复变函数第2章.
复变函数第二章答案

第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =⋅ 解:22222222()||()()()(),f z z z z z z z zx y x iy x x y iy x y =⋅=⋅⋅=⋅=++=+++这里2222(,)(),(,)().u x y x x y v x y y x y =+=+2222222,2,2,2.x y y x u x y x v x y y u xy v xy =++=++==要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =⋅仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+-解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=-226,6,33,y x y u xy v xy v x y =-==-四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析.3.确定下列函数的解析区域和奇点,并求出导数.(1) (,).az b c d cz d++至少有一不为零解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az b f z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++ 当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 4.若函数()f z 在区域D 内解析,并满足下列条件之一,试证()f z 必为常数. (1) ()f z 在区域D 内解析; (2) 2;v u =(3) arg ()f z 在D 内为常数;(4) (,,).au bv c a b c +=为不全为零的实常数 证 (1) 因为()f z 在D 中解析,所以满足C R -条件,,u v u vx y y x∂∂∂∂==-∂∂∂∂ 又()f z u iv =-也在D 中解析,也满足C R -条件()(),.u v u v x y y x∂∂-∂∂-==-∂∂∂∂ 从而应有0u u v v x y x y∂∂∂∂====∂∂∂∂恒成立,故在D 中,u v 为常数, ()f z 为常数. (2) 因()f z 在D 中解析且有2()f z u iu =+,由C R -条件,有2,2.u u u x y u u u yx ∂∂⎧=⎪∂∂⎪⎨∂∂⎪=-⎪∂∂⎩ 则可推出0u ux y∂∂==∂∂,即u C =(常数).故()f z 必为D 中常数.(3) 设()f z u iv =+,由条件知arctan v C u=,从而22(/)(/)0,0,1(/)1(/)v u v u y x v u v u ∂∂∂∂==++ 计算得2222()/0v u u u v ux x u v ∂∂-∂∂=+,2222()/0,v u u u v u y y u v ∂∂-∂∂=+ 化简,利用C R -条件得0,0.uu u v y x u u u v xy ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪-=⎪∂∂⎩ 所以0,u u x y∂∂==∂∂同理0,v v x y ∂∂==∂∂即在D 中,u v 为常数,故()f z 在D 中为常数.(4) 法一:设0,a ≠则()/,u c bv a =-求导得,,u b v u b vx a xy a y∂∂∂∂=-=-∂∂∂∂ 由C R -条件,,u b uv b v x a yx a y∂∂∂∂==∂∂∂∂ 故,u v 必为常数,即()f z 在D 中为常数.设0,0,0a b c =≠≠则bv c =,知v 为常数,又由C R -条件知u 也必为常数,所以()f z 在D 中为常数.法二:等式两边对,x y 求偏导得:00x x yy au bv au bv +=⎧⎨+=⎩,由C R -条件,我们有0,00x y x xy y au bu u a b bu au u b a -=-⎧⎛⎫⎛⎫=⎨ ⎪ ⎪+=⎝⎭⎩⎝⎭即, 而220a b +≠,故0x y u u ==,从而u 为常数,即有()f z 在D 中为常数.5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y∂∂'+=∂∂证: 设 222(),|()|,f z u iv f z u v =+=+222(),|()|()().u u u u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x yu u v v u u v v u v u v xx x x y y y y ∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u uv vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 6.