耗电能。
电流通过电感时,当电流增大,电能转变成磁场能,电流减小时,磁场能又转变成电能;所以,在交流电通过纯电感或纯电容时,电能并没有减少,而是在电能—磁场能,或电能—电场能之间不停地转化[1]。
电容[diàn róng]电容编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。