南昌市中考数学试卷及答案
南昌市中考数学试题及答案

南昌市中考数学试题及答案一、选择题1. 已知函数 f(x) 的图象如下所示,那么在下列四个点中,哪个点对应的函数值最大?A. (-2, 6)B. (-1, 2)C. (0, 0)D. (3, -1)答案:B. (-1, 2)2. 若 a, b 是正整数,且满足 a/b = 2/3,那么 a/b 的值为:A. 2/3B. 3/2C. 2D. 3答案:C. 23. 已知正方形 ABCD 的边长为 3cm,点 E、F、G 分别是边 AB、BC、CD 上的点,且 AE = BF = CG,那么三角形 EFG 的周长是:A. 6cmB. 9cmC. 12cmD. 18cm答案:C. 12cm4. 在直角坐标系中,点 P (m, n) 在平面内的动点,若点 P 到三条坐标轴的距离之和为 7,则点 P 可能位于:A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A. 第一象限二、填空题1. 一个正方体,若其中一条边长为 3cm,则体积为 ________ cm³。
答案:27 cm³2. 某班级共有男生 32 人,女生比男生多 8 人,则女生人数为________ 人。
答案:40 人3. 在等差数列 -7, -3, 1, 5, ... 中,数列的第 10 项为 ________。
答案:254. 已知函数 y = 2x - 1,那么当 x = 3 时,y 的值为 ________。
答案:5三、解答题1. 将一个边长为 6cm 的正方形沿对角线分割成两个三角形,请你计算其中一个三角形的面积。
解答:设正方形的顶点为 A, B, C, D,对角线 AC 将正方形分割成两个三角形。
通过计算,可以得出三角形 ABC 的面积为 9 cm²。
2. 某商店举行促销活动,打折力度为原价的 20%,小明购买了一件原价为 120 元的商品,请你计算小明购买此商品的实际价格。
解答:打折力度为20%,即小明购买此商品的价格为80% 的原价。
江西省南昌市中考数学试题

江西省南昌市年初中毕业暨中等学校招生考试数 学 试 卷说明:1.答卷前将密封线内的各项目填写清楚,并在“座位号”方框内填入自己的座位号.2.本卷共有六个大题、24个小题,全卷满分120分,考试时间120分钟. 一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内. 1.计算(-2)3的值等于 ( )A .-6B .6C .-8D .8 2.如图,在△ABC 中,D 是AC延长线上的一点,∠BCD 等于( ) A .72° B .82° C .98° D .124°3.用代数式表示“2a 与3的差”为( ) A .2a -3 B .3-2a C .2(a -3) D .2(3-a) 4.如图,数轴上的点A 所表示的是实数a ,则点A 到原点的距离是 ( )A .aB .-aC .±aD .-|a|5.化简aba b a +-222的结果是( )A .aba 2- B .aba - C .aba + D .ba ba +- 6.αααcos ,3tan ,则为锐角=等于( )A .21 B .22C .23 D .33 7.如图,在平面直角坐标系中,⊙O ′ 与两坐标轴分别交于A 、B 、C 、D四点.已知:A (6,0),B (0,-3),C (-2,0),则点D 的坐标是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5)8.(针孔成像问题)根据图中尺寸(AB//A ′B ′),那么物像长y(A ′B ′的长)与物长x (AB的长)之间函数关系的图象大致是 ( )9.如图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案.已知该图案的面积为49,小正方形的面积为4,若用x 、y 表示小矩形的两边长(x>y ),请观察图案,指出以下关系 式中不正确...的是 ( ) A .x+y=7 B .x -y=2 C .4xy+4=39 D .x 2+y 2=2510.右图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的 规则是:把跳棋棋子在棋盘内沿直线隔着棋子 对称跳行,跳行一次称为一步.已知点A 为已方 一枚棋子,欲将棋子A 跳进对方区域(阴影部 分的格点),则跳行的最少步数为( ) A .2步 B .3步 C .4步 D .5步二、填空题(本大题共6小题,每小题4分,共24分) 11.化简555-= .12.据报道:某省年中小学共装备计算机16.42万台,平均每 42名中小学生拥有一台计算机. 年在学生数不变的情况下, 计划平均每35名中小学生拥有 一台计算机,则还需装备计算机 万台. 13.如图,点P 是反比例函数xy 2-=上 的一点,PD ⊥x 轴于点D ,则△POD 的面积为 .14.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每个顶点处剪去一个四边形,例如图1中的四边形AGA′H那么∠GA′H的大小是度.15.欣赏下面的各等式:32+42=52102+112++122=132+142请写出下一个由7个连续正整数组成、前4个数的平方和等于后3个数的平方和的等式为 .16.如图,已知方格纸中的每个小方格都是相同的正方形,∠AOB画在方格纸上,请在小方格的顶点上标出一个..点P,使点P落在∠AOB的平分线上.三、(三大题共2小题,每小题7分,共14分)17.先化简,再求值:[(x-y)2+(x+y)(x-y)]÷2x,其中x=3,y=-1.5.18.已知关于x的方程x2-2(m+1)x+m2=0.(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数....,使原方程有两个实数根,并求这两个实数根的平方和.四、(本大题共2小题,每小题7分,共16分)19.如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C. (1)BT是否平分∠OBA?证明你的结论;(2)若已知AT=4,试求AB的长.20.如图,已知△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB=3,BC=1.连结BF,分别交AC、DC、DE于点P、Q、R.(1)求证:△BFG∽△FEG,并求出BF的长;(2)观察图形,请你提出一个与点..P.相关..的问题,并进行解答(根据提出问题的层次和解答过程评分).小朋友,本来你用10元钱买一盒饼干是有多的,但要再买一袋牛奶就不够了!今天是儿童节,我给你买的饼干 打9折,两样东西请拿好!还有找你 的8角钱. 阿姨,我买一盒 饼干和一袋牛奶(递上10元钱).五、(本大题共2小题,每小题8分,共16分) 21.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少元?22.某学校对初中毕业班经过初步比较后,决定从初三(1)、(4)、(8)班这三个班中推荐一个班为市级先进班集体的候选班.现对这三个班进行综合素质考评,下表是它们五项班级 行为规范 学习成绩 校运动会 艺术获奖 劳动卫生 初三(1)班 10 10 6 10 7初三(4)班 10 8 8 9 8初三(8)班9 10 9 6 9(1)请问各班五项考评分的平均数、中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们得分进行排序;(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高....的班级作为市级先进班集体的候选班.六、(本大题共2小题,每小题10分,共20分)23.在平面直角坐标系中,给定以下五点A (-2,0),B (1,0)C (4,0),D (-2,29),E (0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y 轴的直线为对称轴.我们约定:把经过三点A 、E 、B 的抛物线表示为抛物线AEB (如图所示).(1)问符合条件的抛物线还有哪几条.....不求解析式,请用约定的方法一一表示出来; (2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.24.如图,在矩形ABCD中,AB=3,AD=2,点E、F分别在AB、DC上,AE=DF=2.再把一块直径为2的量角器(圆心为O)放置在图形上,使其0°线MN与EF重合;若将量角器0°线上的端点N固定在点F上,再把量角器绕点F顺时针方向旋转∠α(0°<α<90°),此时量角器的半圆弧与EF相交于点P,设点P处量角器的读数为n°.(1)用含n°的代数式表示∠α的大小;(2)当n°等于多少时,线段PC与M′F平行?(3)在量角器的旋转过程中,过点M′作GH⊥M′F,交AE于点G,交AD于点H.设GE=x,△AGH的面积为S,试求出S关于x的函数关系式,并写出自变量x的取值范围.江西省南昌市年初中毕业暨中等学校招生考试数学试卷参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内.1.C 2.C 3.A 4.B 5.B 6.A 7.C 8.C 9.D 10.B二、填空题(本大题共6小题,每小题4分,共24分)11.1-5 12.3.284 13.1 14.6015.212+222+232+242=252+262+27216.(见右图,P1、P2、P3均可)三、(本大题共2小题,每小题7分,共14分)17.解法一:原式=(x-y)[(x-y)+(x+y)]÷2x…………3分=(x-y)·2x÷2x ………………………………………………4分=x-y. ………………………………………………5分当x=3,y=-1.5时,原式=3-(-1.5)=4.5.……………………………………………7分解法二:原式=[(x2-2xy+y2)+(x2-y2)] ÷2x ………………………………………3分=(2x2-2xy) ÷2x ……………………………………………………4分=x-y. …………………………………………………………………5分当x=3,y=-1.5时,原式=3-(-1.5)=4.5 ……………………………………………7分18.解:(1)△=[-2(m+1)]2-4m2………………………………………………………1分=4(m2+2m+1)-4m2=4(2m+1)<0. ……………………………………………………… 2分∴m<-21. 当m<-21时,原方程没有实数根; …………………………………………………3分 (2)取m=1时,原方程为x 2-4x+1=0.…………………………………………………4分 设此方程的两实数根为x 1, x 2,则x 1+x 2=4, x 1·x 2=1.…………………………………5分 ∴x 12+x 22=(x 1+x 2)2-2x 1x 2=42-2×1=14.…………………………………………………7分 【m 取其它符合要求的值时,解答正确可参照评分标准给分.】 四、(本大题共2小题,每小题8分,共16分) 19.(1)BT 平分∠OBA.………………1分 证法一:连结OT ,∵AT 是切线,∴OT ⊥AP.又∵∠PAB 是直角,即AQ ⊥AP ,∴AB ∥OT , ∴∠TBA=∠BTO.又∵OT=OB ∴∠OTB=∠OBT.∴∠OBT=∠TBA ,即BT 平分∠OBA.……………4分 (2)解法一:过点B 作BH ⊥OT 于点H ,则在Rt △OBH 中,OB=5,BH=A T=4 ∴OH=3.…………6分 ∴AB=HT=OT -OH=5-3=2…………………………………8分【(1)证法二:可作直径BD ,连结DT ,构成Rt △TBD ,也可证得BT 平分∠OBA ; (2)解法二:设AB=x 则由Rt △ABT 得BT 2=x 2+16, 又由Rt △ABT ∽Rt △TBD 得BT 2=BD ·AB=10x ,得方程x 2+16=10x, 解之并取舍,得AB=2. 解法三:过点O 作OM ⊥BC 于M ,则MO=AT=4.在Rt △OBM 中,∵OB=5,∴BM=3,∴BC=2BM=6.由AT 2=AB ·AC ,得AB=2.】 评分说明:方法二、三的得分可参照方法一评定. 20.(1)证明:∵△ABC ≌△DCE ≌△FEG333,3.3,131===∴==∴=====∴FG BG EG FG AB FG BG BG EG CE BC 即又∠BGF=∠FGE ,∴△BFG ∽△FEG.…………3分∵△FEG 是等腰三角形,∴△BFG 是等腰三角形,∴BF=BG=3.………………4分 (2)A 层问题(较浅显的,仅用到了1个知识点).例如:①求证:∠PCB=∠REC.(或问∠PCB 与REC 是否相等?)等;②求证:PC//RE.(或问线段PC 与RE 是否平行?)等. B 层问题(有一定思考的,用到了2~3个知识点).例如:①求证:∠BPC=∠BFG 等,求证:BP=PR 等;②求证:△ABP ∽△CQP 等,求证:△BPC ∽△BRE 等;③求证;△ABP ∽△DQR 等;④求BP :PF 的值等. C 层问题(有深刻思考的,用到了4个或4个以上知识点、或用到了(1)中结论).