由下列条件求解解析函数().f z u iv =+ (1)22()(4);u x y x xy y =-++ 解: 因22363,u v x xy y x y∂∂==+-∂∂所以 22(363)v x xy y dy =+-⎰22333(),x y xy y x ϕ=+-+又222263(),363,()3,v uxy y x x xy y x x x xϕϕ∂∂''=++=--=-∂∂而所以 则 3()x x C ϕ=-+.故222233222222223()()(4)(33)(1)()(1)()2(1)2(1)(1)()2(1)(1)(2)(1)f z u ivx y x xy y i x y xy y x C i x x iy y i x iy x y i xy i Ci z i x y xyi iz i Ci i z x y xyi Ci i z Ci=+=-++++--+=-+--+-+--+=---⋅-+=---+=-+(2) 23;v xy x =+解: 因23,2,v vy x x y∂∂=+=∂∂由()f z 解析,有 22,2().u v x u xdx x y x yφ∂∂====+∂∂⎰又23,u v y y x ∂∂=-=--∂∂而(),u y yφ∂'=∂所以()23,y y φ'=--则2()3.y y y C φ=--+ 故 22()3(23).f z x y y C i xy x =--+++ (3) 2(1),(2);u x y f i =-=- 解: 因2,2(1),u u y x x y ∂∂==-∂∂由()f z 的解析性,有2(1),v ux x y∂∂=-=--∂∂22(1)(1)(),v x dx x y φ=--=--+⎰又2,v u y y x ∂∂==∂∂而(),v y yφ∂'=∂所以2()2,(),y y y y C φφ'==+则22(1),v x y C =--++故22()2(1)((1)),f z x y i x y C =-+--++由(2)f i =-得(2)(1),f i C i =-+=-推出0.C =即2222()2(1)(21)(21)(1).f z x y i y x x i z z i z =-+-+-=-+-=--7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ), 1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩8.试解方程:(1) 1;z e =+解:(2)312(cos sin )233i k ze i e ππππ+=+=+=ln 2(2)3,0,1, 2.i k e k ππ++==±±故ln 2(2),0,1, 2.3z i k k ππ=++=±±(2) ln ;2iz π=解: 2cossin.22iz ei i πππ==+=9.求下列各式的值。
复变函数第2章

By 宋朝红2.1 复变函数的极限2.2 复变函数的连续性2.3 导数2.4 解析函数2.5 调和函数Math HZAU第二章导数zz f z z f z Δ)()Δ(lim 000Δ−+→1 导数与微分定义:设函数w=f(z)在包含z 0的某邻域D 内有定义,点z 0+⊿z ∈D. 如果极限存在, 则称f (z )在z 0可导, 此极限值就称为f (z )在z 0的导数, 记作0000Δ0(Δ)()d ()lim .d Δ|z z z f z z f z w f z z z=→+−′==如果f (z )在区域D 内处处可导, 则称f(z)在D内可导.例1求f (z )=z 2的导数例3讨论函数f (z )=|z|2的可导性函数可导一定连续,但连续却不一定可导例2问:函数f (z )=x +2yi 是否可导?求导公式与法则①常数的导数c ′=(a+ib )′=0.②(z n )′=nz n-1(n 是自然数).③设函数f (z ),g (z ) 均可导,则[f (z )±g (z )]′=f ′(z )±g ′(z ),[f (z )g (z )]′= f ′(z )g (z )+ f (z )g ′(z )----实函数中求导法则的推广)0)((,)()(')()()('')()(2≠−=⎥⎦⎤⎢⎣⎡z g z g z g z f z g z f z g z f④复合函数的导数( f [g (z )])′=f ′(w )g ′(z ),其中w=g (z )。
.0)()()()(10处可导点外)处在复平面上(除分母为导;在整个复平面上处处可由以上讨论z Q z P z R z a z a a z P nn =+++=⇒"⑤反函数的导数,其中: w=f (z )与z=ϕ(w )互为单值的反函数,且ϕ′(w )≠0。
)('1)('w z f ϕ=例3求f (z )=Arcsinz=-iLn (iz+ )的导数。
复变函数第二章

该定理将求复变函数 f ( z ) = u( x , y ) + iv ( x , y ) 的极限问题 , 转化为求 两个二元实变函数 u( x , y ) 和 v ( x , y ) 的极限问题 .
