河南省周口市川汇区2015-2016学年八年级上学期期末考试数学试题(图片版)
2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
河南省周口市川汇区八年级数学上学期期中试卷(含解析)新人教版

2015-2016学年河南省周口市川汇区八年级(上)期中数学试卷一、选择题1.如图所示,图中不是轴对称图形的是()A.B. C.D.2.以下列各组线段为边(单位:cm),能组成三角形的是()A.1,2,4 B.4,6,8 C.5,6,12 D.2,3,53.已知△ABC≌△DEF,若∠A=60°,∠B=80°,则∠F等于()A.60°B.80°C.140°D.40°4.△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<195.在四边形ABCD中,AB=CD,BC=DA,则下列结论不一定成立的是()A.AB=CB B.∠B=∠D C.AB∥CD D.∠A+∠B=180°6.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF7.如图,点O是△ABC内一点,∠A=80°,∠ABO=15°,∠ACO=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定8.在△ABC中,∠ACB=90°,∠B=60°,AC=6,点D、E在AB边上,AD=CD,点E关于AC、CD的对称点分别为F、G,则线段FG的最小值等于()A.2 B.3 C.4 D.5二、填空题9.三角形的三边长分别是2、3、x,则x的取值范围是.10.六边形的内角和是外角和的n倍,则n等于.11.点P关于x、y轴的对称点为M、N,若M(﹣1,2),则N的坐标为.12.尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法.13.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为.14.如图,△ABC中,BA=BC,∠ABC=40°,∠ABC的平分线与BC的垂直平分线交于点O,E在BC 边上,F在AC边上,将∠A沿直线EF翻折,使点A与点O恰好重合,则∠OEF的度数是.15.如图,在四边形ABCD中,点E在CB的延长线上,对角线AC平分∠BCD,∠ABE=∠ABD,若∠BDC=80°,则∠ADB等于.三、解答题(本大题共8个小题,满分75分)16.求证:“三角形的内角和定理”,画出图形,写出已知、求证、证明.17.如图,在△ABC中,D、E分别在AB、AC边上,BE平分∠ABC,DE∥BC,∠A=30°,∠BEC=60°,求△BDE各内角的度数.18.如图,在△ABC中,边BC的垂直平分线交AB于点E,垂足为D,若BD=4cm,△AEC的周长为15cm,求△ABC的周长.19.如图,在四边形ABCD中,AB=CD,AB∥CD,求证:∠B=∠D,BC∥AD.20.如图,在△ABC中,AB=AC,点D、E、F分别在△ABC的三条边上,且BF=CD,BD=CE.(1)求证:△DFE是等腰三角形;(2)若∠A=56°,求∠EDF的度数.21.如图,已知△ABC,按照下列步骤作图:①以B为圆心,BA长为半径画弧;②以C为圆心,CA长为半径画弧,两弧交于点D;③连接AD,与BC交于点E,连接BD、CD.(1)求证:△ABC≌△DBC;(2)若∠ABC=30°,∠ACB=45°,AB=4,求EC的长.22.如图①,△ABC是等边三角形,DE∥BC,分别交AB、AC于点D、E.(1)求证:△ADE是等边三角形;(2)如图②,将△ADE绕着点A逆时针旋转适当的角度,使点B在ED的延长线上,连接CE,判断∠BEC的度数及线段AE、BE、CE之间的数量关系,并说明理由.23.下面是一个研究性解题案例,请补充完整:如图,在四边形ABCD中,AD∥BC,AB=AD,∠ABC=90°,∠ADC=135°(1)探究发现当点P在线段AD上时(点P不与A、D重合),连接PB,作PE⊥PB,交直线CD于点E,猜想线段PB和PE的数量关系:.(2)猜想论证为了证明(1)中的猜想,小明尝试在AB上截取BF=PD,连结PF,请你完成以下的证明.(3)拓展探究若点P为DA延长线上一点,其它条件不变,(1)中的结论是否仍然成立?请画出相应图形,并直接给出判断.2015-2016学年河南省周口市川汇区八年级(上)期中数学试卷参考答案与试题解析一、选择题1.