例如:①求证:△ABP ∽△BPC ∽ERF ;②求证:PQ=RQ 等; ③求证:△BPC 是等腰三角形;④求证:△PCQ ≌△RDQ 等;⑤求AP :PC 的值等;⑥求BP 的长;⑦求证:PC=33(或求PC 的长)等. A 层解答举列.求证:PC//RE.证明:∵△ABC ≌△DCE ,∴∠PCB=∠REB ,∴PC//RE.B 层解答举例.求证:BP=PR.证明:∵∠ACB=∠REC ,∴AC//DE. 又∵BC=CE ,∴BP=PR.C 层解答举例.求AP :PC 的值. 解:.3,33,31,//==∴==∴AC PC BG BC FG PC FG AC 而 .2:332333=∴=-=∴PC AP AP 评分说明:①考生按A 层、B 层、C 层中某一层次提出问题均给1分,若继续给出正确的解答则分别再加1分、2分、3分;②若考生提出其它问题,并作正确解答,可参照各相应层次的评分标准评分;③在本题中,若考生提出的是与点P 无关的问题,却是正确的结论及解答,就不再考虑其层次,只给1分.五、(本大题共2小题,每小题8分,共16分)21.解:设饼干的标价为每盒x 元,牛奶的标价为每袋y 元,则 x+y>10, (1)0.9x+y=10-0.8,...... (2)..................................................................2分 x<10. (3)由(2)得y=9.2-0.9x (4)把(4)代入(1)得:9.2-0.9x+x>10,解得x>8.…………………………………4分 由(3)综合得 ∴8<x<10. ………………………………………………………5分又∵x 是整数,∴x=9.………………………………………………………………6分 把x=9代入(4)得:y=9.2-0.9×9=1.1(元).…………………………………7分 答:一盒饼干标价9元,一袋牛奶标价1.1元.……………………………………8分 评分说明:①若x<10没在混合组中出现,但求整数解时用到,不扣分;②若用其它方法解答正确,可参照评分标准给分.22.解:(1)设P 1、P 4、P 8顺次为3个班考评分的平均数;W 1、W 4、W 8顺次为3个班考评分的中位数;Z 1、Z 4、Z 8顺次为3个班考评分的众数.则:P 1=51(10+10+6+10+7)=8.6分), P 4=51(8+8+8+9+10)=8.6(分),P 8=51(9+10+9+6+9)=8.6(分).………………………………………………1分 W 1=10(分),W 4=8(分),W 8=9(分).(Z 1=10(分),Z 4=8(分),Z 8=9(分)).………………………………………2分 ∴平均数不能反映这3个班的考评结果的差异,而用中位数(或众数)能反映差异, 且W 1>W 8>W 4(Z 1>Z 8>Z 4).……………………………………………………………3分(2)(给出一种参考答案)选定:行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:2:3:1:1…………5分 设K 1、K 4、K 8顺次为3个班的考评分,则:K 1=0.3×10+0.2×10+0.3×6+0.1×10+0.1×7=8.5,K 4=0.3×10+0.2×8+0.3×8+0.1×9+0.1×8=8.7,………………………………………………7分 K 8=0.3×9+0.2×10+0.3×9+0.1×6+0.1×9=8.9.∵K 8>K 4<K 1,∴推荐初三(8)班为市级先进班集体的候选班.………………………8分 评分说明:如按比例式的值计算,且结果正确,均不扣分.六、(本大题共2小题,每小题10分,共20分)23.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ; ③抛物线DEB ;④抛物线DEC ;⑤抛物线DBC.评分说明:正确写出每一条抛物线给1分,共5分.(填错可酌情倒扣1分,不出现负分).(2)在(1)中存在抛物线DBC ,它与直线AE 不相交.…………7分设抛物线DBC 的解析式为y=ax 2+bx+c ,将D (-2,29),B (1,0),C (4,0)三点坐标分别代入,得: 4a -2b+c=29, a+b+c=0, …………………………8分16a+4b+c=0.解这个方程组,得:a=41,b=-45,c=1. ∴抛物线DBC 的解析式为y=41x 2-45x+1.……………………………………9分【另法:设抛物线为y=a(x -1)(x -4),代入D (-2,29),得a=41也可.】 又设直线AE 的解析式为y=mx+n.将A (-2,0),E (0,-6)两点坐标分别代入,得:-2m+n=0,解这个方程组,得m=-3,n=-6.n=-6.∴直线AE 的解析式为y=-3x -6.……………………………………………………10分24.解:(1)连结O ′P ,则∠P O ′F=n °.………………1分⌒ ⌒ ⌒ ∵O ′P =O ′F ,∴∠O ′PF=∠O ′FP=∠α.∴n °+2∠α=180° 即∠α=90°-21 n °……3分 (2)连结M ′P ,∵M ′F 是半圆O ′的直径,∴M ′P ⊥PF.又∵FC ⊥PF ,∴FC//M ′P.若PC// M ′F ,∴四边形M ′PCF 是平行四边形.……4分∴PC= M ′F=2FC ,∠α=∠CPF=30°.…………5分代入(1)中关系式得:30°=90°-21 n °,即n °=120 °.……………6分 (3)以点F 为圆心,FE 的长为半径画ED.∵G M ′⊥M ′F 于点M ′,∴GH 是ED的切线. 同理GE 、HD 也都是ED的切线,∴GE=G M ′,H M ′=HD.……………………7分 【另法:连结GF ,证明得Rt △GEF ≌Rt △G M ′F ,得EG= M ′G ,同理可证H M ′=HD.】设GE=x ,则AG=2-x,再设DH=y ,则H M ′=y,AH=2-y,在Rt △AGH 中,AG 2+AH 2=GH 2,得:(2-x)2+(2-y)2=(x+y)2.…………………8分 即:4-4x+x 2+4-4y+y 2=x 2+2xy+y 2 ∴y=2242+-x x x ,…………………………9分 S=21AG ·AH=21(2-x)(2-y)= 2242+-x x x ,自变量x 的取值范围为0<x<2.S 与x 的函数关系式为S =2242+-x x x (0<x<2).………………………………………10分。
南昌初升高数学试卷及答案

南昌初升高数学试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个角是直角的一半,那么这个角的度数是多少?A. 45°B. 90°C. 180°D. 360°答案:A3. 一个数的平方根等于它本身,这个数可以是:A. 0B. 1C. -1D. 4答案:A4. 以下哪个是二次方程的解?A. x = 0B. x = 1C. x = 2D. x = 3方程为:x^2 - 4x + 4 = 0答案:C5. 一个等腰三角形的底边长为6cm,两腰相等,若底角为60°,则腰长为:A. 3cmB. 6cmC. 9cmD. 12cm答案:B6. 一个圆的半径为4cm,那么它的面积是多少平方厘米?A. 16πB. 32πC. 64πD. 100π答案:B7. 一个数列的前四项为2, 4, 6, 8,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 几何数列答案:A8. 一个函数f(x) = 3x^2 + 2x - 5,当x=1时,函数的值是:A. -4B. -2C. 0D. 2答案:B9. 以下哪个选项是方程2x + 5 = 9的解?A. x = 2B. x = 3C. x = 4D. x = 5答案:A10. 如果一个正方体的棱长为a,那么它的表面积是:A. 6a^2B. 8a^2C. 10a^2D. 12a^2答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可能是________。
答案:±512. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是________。
答案:513. 一个圆的周长是2πr,其中r是圆的半径,如果周长为12π,那么半径r是________。
答案:614. 一个数的立方根等于它本身,这个数可能是________。
2024年江西南昌中考数学试题及答案(1)

2024年江西中考数学试题及答案说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 实数5-的相反数是( )A. 5B. 5-C. 15 D. 15-2. “长征是宣言书,长征是宣传队,长征是播种机”,二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹,将25000用科学记数法可表示为( )A. 60.2510´B. 52.510´ C. 42.510´ D. 32510´3. 如图所示的几何体,其主视图为()A. B. C. D.4. 将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数()y ℃与时间()min x 的关系用图象可近似表示为( )A. B. C. D.5. 如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是( )A. 五月份空气质量为优的天数是16天B. 这组数据的众数是15天C. 这组数据的中位数是15天D. 这组数据的平均数是15天6. 如图是43´的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A. 1种B. 2种C. 3种D. 4种二、填空题(本大题共6小题,每小题3分,共18分)7. 计算:()21-=____.8. 因式分解:22a a +=_________.9. 在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为______.10. 观察a ,2a ,3a ,4a ,…,根据这些式子的变化规律,可得第100个式子为______.11. 将图1所示的七巧板,拼成图2所示的四边形ABCD ,连接AC ,则tan CAB Ð=______.12. 如图,AB 是O e 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ^,将¼DBE沿DE 翻折交直线AB 于点F ,当DE 的长为正整数时,线段FB 的长为______.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:0π5+-;(2)化简:888x x x ---.14. 如图,AC 为菱形ABCD 的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹)(1)如图1,过点B 作AC 的垂线;(2)如图2,点E 为线段AB 的中点,过点B 作AC 的平行线.15. 某校一年级开设人数相同的A ,B ,C 三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到A 班”的概率是______;(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.16. 如图,AOB V 是等腰直角三角形,90Ð=°ABO ,双曲线()0,0k y k x x=>>经过点B ,过点()4,0A 作x 轴的垂线交双曲线于点C ,连接BC .(1)点B 的坐标为______;(2)求BC 所在直线的解析式.17. 如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC Ð=Ð=°.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求»AC 的长.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?19. 图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”,如图2,“大碗”的主视图由“大碗”主体ABCD 和矩形碗底BEFC 组成,已知AD EF ∥,AM ,DN 是太阳光线,AM MN ^,DN MN ^,点M ,E ,F ,N 在同一条直线上,经测量20.0m ME FN ==,40.0m EF =, 2.4m BE =,152ABE Ð=°.(结果精确到0.1m )(1)求“大碗”的口径AD 的长;(2)求“大碗”的高度AM 的长.(参考数据:sin620.88°»,cos620.47°»,tan62 1.88°»)20. 追本溯源:题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在ABC V 中,BD 平分ABC Ð,交AC 于点D ,过点D 作BC 的平行线,交AB 于点E ,请判断BDE V 的形状,并说明理由.方法应用:(2)如图2,在ABCD Y 中,BE 平分ABC Ð,交边AD 于点E ,过点A 作AF BE ⊥交DC 的延长线于点F ,交BC 于点G .