x → x0 y → y0
x → x0 y → y0
定理 : 设 lim f ( z ) = A, lim g ( z ) = B , 那末
4
例2 : 求极限 lim cos z
解:因为 cos z = cos( x + yi ) = cos xchy − i sin xshy
z → z0
若取 u(x,y) = cos xchy , v(x,y) = sin xshy , z 0 = x 0 + iy 0 , 则有
( x , y )→ ( x0 , y0 )
0
→ 那末称 A 为 f ( z ) 当 z 趋向于 z0 时的极限 . 记作 lim f ( z ) = A. (或 f ( z ) zz → A) z→ z →
0
注意: 注意: 定义中 z → z0 的方式是任意的 . 几何意义: 几何意义 当变点z一旦进 当变点 一旦进 入z0 的充分小去 心邻域时,它的象 心邻域时 它的象 就落入A的 点f(z)就落入 的 就落入 一个预先给定的 ε邻域中 邻域中
z → z0 z → z0
(1) lim[ f ( z ) ± g ( z )] = A ± B;
z → z0 z → z0
(2) lim[ f ( z ) g ( z )] = AB; f (z) A (3) lim ( B ≠ 0). = z → z0 g ( z ) B
与实变函数的极限运算法则类似. 与实变函数的极限运算法则类似
复变函数-第2章

(1) 若 Δz 沿实轴趋于0, 即 Δz = Δx,
f ′( z0 ) = lim u ( x0 + Δx, y0 ) + iv( x0 + Δx, y0 ) − u ( x0 , y0 ) − iv( x0 , y0 ) Δx →0 Δx u ( x0 + Δx, y0 ) − u ( x0 , y0 ) v( x0 + Δx, y0 ) − v( x0 , y0 ) = lim + i lim Δx → 0 Δx → 0 Δx Δx ∂u ∂v = ( x0 , y0 ) + i ( x0 , y0 ) ∂x ∂x
∀ z0 ∈ C,
f ( z0 + Δz ) − f ( z0 ) z0 + Δz − z0 Δz = = Δz Δz Δz Δx − iΔy ⎧ 1, Δy = 0 = →⎨ 差商的极限不存在! Δx + iΔy ⎩− 1, Δx = 0
所以, 与 z 有关的函数不可微. 比如, x, y作为一元或者二元实函数都是可微的, z+z z−z 但作为复函数则不可微! x= ,y= 2 2i
但是,
| ΔxΔy | f (0 + Δz ) − f (0) = Δz Δx + iΔy
取 Δy = kΔx
Δx → 0 +
|k| 1 + ik
差商极限不存在, 故不可微. ★ 想一想问题出在哪里? 注意到, 实函数 u ( x, y ) = | xy | 在(0,0)不可微!
反证, 若实函数 u ( x, y ) = | xy | 在(0,0)可微, 则
2. 柯西-黎曼(Cauchy-Riemann)方程
若函数 f ( z ) = u ( x, y ) + iv( x, y ) 在 z0 = x0 + iy0 可导, 则
复变函数第二章 解析函数

第 一 节 解 析 函 数 的 概 念
( 5)
f ( z ) ′ g ( z ) f ′ ( z ) − f ( z ) g ′ ( z ) , g (z) ≠ 0 = 2 g ( z) g ( z)
( 6)
{
f g ( z )
}
′
= f ′ ( w ) g ′ ( z ) , 其中w = g ( z )
dw 可见:可导 ⇔ 可微, f ′ ( z0 ) = 且 dz
z = z0
如果f ( z ) 在区域D内每一点可微,
则称f ( z ) 在D内可微.
记作 dw = f ′ ( z ) dz
第 一 节 解 析 函 数 的 概 念
二、解析函数 定义 1o 如果f ( z ) 在z0 及z0的某邻域内处处可导,
设w = f ( z ) 定义于区域D, z0 ∈ D , z0 + ∆ z ∈ D
f ( z0 + ∆ z ) − f ( z0 ) 如果 lim 存在 ∆ z →0 ∆z 则 称 f ( z ) 在 z0点 可 导 , 而 极 限 值 为 f ( z ) 在 z0点 dw 的导数,记作 f ′ ( z0 ) 或 dz z = z0
∴ ∆ u = a ∆ x − b ∆ y + o1 ∆ v = b∆ x + a ∆ y + o2
反之,不成立。
( 2)
( 3)
f ( z ) 在区域D内解析
⇔ f ( z ) 在 区 域 D内 可 导 。
f ( z ) 在 z0 解析 ⇔
f ( z ) 在 z0的某邻域 N δ ( z0 )内解析。
第 一 节 解 析 函 数 的 概 念
复变函数第二章

2连续、可导、解析的关系
f ( z ) 在D内解析
f ( z ) 在D内可导
f ( z ) 在z0解析
f ( z ) 在z0可导
f ( z ) 在z0连续
3 复变函数与二元实函数的关系
设f ( z ) = u ( x, y ) + iv( x, y ), A = u0 + iv0 , z0 = x0 + y0i
例5
求出下列各函数的解析区域,并求出导数.