如图所示,图中不是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:A、有四条对称轴,是轴对称图形,故本选项错误;B、有三条对称轴,是轴对称图形,故本选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项正确;D、有二条对称轴,是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.以下列各组线段为边(单位:cm),能组成三角形的是()A.1,2,4 B.4,6,8 C.5,6,12 D.2,3,5【考点】三角形三边关系.【分析】根据三角形两边之和大于第三边进行判断即可.【解答】解:在A选项中,1+2<4,不符合三角形的三边关系,故A不能;在B选项中,4+6>8,符合三角形的三边关系,故B能;在C选项中,5+6<12,不符合三角形的三边关系,故C不能;在D选项中,2+3=5,不符合三角形的三边关系,故D不能;故选B.【点评】本题主要考查三角形的三边关系,掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.3.已知△ABC≌△DEF,若∠A=60°,∠B=80°,则∠F等于()A.60°B.80°C.140°D.40°【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠D=∠A=60°,∠E=∠B=80°,根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=60°,∠B=80°,∴∠D=∠A=60°,∠E=∠B=80°,∴∠F=180°﹣∠D﹣∠E=40°,故选D.【点评】本题考查了全等三角形的性质,三角形的内角和定理的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等.4.△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19【考点】三角形三边关系;平行四边形的性质.【分析】延长AD至E,使DE=AD,连接CE,使得△ABD≌△ECD,则将AB和已知线段转化到一个三角形中,进而利用三角形的三边关系确定AB的范围即可.【解答】解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,BD=CD,∠ADB=∠EDC,AD=ED,∴△ABD≌△ECD(SAS).∴AB=CE.在△ACE中,根据三角形的三边关系,得AE﹣AC<CE<AE+AC,即9<CE<19.则9<AB<19.故选D.【点评】解决此题的关键是通过倍长中线,构造全等三角形,把要求的线段和已知的线段放到一个三角形中,再根据三角形的三边关系进行计算.5.在四边形ABCD中,AB=CD,BC=DA,则下列结论不一定成立的是()A.AB=CB B.∠B=∠D C.AB∥CD D.∠A+∠B=180°【考点】平行四边形的判定与性质.【分析】证出四边形ABCD是平行四边形,由平行四边形的性质即可得出结论.【解答】解:∵AB=CD,BC=DA,∴四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,AD∥BC,∴∠A+∠B=180°,∴选项B、C、D正确,选项A不一定正确;故选:A.【点评】本题考查了平行四边形的性质:平行四边形的性质:平行四边形的对边相等,对角线互相平分,理解性质定理是关键.6.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.7.如图,点O是△ABC内一点,∠A=80°,∠ABO=15°,∠ACO=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定【考点】三角形的外角性质.【分析】延长BO交AC于E,根据三角形内角与外角的性质可得∠1=∠A+∠ABO,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【解答】解:延长BO交AC于E,∵∠A=80°,∠ABO=15°,∴∠1=80°+15°=95°,∵∠ACO=40°,∴∠BOC=∠1+∠ACO=95°+40°=135°.故选:C.【点评】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理.8.在△ABC中,∠ACB=90°,∠B=60°,AC=6,点D、E在AB边上,AD=CD,点E关于AC、CD的对称点分别为F、G,则线段FG的最小值等于()A.2 B.3 C.4 D.5【考点】轴对称的性质;含30度角的直角三角形.