①图中一定是等腰三角形的有( )A .3个B .4个C .5个D .6个②已知3AB =,5BC =,求CF 的长.五、解答题(本大题共2小题,每小题9分,共18分)21. 近年来,我国肥胖人群的规模快速增长,目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体胖瘦程度,其计算公式是22)kg (()m BMI =体重单位:身高单位:.中国人的BMI 数值标准为:18.5BMI <为偏瘦;18.524BMI £<为正常;2428BMI £<为偏胖;28BMI ³为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI 数值,再参照BMI 数值标准分成四组:A .1620BMI £<;B .2024BMI £<;C .2428BMI £<;D .2832BMI £<.将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高(m )1.56 1.50 1.66 1.58 1.50 1.70 1.51 1.42 1.59 1.72体重(kg )52.549.545.640.355.256.148.542.867.290.5BMI 21.6s 16.516.124.519.421.321.226.630.6七年级10名女生数据统计表编号12345678910身高(m )1.46 1.62 1.551.65 1.58 1.67 1.55 1.46 1.53 1.62体重(kg )46.449.061.556.552.975.550.347.652.446.8BMI 21.818.725.620.821.227.120.922.322.417.8整理、描述数据七年级20名学生BMI 频数分布表组别BMI 男生频数女生频数A1620BMI £<32B2024BMI £<46C2428BMI £<t 2D 2832BMI £<10应用数据(1)s =______,t =______a =______;(2)已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生24BMI ³的人数(3)根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.22. 如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.六、解答题(本大题共12分)23. 综合与实践如图,在Rt ABC △中,点D 是斜边AB 上的动点(点D 与点A 不重合),连接CD ,以CD 为直角边在CD 的右侧构造Rt CDE △,90DCE Ð=°,连接BE ,CE CB m CD CA==.特例感知(1)如图1,当1m =时,BE 与AD 之间的位置关系是______,数量关系是______;类比迁移(2)如图2,当1m ¹时,猜想BE 与AD 之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F 与点C 关于DE 对称,连接DF ,EF ,BF ,如图3.已知6AC =,设AD x =,四边形CDFE 的面积为y .①求y 与x 的函数表达式,并求出y 的最小值;②当2BF =时,请直接写出AD 长度.的江西省2024年初中学业水平考试数学试题卷说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B二、填空题(本大题共6小题,每小题3分,共18分)【7题答案】【答案】1【8题答案】a a+【答案】(2)【9题答案】3,4【答案】()【10题答案】a【答案】100【11题答案】【答案】12##0.5【12题答案】【答案】2或2+或2三、解答题(本大题共5小题,每小题6分,共30分)【13题答案】【答案】(1)6;(2)1【14题答案】【答案】(1)作图见解析;(2)作图见解析.【15题答案】【答案】(1)13(2)甲、乙两位新生分到同一个班的概率为13.【16题答案】【答案】(1)()2,2(2)132y x =-+【17题答案】【答案】(1)见解析(2)2p 四、解答题(本大题共3小题,每小题8分,共24分)【18题答案】【答案】(1)书架上有数学书60本,语文书30本. (2)数学书最多还可以摆90本【19题答案】【答案】(1)“大碗”的口径AD 的长为80.0m ; (2)“大碗”的高度AM 的长为40.0m .【20题答案】【答案】(1)BDE V 等腰三角形;理由见解析;(2)①B ;②2CF =.五、解答题(本大题共2小题,每小题9分,共18分)【21题答案】是【答案】(1)22;2;72°;(2)①52人;②126人(3)见解析【22题答案】【答案】(1)①3,6;②1515,28æöç÷èø;(2)①8,②v =六、解答题(本大题共12分)【23题答案】【答案】(1)AD BE ^,AD BE =(2)BE 与AD 之间的位置关系是AD BE ^,数量关系是BE m AD =;(3)①y 与x 的函数表达式((2180y x x =-+<£,当x =y 的最小值为18;②当2BF =时,AD 为或.2024年江西中考数学试题及答案说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 实数5-的相反数是( )A. 5B. 5-C. 15 D. 15-2. “长征是宣言书,长征是宣传队,长征是播种机”,二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹,将25000用科学记数法可表示为( )A. 60.2510´B. 52.510´ C. 42.510´ D. 32510´3. 如图所示的几何体,其主视图为()A. B. C. D.4. 将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数()y ℃与时间()min x 的关系用图象可近似表示为( )A. B. C. D.5. 如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是( )A. 五月份空气质量为优的天数是16天B. 这组数据的众数是15天C. 这组数据的中位数是15天D. 这组数据的平均数是15天6. 如图是43´的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A. 1种B. 2种C. 3种D. 4种二、填空题(本大题共6小题,每小题3分,共18分)7. 计算:()21-=____.8. 因式分解:22a a +=_________.9. 在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为______.10. 观察a ,2a ,3a ,4a ,…,根据这些式子的变化规律,可得第100个式子为______.11. 将图1所示的七巧板,拼成图2所示的四边形ABCD ,连接AC ,则tan CAB Ð=______.12. 如图,AB 是O e 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ^,将¼DBE沿DE 翻折交直线AB 于点F ,当DE 的长为正整数时,线段FB 的长为______.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:0π5+-;(2)化简:888x x x ---.14. 如图,AC 为菱形ABCD 的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹)(1)如图1,过点B 作AC 的垂线;(2)如图2,点E 为线段AB 的中点,过点B 作AC 的平行线.15. 某校一年级开设人数相同的A ,B ,C 三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到A 班”的概率是______;(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.16. 如图,AOB V 是等腰直角三角形,90Ð=°ABO ,双曲线()0,0k y k x x=>>经过点B ,过点()4,0A 作x 轴的垂线交双曲线于点C ,连接BC .(1)点B 的坐标为______;(2)求BC 所在直线的解析式.17. 如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC Ð=Ð=°.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求»AC 的长.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?19. 图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”,如图2,“大碗”的主视图由“大碗”主体ABCD 和矩形碗底BEFC 组成,已知AD EF ∥,AM ,DN 是太阳光线,AM MN ^,DN MN ^,点M ,E ,F ,N 在同一条直线上,经测量20.0m ME FN ==,40.0m EF =, 2.4m BE =,152ABE Ð=°.(结果精确到0.1m )(1)求“大碗”的口径AD 的长;(2)求“大碗”的高度AM 的长.(参考数据:sin620.88°»,cos620.47°»,tan62 1.88°»)20. 追本溯源:题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在ABC V 中,BD 平分ABC Ð,交AC 于点D ,过点D 作BC 的平行线,交AB 于点E ,请判断BDE V 的形状,并说明理由.方法应用:(2)如图2,在ABCD Y 中,BE 平分ABC Ð,交边AD 于点E ,过点A 作AF BE ⊥交DC 的延长线于点F ,交BC 于点G .①图中一定是等腰三角形的有( )A .3个B .4个C .5个D .6个②已知3AB =,5BC =,求CF 的长.五、解答题(本大题共2小题,每小题9分,共18分)21. 近年来,我国肥胖人群的规模快速增长,目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体胖瘦程度,其计算公式是22)kg (()m BMI =体重单位:身高单位:.中国人的BMI 数值标准为:18.5BMI <为偏瘦;18.524BMI £<为正常;2428BMI £<为偏胖;28BMI ³为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI 数值,再参照BMI 数值标准分成四组:A .1620BMI £<;B .2024BMI £<;C .2428BMI £<;D .2832BMI £<.将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高(m )1.56 1.50 1.66 1.58 1.50 1.70 1.51 1.42 1.59 1.72体重(kg )52.549.545.640.355.256.148.542.867.290.5BMI 21.6s 16.516.124.519.421.321.226.630.6七年级10名女生数据统计表编号12345678910身高(m )1.46 1.62 1.551.65 1.58 1.67 1.55 1.46 1.53 1.62体重(kg )46.449.061.556.552.975.550.347.652.446.8BMI 21.818.725.620.821.227.120.922.322.417.8整理、描述数据七年级20名学生BMI 频数分布表组别BMI 男生频数女生频数A1620BMI £<32B2024BMI £<46C2428BMI £<t 2D 2832BMI £<10应用数据(1)s =______,t =______a =______;(2)已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生24BMI ³的人数(3)根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.22. 如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.六、解答题(本大题共12分)23. 综合与实践如图,在Rt ABC △中,点D 是斜边AB 上的动点(点D 与点A 不重合),连接CD ,以CD 为直角边在CD 的右侧构造Rt CDE △,90DCE Ð=°,连接BE ,CE CB m CD CA==.特例感知(1)如图1,当1m =时,BE 与AD 之间的位置关系是______,数量关系是______;类比迁移(2)如图2,当1m ¹时,猜想BE 与AD 之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F 与点C 关于DE 对称,连接DF ,EF ,BF ,如图3.已知6AC =,设AD x =,四边形CDFE 的面积为y .①求y 与x 的函数表达式,并求出y 的最小值;②当2BF =时,请直接写出AD 长度.的江西省2024年初中学业水平考试数学试题卷说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B二、填空题(本大题共6小题,每小题3分,共18分)【7题答案】【答案】1【8题答案】a a+【答案】(2)【9题答案】3,4【答案】()【10题答案】a【答案】100【11题答案】【答案】12##0.5【12题答案】【答案】2或2+或2三、解答题(本大题共5小题,每小题6分,共30分)【13题答案】【答案】(1)6;(2)1【14题答案】【答案】(1)作图见解析;(2)作图见解析.【15题答案】【答案】(1)13(2)甲、乙两位新生分到同一个班的概率为13.【16题答案】【答案】(1)()2,2(2)132y x =-+【17题答案】【答案】(1)见解析(2)2p 四、解答题(本大题共3小题,每小题8分,共24分)【18题答案】【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【19题答案】【答案】(1)“大碗”的口径AD 的长为80.0m ;(2)“大碗”的高度AM 的长为40.0m .【20题答案】【答案】(1)BDE V 等腰三角形;理由见解析;(2)①B ;②2CF =.五、解答题(本大题共2小题,每小题9分,共18分)【21题答案】是【答案】(1)22;2;72°;(2)①52人;②126人(3)见解析【22题答案】【答案】(1)①3,6;②1515,28æöç÷èø;(2)①8,②v =六、解答题(本大题共12分)【23题答案】【答案】(1)AD BE ^,AD BE =(2)BE 与AD 之间的位置关系是AD BE ^,数量关系是BE m AD =;(3)①y 与x 的函数表达式((2180y x x =-+<£,当x =y 的最小值为18;②当2BF =时,AD 为或.。