1)f ( z ) =
z
2
2
z +1
,
x+ y x− y 2) f ( z ) = 2 +i 2 2 2 x +y x +y
f ( z )在z 2 + 1 ≠ 0,即z ≠ ±i外处处可导,因此 解: 1) 其解析区域为复平面内除去z ≠ ±i两点.且
2z 2 z ( z 2 + 1) − z 2 2 z = 2 f ′( z ) = 2 2 ( z + 1) 2 ( z + 1)
则称f ( z )在z 0 可导.这个极限值称为f ( z )在z 0的导数.
dω 记作f ′( z0 ) = dz
z = z0
f ( z 0 + ∆z ) − f ( z 0 ) = lim . ∆z → 0 ∆z
在定义中应注意: 在定义中应注意
z0 + ∆z → z0 (即∆z → 0)的方式是任意的 .
∂u ∂u ∂x ∂u ∂y ∂u ∂u 则 = + = cos θ + sin θ ∂r ∂x ∂r ∂y ∂r ∂x ∂y
导数公式的其它形式 导数公式
∂u ∂v f ′( z ) = +i ∂x ∂x
第2章 复变函数
( x, y ) Î E .
(1)
其中 u = u ( x, y ) 和 v = v( x, y ) 是一对二元实函数, 它们分别称为 f ( z ) 的实部和虚部, 分别记 为 Re f ( z ) 和 Im f ( z ). 这说明一个复函数等价于一对二元实变量的实函数. 复函数的形如(1)式的表示形式对应于复数的代数形式. 对应于复数的指数形式, 相应地可 以将复函数表示为指数形式:
f ( z) > M ,
则称当 z 0 时, f ( z ) 趋近于无穷大 记为 lim f ( z ) = ¥.
z z0
(2) 设 w = f ( z ) 是定义在 E 上的复函数, 无穷远点 ¥ 是 E 的聚点(即对任意 r > 0, ¥ 的
r 邻域 { z : z > r } 中包含 E 中的点), 是一复数. 若对任意 > 0, 存在 r > 0, 使得当 z Î E 并且 z > r 时, 有
复变函数的连续性
定是 E 的聚点. 若
z z0
lim f ( z ) = f ( z0 ),
则称 f ( z ) 在点 z0 处(相对于集 E )连续. 若 f ( z ) 在 E 上的每一点处都连续, 则称 f ( z ) 在 E 上连 续. 例6 例 5(2)的结论表明多项式函数在复平面上处处连续. 设 f ( z ) = u ( x, y ) + iv( x, y ) 是定义在 E 上的复函数, z0 = x0 + iy0 是 E 的聚 定理 2.1.2
于是 f ( z ) f ( z0 ) f ( z ) f ( z0 )
1 f ( z0 ) . 2
1 f ( z0 ) . 即 2
复变函数第二章(第三讲)
∂u ∂v 1 ∂u ∂v iii) 求导数: f '(z) = ∂x + i ∂x = i ∂y + ∂y 求导数:
前面我们常把复变函数看成是两个实函数拼成的, 前面我们常把复变函数看成是两个实函数拼成的, 但是求复变函数的导数时要注意, 但是求复变函数的导数时要注意, 并不是两个实函 数分别关于x, 求导简单拼凑成的 求导简单拼凑成的. 数分别关于 ,y求导简单拼凑成的.实可微与复可微 是完全不同的概念。 是完全不同的概念。
§2.2 解析函数的充要条件
Cauchy-Riemann定理 1. Cauchy-Riemann定理 2. 举例
Cauchy-Riemann定理 1. Cauchy-Riemann定理
定理 设f (z)= u + i v, z= x +i y, z0=x0+i y0, 则f (z)在 在
(1) u( x, y), v( x, y)在( x0 , y0 )可微, ∂u ∂v ∂u ∂v z0处可导⇔ . (2) = , = − 在( x0 , y0 )成立 ∂x ∂y ∂y ∂x 定义 方程
∂u ∂v = ∂x ∂y
∂v ∂u =− ∂x ∂y
称为Cauchy-Riemann方程(简称C-R方程).