【分析】根据轴对称的性质得出CE=CF,∠CEF=∠CFE,CE=CG,EH=GH,∠CEF=∠CGH,进而得出CE=CG=CF,∠CGH=∠CFE,然后证得△BCD是等边三角形,从而证得∠FHG=60°,进一步证得∠FCG=∠FHG=60°,证得△CFG是等边三角形,得出FG=CF=CE,因为CE的最小值为3,所以FG的最小值为3.【解答】】解:∵点E和F关于AC对称,∴AC垂直平分EF,∴CE=CF,∠CEF=∠CFE,∵点E和G关于CD对称,∴CD垂直平分FG,∴CE=CG,EH=GH,∠CEF=∠CGH,∴CE=CG=CF,∠CGH=∠CFE,∵∠ACB=90°,∠B=60°,∴∠A=30°,∵AD=CD,∴∠ACD=∠A=30°,∴∠BCD=60°,∴△BCD是等边三角形,∵EF∥BC,∴∠DEH=∠B=60°,∠EHD=∠BCD=60°,∴∠DHG=∠EHD=60°,∴∠FHG=60°∵∠CGH=∠CFE,∠CKF=∠HKG,∴∠FCG=∠FHG=60°,∵CF=CG,∴△CFG是等边三角形,∴FG=CF=CE,∵当CE⊥AB时,CE最短,此时CE=AC=3,∴FG的最小值为3,故选B.【点评】本题考查了轴对称的性质和等边三角形的判定和性质,证得△CFG是等边三角形是解题的关键.二、填空题9.三角形的三边长分别是2、3、x,则x的取值范围是1<x<5 .【考点】三角形三边关系.【分析】直接根据三角形的三边关系求出x的取值范围即可.【解答】解:∵三角形的三边长分别是2、3、x,∴3﹣2<x<2+3,即1<x<5.故答案为:1<x<5.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.10.六边形的内角和是外角和的n倍,则n等于 2 .【考点】多边形内角与外角.【分析】六边形的内角和根据多边形的内角和公式即可求出,又外角和是360度,问题即可求解.【解答】解:六边形的内角和是(6﹣2)•180°=720°,外角和=360°,720°÷360°=2.故答案为:2.【点评】本题主要考查了多边形的内角和定理,以及外角和定理,是一个基础的问题.11.点P关于x、y轴的对称点为M、N,若M(﹣1,2),则N的坐标为(1,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据题意可以求得点P的坐标,从而可以求得点N的坐标.【解答】解:∵点P关于x轴的对称点为M(﹣1,2),∴点P的坐标为(﹣1,﹣2),点P关于y轴的对称点为N,∴点N的坐标为(1,﹣2),故答案为:(1,﹣2).【点评】本题考查关于x轴、y轴对称的点的坐标,解题的关键是明确题意,找出所求问题需要的条件.12.尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法SSS .【考点】作图—基本作图;全等三角形的判定.【分析】通过对尺规作图过程的探究,找出三条对应相等的线段,判断三角形全等.因此判定三角形全等的依据是边边边公理.【解答】解:在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证,因此由作法知其判定依据是SSS,即边边边公理.故答案为:SSS.【点评】本题考查了三角形全等的判定方法;可以让学生明确作图的依据,也是全等三角形在实际中的运用.注意在作法中找已知,根据已知决定方法.13.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为4cm .【考点】角平分线的性质.【专题】计算题.【分析】先由BC=10cm,BD:DC=3:2计算出DC=4cm,由于∠ACB=90°,则点D到AC的距离为4cm,然后根据角平分线的性质即可得到点D到AB的距离等于4cm.【解答】解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.【点评】本题考查了角平分线的判定与性质:角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在这个角的角平分线上.14.如图,△ABC中,BA=BC,∠ABC=40°,∠ABC的平分线与BC的垂直平分线交于点O,E在BC 边上,F在AC边上,将∠A沿直线EF翻折,使点A与点O恰好重合,则∠OEF的度数是70°.【考点】翻折变换(折叠问题).