最新整理江西省南昌市初中毕业暨中等校招生考试数试题和参考答案及评分意见Word.doc

江西省南昌市 初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有五个大题, 25个小题;全卷满分120分;考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共8小题,每小题3分,共24分);每小题只有一个正确的选项,请把正确选项的代号填涂在答题卡的相应位置上. 1.15-的相反数是( ) A .5B .5-C .15-D .152.不等式组2131x x -<⎧⎨-⎩≥,的解集是( )A .2x <B .1x -≥C .12x -<≤D .无解 3.下列四个点,在反比例函数6y x=图象上的是( ) A .(1,6-) B .(2,4) C .(3,2-) D .(6-,1-) 4.下列四张扑克牌的牌面,不是..中心对称图形的是( )A .B .C .D .5.如图,在□ABCD 中,E 是BC 的中点,且∠AEC =∠DCE , 则下列结论不正确...的是( ) A .2AFD EFB S S =△△ B .12BF DF =C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠6.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 7.下列四个三角形,与右图中的三角形相似的是( )(第5题)8.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( ) A .4个 B .5个 C .6个 D .7个二、填空题(本大题共8小题,每小题3分,共24分)9.“5·12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是 . 10.分解因式:34x x - = .11.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 12.计算:1sin 60cos302-= . 13.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .14.方程(1)x x x -=的解是 . 15.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 .(第7题) A . B . C . D .俯视图 主视图 (第8题)(第13题)35°16.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),给出以下四个结论:①2AF =;②5BF =;③5OA =;④3OB =.其中正确结论的序号是_ .三、(本大题共4小题,每小题4分,共24分) 17,先化简,再求值:(2)(1)(1)x x x x +-+-, 其中12x =-.18.如图:在平面直角坐标系中,有A (0,1),B (1-,0),C (1,0)三点坐标. (1)若点D 与A B C ,,三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD19.有两个不同形状的计算器(分别记为A ,B 图所示)散乱地放在桌子上.(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率. (2)若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.(第16题)xA B a b20.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B '处,点A 落在点A '处;(1)求证:B E BF '=;(2)设AE a AB b BF c ===,,,试猜想a b c ,,之间的一种关系,并给予证明.四、(本大题共3小题,每小题8分,共24分) 21.如图,AB 为O 的直径,CD AB ⊥于点E ,交O 于点D ,OF AC ⊥于点F .(1)请写出三条与BC 有关的正确结论;(2)当30D ∠=,1BC =时,求圆中阴影部分的面积.22.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?ABCDFA 'B 'EB A23.为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下: (1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型......的正确结论; (2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.五、(本大题共2小题,每小题12分,共24分)24.如图,抛物线2212191128y ax ax P y ax ax ⎛⎫=--+-=-- ⎪⎝⎭经过点且与抛物线,,相交于A B ,两点. (1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x为何值时,线段CD 有最大值?其最大值为多少?25.如图1,正方形ABCD 和正三角形EFG 的边长都为1,点上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记HEF ∠为α(当点E F ,分别与B A ,重合时,记0α=). (1)当0α=时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号);(3)请你补充完成下表(精确到0.01):(4)若将“点E F ,分别在线段AB AD ,上滑动”改为“点E F ,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.62621.732sin150.259sin 750.966-+==,≈,≈.)图1图2B (E A (F D图3H DACB图4江西省南昌市 初中毕业暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分) 1.D 2.C 3.D 4.D 5.A 6.A 7.B 8.C 二、填空题(本大题共8小题,每小题3分,共24分) 9.91.51410⨯10.(2)(2)x x x +- 11.231y x =-+12.1413.12514.10x =,22x =15.416.①②③说明:第16题,填了④的,不得分;未填④的,①,②,③中每填一个得1分. 三、(本大题共4小题,每小题6分,共24分)17.解:原式222(1)x x x =+-- ······································································ 2分2221x x x =+-+··························································································· 3分21x =+. ···································································································· 4分 当12x =-时,原式12102⎛⎫=⨯-+= ⎪⎝⎭. ···························································· 6分 18.解:(1)符合条件的点D 的坐标分别是1(21)D ,,2(21)D -,,3(01)D -,. ···································································· 3分 (2)①选择点1(21)D ,时,设直线1BD 的解析式为y kx b =+, 由题意得021k b k b -+=⎧⎨+=⎩, 解得1313k b ⎧=⎪⎪⎨⎪=⎪⎩, ······························································· 5分∴直线1BD 的解析式为1133y x =+. ································································· 6分 ②选择点2(21)D -,时,类似①的求法,可得2③选择点3(01)D -,时,类似①的求法,可得直线3BD 的解析式为1y x =--. ·········· 6分说明:第(1)问中,每写对一个得1分. 19.解:(1)从计算器中随机抽取一个,再从保护盖中随机取一个,有Aa ,Ab ,Ba ,Bb 四种情况.恰好匹配的有Aa ,Bb 两种情况,21()42P ∴==恰好匹配. ················································································ 2分 (2)用树形图法表示:所有可能的结果AB Aa Ab BA Ba Bb aA aB ab bA bB ba ·················· 4分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 或用列表法表示:A B a b A AB Aa Ab B BA Ba Bb a aA aB ab bbAbBba······························································· 6分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 20.(1)证:由题意得B F BF '=,B FE BFE '∠=∠, ········································ 1分 在矩形ABCD 中,AD BC ∥,B EF BFE '∴∠=∠,B FE B EF ''∴∠=∠. ················································· 2分 B F B E ''∴=.B E BF '∴=. ·························································· 3分 (2)答:a b c ,,三者关系不唯一,有两种可能情况: (ⅰ)a b c ,,三者存在的关系是222a b c +=. ················································· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ······························································ 5分 在ABE △中,90A ∠=,222AE AB BE ∴+=.ABabBAaba ABbb ABaA B CD FA 'B 'E(ⅱ)a b c ,,三者存在的关系是a b c +>. ················· 4分证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ·························· 5分 在ABE △中,AE AB BE +>,a b c ∴+>. ···························································· 6分 说明:1.