֠
由此可以看出可导函数的实部与虚部有密切 的联系. 的联系.
֠ 利用该定理可以判断那些函数是不可导的. 利用该定理可以判断那些函数是不可导的.
基本步骤: 偏导数的连续性, 基本步骤 i) 判别 u(x, y),v (x, y) 偏导数的连续性, , ii) 验证 验证C-R条件 条件. 条件
由以上讨论得 函数; P ( z ) = a 0 + a1 z + L + a n z n 是整个复平面上的解析 函数; P(z) R( z ) = 是复平面上 ( 除分母为 0点外 )的解析函数 . Q( z)
第二章 复变函数的积分
一.复变函数的积分
(复平面的路径积分) 复平面的路径积分)
∫ f (z )dz ≡ lim ∑ f (ξ )(z
l n →∞ k =1 k
l l
n
k
− z k −1 ) ≡ lim ∑ f (ξ k )dz k n→∞
k =1
n
∫ f (z )dz = ∫ u (x, y )dx − v(x. y )dy + i ∫ v(x, y )dx + u (x. y )dy
ez I =∫ 2 dz c ( z + 1) 2
z 2
2π i (n−1) f (ξ ) ∫ (ξ − z)n dξ = (n −1)! f (z) l
例:计算
z = a (> 1)
解:
I=∫
c1
e z /( z − i ) 2 e /( z + i) dz dz + ∫ 2 2 c2 ( z + i) ( z − i)
1
I 2 = ∫ xdz + ∫ xdz =
0
1
1+i
i
1 ∫ 0idy + ∫ xdx = 2 0 0
直线参数方程 : z = (1 + i)t或( y = x)
1
I 3 = ∫ t (1 + i )dt = 1 + i 2 0
(可见积分与路径有关)
例2
1+i
z 2 dz = ? 1)沿折线 0—1---1+i ∫
= 2π i [e z /( z + i) 2 ]′z =i + 2π i [e z /( z − i ) 2 ]′z = −i
第二章 复变函数
第二章 复变函数:第二节:初等函数1、指数函数:我们要把实指数函数的定义扩充到整个复平面上,使得复变数z=x+iy 的函数f (z )满足下列条件:(1)x e x f R x =∈∀)(,;(2)f (z )在整个复平面C 上解析;(3)C ,21∈∀z z ,有)()()(2121z f z f z z f =+; 则可以证明,)sin (cos )(y i y e z f x +=,事实上,由(3)及(1)有)()()(iy f e iy x f z f x =+=令 ),()()(y iB y A iy f +=其中A (y )及B (y )是实值函数,所以)()()(y B ie y A e z f x x +=显然,y y A cos )(=及y y B sin )(=满足上面的条件。
若,,222111iy x z iy x z +=+=则有)()]sin()[cos()sin (cos )sin (cos )()(2121212211212121z z f y y i y y e y i y e y i y ez f z f x x x x +=+++=++=+ 因此,定义复指数函数,为)sin (cos exp y i y e z e w x z +==由此有Euler 公式:y i y e iy sin cos +=;指数函数的基本性质:(4)C ∈∀z ,0≠z e ;(5)指数函数z e w =在整个复平面内有定义并且解析,z z e e =)'(,指数函数z e w =是实指数函数在复平面上的解析推广;(6)Euler 公式:y i y e iy sin cos +=;(7)从定义得||x z e e =, ,2,1,02±±=+=k k y Arge z ,π利用Euler 公式,得到复数的指数表示式:若复数z 的模为r ,幅角为θ,则有θθθi re i r z =+=)sin (cos ;(8)指数函数是周期i π2为得周期函数;(9)指数函数的几何映射性质:由于指数函数有周期i π2,所以研究当z 在带形}2Im 0C,|{π<<∈=z z z B 中变化时,函数z e w =的映射性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
柯西-黎曼方程:ux(x, y) = vy(x, y), uy (x, y) = -vx(x, y)
定义 对于二元实函数u(x, y)和v(x, y),方程
ux u v vy , x y uy u v vx . y x
称为柯西-黎曼方程(简记为C-R方程).