【分析】连接OA、OC,根据角平分线的定义求出∠DBO=20°,根据等腰三角形两底角相等求出∠BAC=∠BCA=70°,再根据线段垂直平分线上的点到线段两端点的距离相等可得OB=OC,根据等边对等角可得∠DCO=∠DBO=20°,从而求得∠OCF=50°,然后证明△ABO≌△CBO,于是得到∠EAO=∠BCO=20°,根据翻折的性质可知OA⊥EF,∠AEF=∠OEF,从而可求得∠OEF=70°.【解答】解:如图,连接OA、OC,∵∠ABC=40°,BO为∠ABC的平分线,∴∠OBD=∠ABC=20°.又∵BA=BC,∴∠BAC=∠BCA=(180°﹣∠ABC)=×(180°﹣40°)=70°.∵DO是BC的垂直平分线,∴OB=OC.∴∠OCB=∠OBC=20°.在△AOB和△COB中,∴∠BAO=∠OCB=20°.由翻折的性质可知:OA⊥EF,∠AEF=∠OEF.∴∠AEF=90°﹣20°=70°.∴∠OEF=70°.故答案为:70°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.15.如图,在四边形ABCD中,点E在CB的延长线上,对角线AC平分∠BCD,∠ABE=∠ABD,若∠BDC=80°,则∠ADB等于50°.【考点】多边形内角与外角;角平分线的性质.【分析】先过点A作AF⊥CE于F,作AG⊥BD于G,作AH⊥CD于H,根据角平分线的性质得出AH=AG,再根据AG⊥BD,AH⊥CD,得出点A在∠BDH的角平分线上,进而求得∠ADB的度数.【解答】解:过点A作AF⊥CE于F,作AG⊥BD于G,作AH⊥CD于H,∵AC平分∠BCD,∠ABE=∠ABD,∴AF=AH,AF=AG,∴AH=AG,∵AG⊥BD,AH⊥CD,∴点A在∠BDH的角平分线上,即∠ADB=∠BDH=(180°﹣∠BDC)=(180°﹣80°)=50°.故答案为:50°.【点评】本题主要考查了多边形的内角与外角,解决问题的关键是作辅助线,运用角平分线的性质定理及其判定定理进行推导计算.解题时注意:角内部到角两边距离相等的点在这个角的平分线上.三、解答题(本大题共8个小题,满分75分)16.求证:“三角形的内角和定理”,画出图形,写出已知、求证、证明.【考点】三角形内角和定理.【分析】先写出已知、求证,再画图,然后证明.过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.【点评】本题考查证明三角形内角和定理,解题的关键是做平行线,利用平行线的性质进行证明.17.如图,在△ABC中,D、E分别在AB、AC边上,BE平分∠ABC,DE∥BC,∠A=30°,∠BEC=60°,求△BDE各内角的度数.【考点】平行线的性质.【分析】首先求出∠DBC的度数,进而利用平分线的知识求出∠EBC的度数,再利用利用平行线的知识求出∠DEB的度数,最后求出∠BDE的度数.【解答】解:∵∠A=30°,∠BEC=60°,∴∠DBC=∠BEC﹣∠A=60°﹣30°=30°,∵BE平分∠ABC,∴∠EBC=∠DBE=30°,∵DE∥BC,∴∠DEB=∠EBC=30°,∠BDE=180°﹣∠DBC=180°﹣60°=120°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.18.如图,在△ABC中,边BC的垂直平分线交AB于点E,垂足为D,若BD=4cm,△AEC的周长为15cm,求△ABC的周长.【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到EB=EC,根据三角形的周长公式计算即可.【解答】解:∵ED是BC的垂直平分线,∴EB=EC,BC=2BD=8cm,∵△AEC的周长为15cm,∴AE+EC+AC=15,则△ABC的周长=AB+BC+AC=AE+EC+BD=23cm.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.19.如图,在四边形ABCD中,AB=CD,AB∥CD,求证:∠B=∠D,BC∥AD.【考点】全等三角形的判定与性质;平行线的判定与性质.【专题】证明题.【分析】连接AC,由AB∥CD可得出∠BAC=∠DCA,结合AB=CD、AC=CA即可证出△ABC≌△CDA (SAS),由此即可得出∠B=∠D,∠BCA=∠DAC,再依据“内错角相等,两直线平行.”即可证出BC∥AD.【解答】证明:连接AC,如图所示.∵AB∥CD,∴∠BAC=∠DCA.在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),∴∠B=∠D,∠BCA=∠DAC,∴BC∥AD.【点评】本题考查了全等三角形的判定与性质以及平行线的判定与性质,解题的关键是证出△ABC ≌△CDA(SAS).