第(1)问选用其它证法参照给分;2.第(2)问222a b c +=与a b c +>只证1种情况均得满分; 3.a b c ,,三者关系写成a c b +>或b c a +>参照给分. 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)答案不唯一,只要合理均可.例如:①BC BD =;②OF BC ∥;③BCD A ∠=∠;④BCE OAF △∽△;⑤2BC BE AB =;⑥222BC CE BE =+;⑦ABC △是直角三角形;⑧BCD △是等腰三角形. ············ 3分 (2)连结OC ,则OC OA OB ==.30D ∠=,30A D ∴∠=∠=,120AOC ∴∠=. ······ 4分AB 为O 的直径,90ACB ∴∠=.在Rt ABC △中,1BC =,2AB ∴=,AC =. ········ 5分OF AC ⊥,AF CF ∴=.OA OB =,OF ∴是ABC △的中位线.1122OF BC ∴==.111222AOC S AC OF ∴==⨯=△ ························································· 6分 2133AOC S OA π=π⨯=扇形. ·············································································· 7分 3AOC AOC S S S π∴=-=△阴影扇形 ······························································· 8分 说明:第(1)问每写对一条得1分,共3分.22.解一:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, ······················ 1分 根据题意,得60606501.2x x ⎛⎫++=⎪⎝⎭, ································································ 3分 解得 2.5x =. ······························································································· 4分经检验, 2.5x =是方程的解,且符合题意. ························································ 5分ABCDFA 'B 'EBA∴甲同学所用的时间为:606261.2x +=(秒), ···················································· 6分 乙同学所用的时间为:6024x=(秒). ······························································ 7分 2624>,∴乙同学获胜. ············································································ 8分 解二:设甲同学所用的时间为x 秒,乙同学所用的时间为y 秒, ······························ 1分 根据题意,得5060601.26x y x y +=⎧⎪⎨=⨯⎪-⎩,········································································· 3分 解得2624.x y =⎧⎨=⎩,································································································ 6分经检验,26x =,24y =是方程组的解,且符合题意.x y >,∴乙同学获胜. ··············································································· 8分 23.(1)可从不同角度分析.例如:①甲同学的平均偏差率是16%,乙同学的平均偏差率是11%; ②甲同学的偏差率的极差是7%,乙同学的偏差率的极差是16%; ③甲同学的偏差率最小值是13%,乙同学的偏差率最小值是4%; ④甲、乙两同学的偏差率最大值都是20%;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高. ························································· 4分 (2)可从不同角度分析.例如: ①从平均偏差率预测:甲同学的平均偏差率是16%,估计的字数所在范围是84~116; ································ 6分 乙同学的平均偏差率是11%,估计的字数所在范围是89~111; ································ 8分 ②从偏差率的中位数预测:甲同学偏差率的中位数是15%,估计的字数所在范围是85~115; ····························· 6分 乙同学偏差率的中位数是10%,估计的字数所在范围是90~110; ····························· 8分 ③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是16.5%,估计的字数所在范围是84~116或83~117. ···································· 6分 乙同学的偏差率是0%~4%,估计的字数所在的范围是96~104或其它. ··················· 8分 说明:1.第(1)问每写对一条结论得1分;2.每写对一条偏差率及估计字数范围的各得1分; 3.答案不唯一,只要合理均参照给分. 五、(本大题共2小题,每小题12分,共24分) 24.解:(1)点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,1191428a a ∴-++=, ··················································································· 2分解得12a =. ································································································· 3分 (2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--. ··········· 5分当2111022x x --+=时,解得12x =-,21x =. 点M 在点N 的左边,2M x ∴=-,1N x =. ················ 6分当2111022x x --=时,解得31x =-,42x =. 点E 在点F 的左边,1E x ∴=-,2F x =. ····················································· 7分0M F x x +=,0N E x x +=,∴点M 与点F 对称,点N 与点E 对称. ··························································· 8分(3)102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. ··················· 9分根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭. ············································· 11分A B x x x ≤≤,∴当0x =时,CD 有最大值2. ············································· 12分说明:第(2)问中,结论写成“M N ,,E F ,四点横坐标的代数和为0”或“M N E F =”均得1分. 25.解:(1)过G 作MN AB ⊥于M 交CD 于N ,GK BC ⊥于K .60ABG ∠=,1BG =, 2MG ∴=,12BM =. ··············································································· 2分 12x ∴=-,12y =. ·················································································· 3分 (2)当45α=时,点G 在对角线AC 上,其理由是: ········································· 4分 过G 作IQ BC ∥交AB CD ,于I Q ,, 过G 作JP AB ∥交AD BC ,于J P ,.AC 平分BCD ∠,GP GQ ∴=,GI GJ ∴=.B (E A (FGE GF =,Rt Rt GEI GFJ ∴△≌△,GEI GFJ ∴∠=∠.60GEF GFE ∠=∠=,AEF AFE ∴∠=∠. 90EAF ∠=,45AEF AFE ∴∠=∠=.即45α=时,点G 落在对角线AC 上. ···························································· 6分 (以下给出两种求x y ,的解法) 方法一:4560105AEG ∠=+=,75GEI ∴∠=.在Rt GEI △中,6sin 75GI GE ==,1GQ IQ GI ∴=-=. ·································································· (7)分 14x y +∴==-. ················································································· 8分 方法二:当点G 在对角线AC 上时,有12=, ···················································································· 7分解得1x =-14x y +∴==-. ·················································································8分 (3)α153045607590x0.13 0.03 0 0.03 0.13 0.29 0.50 y0.500.290.130.030.030.13···························································· 10分 (4)由点G 所得到的大致图形如图所示:········································································ 12分H AC DBDQ。
南昌中考数学试题及答案

南昌中考数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果a > b,那么下列哪个不等式是正确的?A. a < bB. a ≤ bC. a > bD. a ≥ b答案:D3. 圆的面积公式是什么?A. πr^2B. 2πrC. πrD. πr^3答案:A4. 以下哪个是二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. x^3 - 1 = 0D. x^2 + 1 = 0答案:B5. 以下哪个是正弦函数的图像?A. 直线B. 抛物线C. 正弦波D. 双曲线答案:C6. 以下哪个是等差数列?A. 1, 3, 5, 7B. 2, 4, 6, 8C. 1, 1, 1, 1D. 2, 5, 8, 11答案:A7. 以下哪个是勾股定理?A. a^2 + b^2 = c^2B. a + b = cC. a * b = c^2D. a / b = c答案:A8. 以下哪个是圆周率π的近似值?A. 3.14B. 2.71C. 3.14159D. 2.71828答案:A9. 以下哪个是复数的实部?A. a + bi 的 aB. a + bi 的 bC. a - bi 的 aD. a - bi 的b答案:A10. 以下哪个是三角形的内角和?A. 180°B. 360°C. 90°D. 270°答案:A二、填空题(每题2分,共20分)11. 一个直角三角形的两个直角边分别为3和4,斜边的长度是________。
答案:512. 如果一个数的平方根是4,那么这个数是________。