1 f ( z ) 2 ( z 0). z
函数1/z在整个z 平面上除去原点外处处可导.
5
★ 函数f(z)在点z0可导
f(z)在z0连续.
f ( z0 Δz ) f ( z0 ) Δz
lim 若f(z)在点z0可导,即 f ( z0 ) z 0
于是 令 则有 以及 所以
b) x=0, y0, 即平行于虚轴的方向
f ( z ) lim [u ( x, y y) u ( x, y )] i[v( x, y y ) v( x, y )] y 0 iy u ( x, y y) u ( x, y) v( x, y y ) v( x, y ) i lim lim y 0 y 0 y y u ( x, y) v( x, y) i iu y ( x, y) v y ( x, y). y y
f ( z ) lim u ( x, y ) iv( x, y ) . z 0 z
11
考虑两种z的方式: a) y=0, x0, 即平行于实轴的方向
f ( z ) lim
f ( z ) lim
u ( x, y ) iv( x, y ) z 0 z
原函数在整个z平面上处处不可导.
3
例2.2 求函数f(z)=zn(n为正整数)的导数.
f ( z Δz ) f ( z ) ( z Δz ) n z n f ( z ) lim lim 解: Δz 0 Δz 0 Δz Δz 1 n 1 n 1 n lim (Cn z Cn2 z n 2Δz Cn zΔz n 2 Cn Δz n 1)
存在且有限, 则称函数f(z) 在点z0处可导, 极限值称为 f(z)在z0的导数, 记作
df ( z ) f ( z0 ) dz
z z0
dw dz
f ( z0 Δz ) f ( z0 ) . z z0 lim Δz 0 Δz
若函数f(z)在区域D内每一点都可导,则称函数f(z)在 区域D内可导.
10
3. 柯西-黎曼方程
如果复变函数w=f(z)=u(x, y)+iv(x, y)在点z=(x, y)处可微, 讨论f(z)的实部u(x, y)与虚部v(x, y)在点z=(x, y)处的关系 由可微的定义
f ( z ) lim w f ( z z ) f ( z ) lim . z 0 z z 0 z
定理2.1 (可微的必要条件) 设函数f(z)=u(x,y)+iv(x,y)在区域D内有定义, 在D内点 z=x+iy 可导/可微的必要条件是 (1) 一阶偏导数ux, uy, vx, vy在点(x,y)处存在; (2) u(x,y),v(x,y)在点(x,y)处满足柯西-黎曼方程 .
13
例2.6 f ( z) | xy | 满足在z=0处定理2.1的(1)(2),但不可微
2
例2.1 研究函数f(z)= z 在整个z平面上的可导性.
解:令z=x+iy, z= x+i y
f ( z Δz ) f ( z ) z Δz z z Δz z lim lim lim Δz 0 Δz 0 Δz 0 Δz Δz Δz Δz Δx iΔy lim lim , Δz 0 Δz Δz 0 Δx iΔy
1
§1 解析函数的概念与柯西-黎曼方程
1.复变函数的导数与微分 定义2.1 (导数的定义)设函数w=f(z)定义在z平面上 区域D内,点z0、z0+z D, Δw=f(z0+ z) - f(z0), 若极限
f ( z0 Δz ) f ( z0 ) Δw lim lim Δz 0 Δz Δz 0 Δz
证 u( x, y) | xy |, v(x,y)=0,
ux (0,0) lim | x 0 | 0 u (x,0) u(0,0) lim 0 vy (0,0), x 0 x 0 x x
| 0 y | 0 u(0, y) u(0,0) u y (0,0) lim lim 0 vx (0,0), y 0 y 0 y y | xy | 0 | xy | f (z ) f (0) , z x iy x iy
[u ( x x, y ) u ( x, y )] i[v ( x x, y ) v ( x, y )] x 0 x u ( x x, y ) u ( x, y ) v( x x, y ) v( x, y ) lim i lim x 0 x 0 x x u ( x, y ) v ( x, y ) i u x ( x, y ) ivx ( x, y ). x x
f ( z ) g ( z ) f ( z ) g ( z ) f ( z ) (5) ; g ( z) 2 g ( z)
(6) (f(g(z)))' = f '(w)g'(z), 其中w=g(z); ቤተ መጻሕፍቲ ባይዱ7) 若两个单值函数w=f(z)与z=h(w)互为反函数
且h'(w)≠0,则有
1 f ( z ) . h( w)
7
2. 解 析 函 数 的 ●f(z)在点z0(处)解析:f(z)在z0的某邻域内处处可导; 概 念 ●f(z)在区域D内解析 (或称f(z)是D内的解析函数): f(z)在D内每一点都解析,即f(z)在D内处处可导. ●f(z)在闭区域 D 上解析 (或称f(z)是D 上的解析函数): f(z)在包含 D 的某区域内解析. ▲z0为f(z)的奇点:若f(z)在点z0处不解析,但在z0的 任一邻域内总有f(z)的解析点.