本题属于基础题,难度不大,解决该题型题目时,数据各全等三角形的判定定理是关键.20.如图,在△ABC中,AB=AC,点D、E、F分别在△ABC的三条边上,且BF=CD,BD=CE.(1)求证:△DFE是等腰三角形;(2)若∠A=56°,求∠EDF的度数.【考点】等腰三角形的判定与性质.【分析】(1)由SAS可得△FBD≌△DCE,得出DF=ED,第一问可求解;(2)由角之间的转化,从而可求解∠EDF的大小.【解答】证明:(1):∵AB=AC∴∠B=∠C,在△FBD与△DCE中∴△FBD≌△DCE.∴DF=ED,即△DEF是等腰三角形(2)∵AB=AC,∠A=56°,∴∠B=∠C=.∴∠EDF=∠B=62°.【点评】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定和性质问题,能够熟练掌握三角形的性质求解一些简单的计算、证明等问题.21.如图,已知△ABC,按照下列步骤作图:①以B为圆心,BA长为半径画弧;②以C为圆心,CA长为半径画弧,两弧交于点D;③连接AD,与BC交于点E,连接BD、CD.(1)求证:△ABC≌△DBC;(2)若∠ABC=30°,∠ACB=45°,AB=4,求EC的长.【考点】全等三角形的判定与性质;线段垂直平分线的性质;含30度角的直角三角形.【分析】(1)直接运用SSS判定两三角形全等;(2)根据线段垂直平分线的逆定理得:BC是AD的垂直平分线,得△ABE是直角三角形,△AEC是等腰直角三角形,根据直角三角形中30°角所对的直角边等于斜边的一半求出AE的长,从而得出CE的长.【解答】证明:(1)由题意得:AB=BD,AC=CD,∵BC=BC,∴△ABC≌△DBC;(2)∵AB=BD,AC=CD,∴BC是AD的垂直平分线,∴AD⊥BC,在Rt△ABE中,∵∠ABE=30°,AB=4,∴AE=AB=2,∵∠ACB=45°,∴△AEC是等腰直角三角形,∴AE=EC,∵AE=2,∴EC=2.【点评】本题考查了全等三角形的性质和判定及线段垂直平分线的性质,要熟知全等三角形的判定方法:SSS、SAS、AAS、ASA;在判定两全等三角形全等时,要注意三角形间的公共边和公共角;在直角三角形中,要熟练掌握几下性质:①勾股定理,②等腰直角三角形,③30°角所对的直角边等于斜边的一半.22.(如图①,△ABC是等边三角形,DE∥BC,分别交AB、AC于点D、E.(1)求证:△ADE是等边三角形;(2)如图②,将△ADE绕着点A逆时针旋转适当的角度,使点B在ED的延长线上,连接CE,判断∠BEC的度数及线段AE、BE、CE之间的数量关系,并说明理由.【考点】旋转的性质;平行线的性质;等边三角形的判定与性质.【分析】(1)根据△ABC为等边三角形,则∠C=∠B=60°,由DE∥BC得到∠ADE=∠C=∠B=∠AED=60°,然后根据等边三角形的判定方法得到△ADE是等边三角形;(2)由SAS证明△ABD≌△ACE,得出AD=AE,求出∠DAE=∠CAE+∠DAC=60°,证出△ADE是等边三角形,得出AE=DE,即可得出结论.【解答】(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠C,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠A=∠ADE=∠AED,∴△ADE是等边三角形.∵△ABC是等边三角形;(2)解:AE+CE=BE;理由如下:∵AB=AC,AD=AE,∠BAD=60°﹣∠DAC=∠CAE,由旋转的性质得:△ABD≌△ACE,∴AD=AE,∵∠DAE=∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=60°,∴△ADE是等边三角形,∴AE=DE,∴AE+CE=DE+BD=BE.【点评】本题考查了等边三角形的判定与性质、旋转的性质、平行线的性质;熟练掌握等边三角形的判定与性质是解决问题的关键.23.下面是一个研究性解题案例,请补充完整:如图,在四边形ABCD中,AD∥BC,AB=AD,∠ABC=90°,∠ADC=135°(1)探究发现当点P在线段AD上时(点P不与A、D重合),连接PB,作PE⊥PB,交直线CD于点E,猜想线段PB和PE的数量关系:PB=PE .(2)猜想论证为了证明(1)中的猜想,小明尝试在AB上截取BF=PD,连结PF,请你完成以下的证明.(3)拓展探究若点P为DA延长线上一点,其它条件不变,(1)中的结论是否仍然成立?请画出相应图形,并直接给出判断.【考点】四边形综合题.