答案:1613. 一个数的立方根是2,那么这个数是________。
答案:814. 一个数的倒数是1/2,那么这个数是________。
答案:215. 一个数的绝对值是5,那么这个数可以是________或________。
2023年南昌数学中考卷

2023年南昌数学中考卷一、选择题(每题1分,共5分)1. 下列哪个数是实数?A. √1B. √4C. √9D. √3.14答案:B2. 已知函数f(x)=2x+3,那么f(1)的值为?A. 1B. 3C. 5D. 2答案:D3. 下列关于x的方程中,哪一个是一元二次方程?A. x^2 + 3x + 2 = 0B. 2x^3 4x^2 + 3x 1 = 0C. 4x^2 3x + 2 = 0D. x^3 2x^2 + x 1 = 0答案:A4. 下列哪个图形是平行四边形?A. 等腰梯形B. 矩形C. 正方形D. 梯形答案:BA. 3B. 0C. 3.14D. √2答案:B二、判断题(每题1分,共5分)1. 任何两个实数都可以比较大小。
()答案:×2. 一元二次方程的解一定是实数。
()答案:×3. 平行四边形的对角线互相平分。
()答案:√4. 相似三角形的面积比等于边长比的平方。
()答案:√5. 互质的两个数一定是质数。
()答案:×三、填空题(每题1分,共5分)1. 若a=3,b=4,则a+b=______。
答案:72. 已知函数f(x)=x^22x+1,那么f(1)=______。
答案:03. 两个平行线的夹角是______度。
答案:04. 三角形的内角和等于______度。
答案:1805. 10以内的质数有______个。
答案:4四、简答题(每题2分,共10分)1. 请简述一元二次方程的求根公式。
答案:略2. 什么是平行线?请举例说明。
答案:略3. 简述三角形面积的计算方法。
答案:略4. 请列举4种常见的概率分布。
答案:略5. 举例说明什么是等差数列。
答案:略五、应用题(每题2分,共10分)1. 已知一元二次方程x^25x+6=0,求解该方程。
答案:略2. 计算三角形ABC的面积,已知AB=6cm,BC=8cm,AC=10cm。
答案:略3. 某商店进行打折促销,原价为200元的商品,打8折后售价是多少?答案:略4. 在一组数据中,最大值为10,最小值为2,求这组数据的中位数。
南昌市初中教育集团2024届中考联考数学试卷含解析

南昌市初中教育集团2024届中考联考数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若x >y ,则下列式子错误的是( )A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x+3>y+3D .x y >33 2.已知反比例函数,下列结论不正确的是( )A .图象必经过点(﹣1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若,则 3.一个正比例函数的图象过点(2,﹣3),它的表达式为( )A .3y -2x =B .2y 3x =C .3y 2x =D .2y -3x = 4.有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣4B .bd >0C .|a |>|b |D .b +c >05.对于反比例函数2y x=,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小 6.如图,已知11(,)3A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .1(,0)3 B .4(,0)3 C .8(,0)3 D .10(,0)37.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米8.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( )A .26×105B .2.6×102C .2.6×106D .260×1049.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC 的度数可能是( )A .①②③B .①②④C .①③④D .①②③④10.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158 159 160 160 160 161 169 乙组 158 159 160 161 161 163 165 以下叙述错误的是( )A .甲组同学身高的众数是160B .乙组同学身高的中位数是161C .甲组同学身高的平均数是161D .两组相比,乙组同学身高的方差大二、填空题(共7小题,每小题3分,满分21分)11.若关于x 的一元二次方程240x x m +﹣=有两个不相等的实数根,则m 的取值范围为__________.12.如图,在边长为1的正方形格点图中,B 、D 、E 为格点,则∠BAC 的正切值为_____.13.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数是_______.14.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.15.函数y=2+1-1xx中自变量x的取值范围是___________.16.函数y=12x的定义域是________.17.我国自主研发的某型号手机处理器采用10 nm工艺,已知1 nm=0.000000001 m,则10 nm用科学记数法可表示为_____m.三、解答题(共7小题,满分69分)18.(10分)如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BF∥AC.19.(5分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?20.(8分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量y 乙(件)与工作时间t(时)的函数图象.(1)求甲5时完成的工作量;(2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);(3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?21.(10分)已知:如图,在矩形纸片ABCD 中,AB 4=,BC 3=,翻折矩形纸片,使点A 落在对角线DB 上的点F 处,折痕为DE ,打开矩形纸片,并连接EF .()1BD 的长为多少;()2求AE 的长;()3在BE 上是否存在点P ,使得PF PC +的值最小?若存在,请你画出点P 的位置,并求出这个最小值;若不存在,请说明理由.22.(10分)如图,Rt △ABC 中,∠C=90°,AB=14,AC=7,D 是BC 上一点,BD=8,DE ⊥AB ,垂足为E ,求线段DE 的长.23.(12分)化简:(x-1-2x 2x 1-+ )÷2x x x 1-+. 24.(14分) ( 19﹣4sin31°+(2115﹣π)1﹣(﹣3)2 (2)先化简,再求值:1﹣2222244x y x y x y x xy y--÷+++,其中x 、y 满足|x ﹣2|+(2x ﹣y ﹣3)2=1.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.2、B【解题分析】试题分析:根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;C、命题正确;D、命题正确.故选B.考点:反比例函数的性质3、A【解题分析】利用待定系数法即可求解.【题目详解】设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=32 -.∴函数的解析式是:32y x =-.故选A .4、C【解题分析】根据数轴上点的位置关系,可得a ,b ,c ,d 的大小,根据有理数的运算,绝对值的性质,可得答案.【题目详解】解:由数轴上点的位置,得a <﹣4<b <0<c <1<d .A 、a <﹣4,故A 不符合题意;B 、bd <0,故B 不符合题意;C 、∵|a|>4,|b|<2,∴|a|>|b|,故C 符合题意;D 、b+c <0,故D 不符合题意;故选:C .【题目点拨】本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键5、C【解题分析】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A 正确;因为2大于0所以该函数图象在第一,三象限,所以B 正确;C 中,因为2大于0,所以该函数在x >0时,y 随x 的增大而减小,所以C 错误;D 中,当x <0时,y 随x 的增大而减小,正确, 故选C.考点:反比例函数【题目点拨】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化6、D【解题分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【题目详解】 把11(,)3A y ,2(3,)B y 代入反比例函数1y x = ,得:13y =,213y =,11(,3),(3,)33A B ∴, 在ABP ∆中,由三角形的三边关系定理得:AP BP AB -<, ∴延长AB 交x 轴于P',当P 在P'点时,PA PB AB -=,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y kx b =+,把A ,B 的坐标代入得:133133k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩, 解得:101,3k b =-=, 1215x ->∴直线AB 的解析式是103y x =-+, 当0y =时,103x =,即10(,0)3P , 故选D.【题目点拨】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.7、D【解题分析】在热气球C 处测得地面B 点的俯角分别为45°,BD=CD=100米,再在Rt △ACD 中求出AD 的长,据此即可求出AB 的长.【题目详解】∵在热气球C 处测得地面B 点的俯角分别为45°,∴BD =CD =100米,∵在热气球C 处测得地面A 点的俯角分别为30°,∴AC =2×100=200米,∴AD =22200100-3∴AB =AD +BD =100()米,故选D .【题目点拨】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形. 8、C【解题分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【题目详解】260万=2600000=62.610⨯.故选C .【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.9、D【解题分析】根据E 点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【题目详解】E 点有4中情况,分四种情况讨论如下:由AB ∥CD ,可得∠AOC=∠DCE 1=β∵∠AOC=∠BAE1+∠AE 1C ,∴∠AE 1C=β-α过点E 2作AB 的平行线,由AB ∥CD ,可得∠1=∠BAE 2=α,∠2=∠DCE 2=β∴∠AE 2C=α+β由AB ∥CD ,可得∠BOE 3=∠DCE 3=β∵∠BAE 3=∠BOE 3+∠AE 3C ,∴∠AE 3C=α-β由AB ∥CD ,可得∠BAE 4+∠AE 4C+∠DCE 4=360°,∴∠AE 4C=360°-α-β∴∠AEC 的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【题目点拨】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.10、D【解题分析】根据众数、中位数和平均数及方差的定义逐一判断可得.【题目详解】A .甲组同学身高的众数是160,此选项正确;B .乙组同学身高的中位数是161,此选项正确;C .甲组同学身高的平均数是15815916031611697++⨯++=161,此选项正确; D .甲组的方差为807,乙组的方差为347,甲组的方差大,此选项错误. 故选D .【题目点拨】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、4m <.【解题分析】根据判别式的意义得到2440m =(﹣)﹣>,然后解不等式即可.【题目详解】 解:关于x 的一元二次方程240x x m +﹣=有两个不相等的实数根,2440m ∴=(﹣)﹣>,解得:4m <,故答案为:4m <.【题目点拨】此题考查了一元二次方程200ax bx c a ++≠=()的根的判别式24b ac =﹣:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.12、34【解题分析】根据圆周角定理可得∠BAC=∠BDC ,然后求出tan ∠BDC 的值即可.