Δz 0
f ( z0 Δz ) f ( z0 ) lim f ( z0 ) 0 z 0 Δz f ( z0 Δz ) f ( z0 ) (Δz ) f ( z0 ) Δz lim (Δz ) 0
f ( z0 Δz) f ( z0 ) f ( z0 )Δz (Δz)Δz,
Δz 0
lim f ( z0 Δz ) f ( z0 )
即f(z)在z0连续.
6
常用的求导公式与法则
(1) (C)' =0,其中C为复常数; (2) (zn)' = nzn-1, 其中n为正整数; (3) (f(z)±g(z))' = f '(z)±g'(z); (4) (f(z)g(z))' = f '(z) g(z) +f(z) g'(z) ;
令z= x+i kx (x>0), 则
| x k x | |k| f (z ) f (0) , z x ik x 1 ik
故,f(z)在z=0处不可微。
14
定理2.2 (可微的充要条件) 设函数f(z)=u(x,y)+iv(x,y)在区域D内有定义,则 f(z)在 D内点 z=x+iy 可导/可微的充要条件是 (1) 二元实函数u(x,y)和v(x,y)在点(x,y)可微; (2) u(x,y),v(x,y)在点(x,y)满足柯西-黎曼方程. 证 必要性 设函数f(z)在区域D内一点z=x+iy 可微, w=u+iv=f(z+z)-f(z)=f(z)z+z, (z) 记f(z)=+i, 1=Re (z), 2=Im (z), 则 u+iv=(+i)(x+iy)+z =(x-y)+i(y+x)+ (1+i2) 从而u=x-y+1,v= y+x+2 根据二元实函数微分的定义可知, u(x,y)与v(x,y)在 点(x,y)可微,且满足 = ux= vy, = -uy= vx.
15
充分性 已知u(x, y)和v(x, y)在点(x, y)可微,即 u=ux x+uy y+1, v=vx x+vy y+2 其中1, 2都是关于 Δx 2 Δy 2 的高阶无穷小量. 又u, v在点(x,y)满足C-R方程, 即 ux=vy, uy=-vx,所以 w= f(z+ z)-f(z) = [u(x+x, y+y)+iv(x+x, y+y)]-[u(x,y)+iv(x,y)] = [u(x+x, y+y) -u(x,y)]+i[v(x+x, y+y)-v(x,y)] = u+i v = (ux x+uy y+1) +i(vxx+vy y+2) = (ux x-vx y+1) +i(vx x+ux y+2) = ux(x+i y)+ivx(x+i y)+(1+i2) = (ux+ ivx) (x+i y) + (1+i2)
让 z+z 沿着平行于x轴的 lim Δx iΔy lim Δx 1 Δz 0 Δx iΔy Δx 0 Δx 直线趋于z,此时y=0
让z+z沿着平行于y轴的 直线趋于z,此时x=0
Δx iΔy iΔy lim lim 1 Δz 0 Δx iΔy Δy 0 iΔy
Δz 0 1 n 1 Cn z nz n 1 ,