【分析】(1)通过观察和测量可猜想PB=PE;(2)首先证明△APF为等腰直角三角形,于是得到∠AFP=45°,从而可求得∠BFP=∠PDE=135°,然后依据同角的余角相等可证明∠DPE=∠PBF,接下来依据ASA证明△PFB≌△EDP,依据全等三角形的性质可得到PB=PE;(3)延长AB到F使AF=PA,连结PF.题意可知△PFA为等腰直角三角形,于是可证明∠PFB=∠EDP=45°,然后依据同角的余角相等可证明∠PBA=∠EPD,接下来证明PD=BF,依据ASA可证明△PED≌△BPF,于是可得到PE=PB.【解答】解:(1)PB=PE.(2)如图1所示:∵AD∥BC,∠ABC=90°,∴∠A=90°.∵AB=AD,BF=PD,∴AF=AP.∴∠AFP=45°.∴∠BFP=135°.∴∠BFP=∠PDE.∵∠BPE=90°,∴∠APB+∠DPE=90°.又∵∠APB+∠PBF=90°,∴∠DPE=∠PBF.在△PFB和△EDP中,,∴△PFB≌△EDP.∴PB=PE.故答案为:PB=PE.(3)成立.理由:如图2所示:延长AB到F使AF=PA,连结PF.∵FA=PF,∠A=90°,∴∠F=45°.∵∠ADC=135°,∴∠EDP=45°.∴∠PFB=∠EDP.∵∠EPD+DPB=90°,∠DPB+∠PBA=90°,∴∠PBA=∠EPD.∵AF=PA,AB=AD,∴PD=BF.在△PED和△BPF中,,∴△PED≌△BPF.∴PE=PB.【点评】本题主要考查的是主要考查的是四边形,三角形的综合应用,解答本题主要应用了全等三角形的性质和判定、等腰直角三角形的性质和判定,掌握本题的辅助线的作法是解题的关键.。
河南省周口市商水县2015-2016学年度八年级数学上学期期末考试试题(含解析) 新人教版

河南省周口市商水县2015-2016学年度八年级数学上学期期末考试试题一、选择题(每小题3分,共24分,下列各题均有四个答案,其中只有一个是正确的)1.8的立方根是()A.2 B.﹣2 C.±2D.22.下列计算正确的是()A.3a3﹣2a2=a B.(a+b)2=a2+b2C.a6b÷a2=a3b D.(﹣ab3)2=a2b63.下列命题是真命题的是()A.无限小数是无理数B.三角形的外角和等于360°C.相反数等于它本身的数是0和1D.等边三角形既是中心对称图形,又是轴对称图形4.如图,数轴上A、B两点表示的数分别为和5.1,则A、B两点之间表示整数的点共有()A.6个B.5个C.4个D.3个5.用反证法证明“若a>b>0,则a2>b2”时,应假设()A.a2≤b2B.a2≥b2C.a2>b2D.a2<b26.已知数据,,,π,﹣3.14,其中无理数出现的频率为()A.80% B.60% C.40% D.20%7.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧8.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.2m+3 B.2m+6 C.m+3 D.m+6二、填空题(每小题3分,共21分)9.计算:= .10.分解因式:3a2+6a+3= .11.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC=7,则△BDC的面积是.12.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为.13.已知2x+3y﹣4=0,则9x•27y的值为.14.如图,若AD=AE,BE=CD,∠1=∠2,∠1=110°,∠BAE=60°,那么∠CAE= °.15.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE= .三、解答题(共7小题,满分67分)16.计算:(1)42﹣+(2)[(2x﹣y)(2x+y)+y(y﹣6x)]÷2x.17.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AE=CF;(2)AB∥CD.18.为了解学生对“大课间”的喜欢程度,现对某中学初中学生进行了一次问卷调查,具体情况如②求该校2015~2016学年度八年级学生人数及其扇形的圆心角度数.③请计算不喜欢“大课间”的学生的频率,并对不喜欢“大课间”的同学提出一条建议,希望能通过你的建议让他喜欢上“大课间”.19.若a、b、c是△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判定这个三角形的形状.20.已知,如图在△ABC中,BC=6,AC=8,DE是AB边上的高,DE=7,△ABE的面积为35.