【题目详解】由图可得,∠BAC=∠BDC ,∵⊙O 在边长为1的网格格点上,∴BE=3,DB=4,则tan ∠BDC=BE DB =34∴tan ∠BAC=34故答案为34 【题目点拨】本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直角三角形.13、1【解题分析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n 的值.【题目详解】 解:根据题意得9n =1%, 解得n =1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【题目点拨】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.14、40°【解题分析】【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【题目详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【题目点拨】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.15、x≥﹣12且x≠1【解题分析】试题解析:根据题意得:2+10 {-10 xx≥≠解得:x≥﹣12且x≠1.故答案为:x≥﹣12且x≠1.16、2x≠【解题分析】分析:根据分式有意义的条件是分母不为0,即可求解.详解:由题意得:x-2≠0,即x2≠.故答案为x2≠点睛:本题考查了使函数有意义的自变量的取值范围的确定.函数是整式型,自变量去全体实数;函数是分式型,自变量是使分母不为0 的实数;根式型的函数的自变量去根号下的式子大于或等于0的实数;当函数关系式表示实际问题时,自变量不仅要使函数关系式有意义,还要使实际问题有意义.17、1×10﹣1【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:10nm用科学记数法可表示为1×10-1m,故答案为1×10-1.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题(共7小题,满分69分)18、见解析.【解题分析】(1)画出⊙O的两条直径,交点即为圆心O.(2)作直线AO交⊙O于F,直线BF即为所求.【题目详解】解:作图如下:(1);(2).【题目点拨】本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19、男生有12人,女生有21人.【解题分析】设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×35=男生的人数,列出方程组,再进行求解即可. 【题目详解】设该兴趣小组男生有x人,女生有y人,依题意得:2(1)13(1)5y xx y=--⎧⎪⎨=-⎪⎩,解得:1221 xy=⎧⎨=⎩.答:该兴趣小组男生有12人,女生有21人.【题目点拨】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.20、(1)1件;(2)y甲=30t(0≤t≤5);y乙=()20026080(25)t tt t⎧≤≤⎨-<≤⎩;(3)23小时;【解题分析】(1)根据图①可得出总工作量为370件,根据图②可得出乙完成了220件,从而可得出甲5小时完成的工作量;(2)设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx (0≤t≤2),y=cx+d(2<t≤5),将点的坐标代入即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出答案.【题目详解】(1)由图①得,总工作量为370件,由图②可得出乙完成了220件,故甲5时完成的工作量是1.(2)设y甲的函数解析式为y=kt(k≠0),把点(5,1)代入可得:k=30故y甲=30t(0≤t≤5);乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,当0≤t≤2时,可得y乙=20t;当2<t≤5时,设y=ct+d,将点(2,40),(5,220)代入可得:240 5220c dc d+=⎧⎨+=⎩,解得:6080 cd=⎧⎨=-⎩,故y乙=60t﹣80(2<t≤5).综上可得:y甲=30t(0≤t≤5);y乙=()2002 6080(25)t tt t⎧≤≤⎨-<≤⎩.(3)由题意得:306080y t y t =⎧⎨=-⎩, 解得:t=83, 故改进后83﹣2=23小时后乙与甲完成的工作量相等. 【题目点拨】本题考查了一次函数的应用,解题的关键是能读懂函数图象所表示的信息,另外要熟练掌握待定系数法求函数解析式的知识.21、(1)DB 5=;(2)AE 的长为32;(1)存在,画出点P 的位置如图1见解析,PF PC +的最小值为 5055. 【解题分析】(1)根据勾股定理解答即可;(2)设AE =x ,根据全等三角形的性质和勾股定理解答即可;(1)延长CB 到点G ,使BG =BC ,连接FG ,交BE 于点P ,连接PC ,利用相似三角形的判定和性质解答即可.【题目详解】(1)∵矩形ABCD ,∴∠DAB =90°,AD =BC =1.在Rt △ADB 中,DB 2222345AD AB =+=+=.故答案为5;(2)设AE =x .∵AB =4,∴BE =4﹣x ,在矩形ABCD 中,根据折叠的性质知:Rt △FDE ≌Rt △ADE ,∴FE =AE =x ,FD =AD =BC =1,∴BF =BD ﹣FD =5﹣1=2.在Rt △BEF 中,根据勾股定理,得FE 2+BF 2=BE 2,即x 2+4=(4﹣x )2,解得:x 32=,∴AE 的长为32;(1)存在,如图1,延长CB 到点G ,使BG =BC ,连接FG ,交BE 于点P ,连接PC ,则点P 即为所求,此时有:PC =PG ,∴PF +PC =GF .过点F 作FH ⊥BC ,交BC 于点H ,则有FH ∥DC ,∴△BFH ∽△BDC ,∴FH BF BH DC BD BC ==,即2453FH BH ==,∴8655FH BH ,==,∴GH =BG +BH 621355=+=.在Rt △GFH 中,根据勾股定理,得:GF 2222218505555GH FH =+=+=()(),即PF +PC 的最小值为5055. 【题目点拨】 本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想.22、1.【解题分析】试题分析:根据相似三角形的判定与性质,可得答案.试题解析:∵DE ⊥AB ,∴∠BED=90°,又∠C=90°,∴∠BED=∠C .又∠B=∠B ,∴△BED ∽△BCA ,∴,∴DE===1. 考点:相似三角形的判定与性质.23、x 1x- 【解题分析】根据分式的混合运算先计算括号里的再进行乘除.【题目详解】(x-1-2x 2x 1-+ )÷2x x x 1-+ =2x 12x 2x 1--++·x 1x x 1+-() =()2x 1x 1-+·x 1x x 1+-() =x 1x- 【题目点拨】此题主要考查分式的计算,解题的关键是先进行通分,再进行加减乘除运算.24、 (1)-7;(2)y x y -+ ,13-. 【解题分析】 (1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【题目详解】(1)原式=3−4×12+1−9=−7; (2)原式=1−2x y x y -+ ⋅()()()22x y x y x y ++-=1−2x y x y ++ =2x y x y x y +--+ =−y x y+; ∵|x−2|+(2x−y−3)2=1,∴2023x x y -=⎧⎨-=⎩, 解得:x=2,y=1, 当x=2,y=1时,原式=−13. 故答案为(1)-7;(2)−y x y +;−13. 【题目点拨】本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌市2020年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有6个大题,24个小题,全卷满分120分,考试时间120分钟;2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上答题,否则不给分.一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.计算0(1)的结果为( ).A.1B.-1C.0D.无意义 2.2020年初,一列CRH5型高速车组进行了“300 000公里正线运营考核”.标志着中国高铁车从“中国制造”到“中国创新”的飞跃.将数300 000用科学记数法表示为( ). A.3×106 B. 3×105 C.0.3×106 D. 30×104 3.下列运算正确的是( ). A.236(2)6a a B.C. D.4.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( ).(第4题)DCBA5.如图,小贤同学为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋...拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误..的是( ). A. 四边形ABCD 由矩形变为平行四边形 B. BD 的长度变大C. 四边形ABCD 的面积不变D. 四边形ABCD 的周长不变6.已知抛物线2(0)y ax bx c a 过(-2,0),(2,3)两点,那么抛物线的对称轴( ). A .只能是1xB .可能是y 轴C .在y 轴右侧且在直线2x 的左侧D .在y 轴左侧且在直线2x 的右侧二、选择题(本大题共8小题,每小题3分,共24分) 7.一个角的度数是20°,则它的补角的度数为 .第5题AB8.不等式组x x11023的解集是 .9.如图,OP 平分∠MON , PE⊥OM 于E, PF⊥ON 于F,OA=OB, 则图中有 对全等三角形.第10题第9题O10.如图,点A, B, C 在⊙O 上,CO 的延长线交AB 于点D,∠A=50°,∠B=30°则∠ADC 的度数为 .11.已知一元二次方程2430x x 的两根为m,n ,则22m mn n = . 12.两组数据:3,a ,2b , 5与a ,6 ,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为 .13.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm, ∠CBD=40°,则点B 到CD 的距离为 cm (参考数据:sin20°≈ 0.342,com20°≈0.940, sin40°≈ 0.643, com40°≈ 0.766.精确到0.1cm,可用科学计算器).(第14题)(第13题)图2图1AB14.如图,在△ABC 中,AB=BC=4,AO=BO,P 是射线CO 上的一个动点,∠AOC=60°,则当△PAB 为直角三角形时,AP 的长为 . 三、(本大题共4小题,每小题6分,共24分)15.先化简,再求值:()()2222a a b a b ,其中,1a 3b.16.如图,正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称, 已知A, D 1 ,D 三点的坐标分别是(0,4),(0,3),(0,2). (1)对称中心的坐标;(2)写出顶点B, C, B 1 , C 1 的坐标.17.⊙O 为△ABC 的外接圆,请仅用无...刻度的直尺.....,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法).(1) 如图1,AC=BC ;(2) 如图2,直线l 与⊙O 相切于点P,且l ∥BC.xl图2图1PAA18.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个. (1) 先从袋子中取出m (m>1)个红球,再从袋子中随机摸出一个球,将“摸出黑球”记为事件A. 请完成下列表格:(2) 先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出一个球是黑球的概率等于45,求m 的值. 四、(本大题共4小题,每小题8分,共32分)19.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份 ,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图类别严加干涉稍加询问从来不管从来不管 25%严加干涉稍加询问根据以上信息解答下列问题:(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角的度数为 ;(2)把条形统计图补充完整;(3)若将:“稍加询问”和“从来不管”视为“管理不严”,已知学校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?20.(1)如图1,纸片□ABCD 中,AD=5,S □ABCD =15,过点A 作AE⊥BC ,垂足为E,沿AE 剪下△ABE,将它平移至△DCE′ 的位置,拼成四边形AEE′D ,则四边形AEE′D 的形状为( )A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE′D 中,在EE′上取一点F,使EF=4,剪下△AEF ,将它平移至△DE′F′ 的位置,拼成四边形AFF′D .① 求证四边形AFF′D 是菱形; ② 求四边形AFF′D 两条对角线的长.图2图121.如图,已知直线y ax b 与双曲线()0ky x x交于A(,11x y ),B(,22x y )两点(A 与B 不重合),直线AB 与x 轴交于P(,00x ),与y 轴交于点C.(1) 若A,B 两点的坐标分别为(1,3),(3,y 2).求点P 的坐标; (2)若11by ,点P 的坐标为(6,0),且AB BP .求,A B 两点的坐标;(3)结合(1),(2)中的结果,猜想并用等式表示,,120x x x 之间的关系(不要求证明).x22.甲、乙两人在100米直道AB 上练习匀速往返跑,若甲、乙分别在A,B 两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别5 m/s 和4 m/s . (1)在坐标系中,虚线表示乙离A 端的距离S (单位:m )与运动时间t (单位:s )之间的函数图象(0≤t ≤200),请在同一坐标系中用实线画出甲离A 端的距离S 与运动时间t 之间的函数图象 (0≤t ≤200);sS /m------(2)根据(1)中所画图象,完成下列表格:(3)①直接写出甲、乙两人分别在第一个100m 内,s 与t 的函数解析式,并指出自x变量的取值范围;②求甲、乙第六次相遇时t 的值.五、(本大题共10分)23.如图,已知二次函数L 1:()2230yax ax a a 和二次函数L 2:()211ya x (0a )图象的顶点分别为M,N , 与y 轴分别交于点E, F. (1) 函数()2230yax ax a a 的最小值为 ;当二次函数L 1 ,L 2 的y 值同时随着x 的增大而减小时,x 的取值范围是 ; (2)当EF MN 时,求a 的值,并判断四边形ENFM 的形状(直接写出,不必证明);(3)若二次函数L 2 的图象与x 轴的右交点为(,)0A m ,当△AMN 为等腰三角形时,求方程()2110a x 的解.六、(本大题共12分)24.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE 是△ABC 的中线, AF ⊥BE , 垂足为P.像△ABC 这样的三角形均为“中垂三角形”.设BC a ,AC b ,AB c .特例探索(1)如图1,当∠ABE =45°,c 22时,a = ,b ;如图2,当∠ABE =30°,c 4时, a = ,b ;图3图2图1CAB A归纳证明(2)请你观察(1)中的计算结果,猜想,,a b c 222三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(3)如图4,在□ABCD 中,点E,F,G 分别是AD,BC,CD 的中点,BE ⊥EG,AD= ,AB=3.求AF 的长.EA2020年江西省南昌中考数学解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.解析:选A. ∵除0外,任何数的0次方等于1. ∴选A.2.解析:选B.∵科学记数法是:把一个数写成“10na,其中1≤a<10”. ∴选B.3.解析:选D. ∵()1b a b a b a a ba b b a a b a b a b a b.∴选D.4.解析:选C. ∵根据光的正投影可知,几何体的左视图是图C. ∴选C.5.解析:选 C. ∵向右扭动框架,矩形变为平行四边形 ,底长不变,高变小,所以面积变小. ∴选C.6.解析:选 D. ∵抛物线2(0)y ax bx c a过(-2,0),(2,3)两点,∴420423a b ca b c,解得34b,∴对称轴328bxa a,又对称轴在(-2,2)之间,∴选D.二、填空题(本大题共8小题,每小题3分,共24分)7.解析:∵两角互补,和为180°,∴它的补角=180°-20°=160°.8.解析: 由112x≤0得x≤2 ,由-3x<9得x>-3,∴不等式组的解集是-3<x≤2.9.解析:∵∠POE=∠POF, ∠PEO=∠PFO=90°OP=OP,∴△POE≌△POF(AAS),又OA=OB,∠POA=∠POB,OP=OP,∴△POA≌△POB(AAS), ∴PA=PB,∵PE=PF,∴Rt△PAE≌Rt△PBF(HL). ∴图中共有3对全的三角形.10.解析:∵∠A=50°, ∴∠BOC=100°, ∴∠BOD=80°, ∴∠ADC=∠B+∠BOD=30°+ 80°=110°11.解析:由一元二次方程根与系数关系得m+n=4,mn=﹣3,又()2223m mn n m n mn∴原式=()243325.12.解析:由题意得32564663a b a b,解得84a b ,∴这组新数据是3,4,5,6,8,8,8,其中位数是6.13.解析:如右图,作BE⊥CD 于点E. ∵BC=BD, BE⊥CD, ∴∠CBE=∠DBE=20°, 在Rt△BCD 中,cos ,BEDBE=BD∴cos BE 2015, ∴BE≈15×0.940=14.114.解析:如图,分三种情况讨论:图(1)中,∠APB=90°, ∵AO=BO, ∠APB=90°,∴PO=AO=BO=2,(1)BA(2)BA又∠AOC=60°, ∴△APO 是等边三角形,∴AP=2;图(2)中,∠APB=90°,∵AO=BO, ∠APB=90°,∴PO=AO=BO=2, 又∠AOC=60°, ∴∠BAP=30°,在Rt△ABP中,AP=cos30°×4= .图(3)中,∠ABP=90°, ∵BO=AO=2 , ∠BOP=∠AOC=60°,∴PB=()222327∴AP 的长为2,或三、(本大题共4小题,每小题6分,共24分)15.解析:原式 ()[()]()()22222224a b a a b a b a b a b 把,1a 3b代入得,原式=()()221431116.解析:(1) ∵正方形ABCD 与正方形A 1B 1C 1D 1∴A,A 1 是对应点,∴AA 1 的中点是对称中心, ∵A(0,4),D(2,0),∴AD=2, ∴A 1D 1 = AD=2, 又∵D 1(0,3) ,∴A 1(0,1),(3)Ax∴对称中心的坐标为(0, 2.5);(2)∵正方形的边长为2, 点A,D 1 ,D ,A 1在y 轴上,∴B(-2,4), C(-2,2), B 1(2,1), C 1(2,3) .17.解析:如右图所示.图1,∵AC=BC,∴ACBC ,∴点C 是AB 的中点,连接CO ,交AB 于点E ,由垂径定理知, 点E 是AB 的中点, 延长CE 交⊙O 于点D , 则CD 为所求作的弦;图2,∵l 切⊙O 于点P, 作射线PO ,交BC 于点E ,则PO⊥l, ∵l∥BC , ∴PO⊥BC,由垂径定理知,点E 是BC 的中点,连接AE 交⊙O 于F ,则AF 为所求作的弦. 18. 解析:(1)若事件A 为必然事件,则袋中应全为黑球,∴m=4, 若事件A 为随机事件,则袋中有红球,∵m>1 ,∴m=2或3.图2图1PAA(2)64105m,∴m=2 .四、(本大题共4小题,每小题8分,共32分)19.解析:(1) 30÷25%=120 10÷120×360°=30° ∴回收的问卷数为120份,圆心角的度数为30°(2) 如下图:(3) (30+80)÷120×1500=1375 ∴对孩子使用手机“管理不严”的家长大约有1375人.严加干涉稍加询问从来不管20.解析:(1) 由平移知:AE//DE′, ∴四边形AEE′D是平行四边形,又AE⊥BC, ∴∠AEE′=90°,∴四边形AEE′D是矩形,∴C选项正确.(2)① ∵AF//DF′, ∴四边形AFF′D是平行四边形,∵AE=3, EF=4 ,∠E=90°, ∴AF=5,∵S□ABCD=AD·AE=15, ∴AD=5 , ∴AD=AF , ∴四边形AFF′D是菱形.② 如下图,连接AF′, DF ,在Rt△AEF′中, AE=3, EF′=9, ∴AF′=在Rt△DFE′中, FE′=1, DE′=AE=3, ∴∴四边形AFF′D两条对角线的长分别是.21.解析:(1) 把A(1,3)代入ky x 得:3k , 把B (,)23y 代入3y x得:21y ,∴B(3,1).把A(1,3),B(3,1)分别代入y ax b 得:331a b a b ,解得:14a b ,∴4ABy x ,令0ABy ,得4x , ∴(,)40P(2) ∵AB PB , ∴B 是AP 的中点,由中点坐标公式知:,1122622x y x y , ∵,A B 两点都在双曲线上,∴1111622x y x y ,解得12x , ∴24x .作AD⊥x 于点D (如右图), 则△PAD ∽△PDO∴AD PDCOPO,即146y b , 又11b y ,∴12y ,∴21y .∴(,),(,)2241A B (3) 结论:120x x x .理由如下:∵A(,11x y ),B(,22x y ),∴1122ax b y ax by , ∴2112212121y y x y x y yx x x x xx令0y ,得122121x y x y xy y ,∵1122x y x y , ∴()()122121122121x y x y y y x x xy y y y=12x x , 即120x x x22.解析:(1)如下图:t /ss /m(2)填表如下:(3) ① =5S t 甲 (0≤t≤20) ,=-4100S t 乙 (0≤t ≤25). ② ()54100621t t , ∴ 11009t , ∴第六次相遇t 的值是11009. 五、(本大题共10分)23.解析:(1)∵()222313y ax ax a a x , ∴min =3y ; ∵(,),(,)M N 1311 ,∴当x 1时,L 1的y 值随着x 的增大而减小,当x1时,L 2 的y 值随着x 的增大而减小, ∴x 的取值范围是x 11(2)∵(,),(,)M N 1311, ∴MN 22,∵(,),(,)E a F a 0301,∴()EF a a a 3122,∴a 2222 ,a21如图,∵MN y x 2, ∴(,)A 02,∴,AM AN22,∴AMAN∵a 21,∴(,),(,)E F 022022∴,AEAF22, ∴AE AF∴四边形ENFM 是平行四边形, 已知EFMN ,∴四边形ENFM 是矩形(对角线相等且互相平分的四边形是矩形) (3)∵(,),(,)M N 1311,(,)A m 0, ∴,(),()MNAMm ANm 22221911① 当AM MN )m 21922,∴()m 211,等式不成立;② 当AM AN )()m m 221911 ∴m 2;③ 当MNAN 时,)m 21122,∴,(m m 127171舍去)∴(,)A 20或,)A 10, ∵()y a x 211的对称轴为x 1,∴左交点坐标分别是(-4,0)或(71,0),∴方程()a x 2110的解为 ,,,x x x x 1234247171.xx七、(本大题共12分)24. 解析:(1)如图1,连接EF,则EF 是△ABC 的中位线,∴EF=AB 12∵∠ABE=45°,AE⊥EF ∴△ABP 是等腰直角三角形, ∵EF∥AB ,∴△EFP 也是等腰直角三角形, ∴a b 25.如图2,连接EF,则EF 是△ABC 的中位线. ∵∠ABE=30°,AE⊥BF,AB=4, ∴AP=2, BP=,图1CA图2B∵EF //AB 12∴a 213 , b 27.(2) a b c 2225如图3,连接EF , 设AP=m ,BP=n.,则c AB m n 2222 ∵EF //AB 12, ∴PE=12BP=12n , PF=12AP=12m, ∴AE m n 22214 , BF n m 22214 , ∴b AC AE m n 2222244, a BC BF n m 2222244 ∴()a b m n c 2222255 (3)如上图,延长EG,BC 交于点Q, 延长QD,BA 交于点P,延长QE,BE 分别交PB ,PQ 于点M,N,连接EF.∵四边形ABCD是平行四边形,∴AD //BC, AB //CD,∵E,G 是分别是AD,CD 的中点,∴△EDG≌△QCG≌△EAM, , DG=AM=1.5,图3A∴BM=4.5. ∵CD CQ BP BQ ,∴BP 3535,∴BP=9, ∴M 是BP 的中点; ∵AD //FQ, ∴四边形ADQF 是平行四边形,∴AF∥PQ, ∵E,F 分别是AD ,BC 的中点,∴AE //BF, ∴四边形ABFE 是平行四边形,∴OA=OF, 由A F∥PQ 得: ,OFBF QN BQ 51335 OA BA PN BP 3193, ∴OA OF PN QN, ∴PN=QN, ∴N 是PQ 的中点; ∴△BQP 是“中垂三角形”, ∴()PQ BQ BP 2222255359144, ∴PQ 12, ∴AFPQ 143。