(1)求AB的长;(2)求四边形ACBE的面积.21.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G 在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.22.如图1,在△ABC中,AB=AC,AD⊥BC于点D,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.试探索AE与BD的数量关系,并证明你的结论.河南省周口市商水县2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分,下列各题均有四个答案,其中只有一个是正确的)1.8的立方根是()A.2 B.﹣2 C.±2D.2【考点】立方根.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵2的立方等于8,∴8的立方根等于2.故选:A.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.下列计算正确的是()A.3a3﹣2a2=a B.(a+b)2=a2+b2C.a6b÷a2=a3b D.(﹣ab3)2=a2b6【考点】整式的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】直接利用合并同类项,完全平方公式、整式的除法以及积的乘方的知识求解即可求得答案.注意排除法在解选择题中的应用.【解答】解:A、3a3﹣2a2=a2,故本选项错误;B、(a+b)2=a2+b2+2ab,故本选项错误;C、a6b÷a2=a4b,故本选项错误;D、(﹣ab3)2=a2b6,故本选项正确.故选D.【点评】此题考查了合并同类项,完全平方公式、整式的除法以及积的乘方.注意掌握指数与符号的变化是解此题的关键.3.下列命题是真命题的是()A.无限小数是无理数B.三角形的外角和等于360°C.相反数等于它本身的数是0和1D.等边三角形既是中心对称图形,又是轴对称图形【考点】命题与定理.【分析】利用无理数的定义、三角形的外角和、相反数的定义和及等边三角形的性质分别判断后即可确定正确的选项.【解答】解:A、无限不循环小时是无理数,故错误,是假命题;B、三角形的外角和为360°,正确,为真命题;C、相反数等于它本身的数是0,故错误,是假命题;D、等边三角形是轴对称图形但不是中心对称图形,故错误,是假命题,故选B.【点评】本题考查了命题与定理的知识,解题的关键是能够了解无理数的定义、三角形的外角和、相反数的定义和及等边三角形的性质,属于基础题,比较简单.4.如图,数轴上A、B两点表示的数分别为和5.1,则A、B两点之间表示整数的点共有()A.6个B.5个C.4个D.3个【考点】实数与数轴;估算无理数的大小.【分析】根据比1大比2小,5.1比5大比6小,即可得出A、B两点之间表示整数的点的个数.【解答】解:∵1<2,5<5.1<6,∴A、B两点之间表示整数的点有2,3,4,5,共有4个;故选C.【点评】本题主要考查了无理数的估算和数轴,根据数轴的特点,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.5.用反证法证明“若a>b>0,则a2>b2”时,应假设()A.a2≤b2B.a2≥b2C.a2>b2D.a2<b2【考点】反证法.【分析】根据反证法的一般步骤:先假设结论不成立进行解答.【解答】解:用反证法证明“若a>b>0,则a2>b2”的第一步是假设a2≤b2,故选:A.【点评】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.6.已知数据,,,π,﹣3.14,其中无理数出现的频率为()A.80% B.60% C.40% D.20%【考点】频数与频率;无理数.【分析】由于开方开不尽的数、无限不循环小数是无理数,根据无理数的定义即可判断选择项【解答】解:在,,,π,﹣3.14这5个数中,无理数有:,,π这3个,则无理数的频率为:3÷5×100%=60%,故选:B.【点评】本题主要考查了无理数的定义及频率、频数灵活运用的综合考查:频率、频数的关系频率=频数÷频数总和.7.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【考点】作图—基本作图.【分析】运用作一个角等于已知角可得答案.【解答】解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.【点评】本题主要考查了作图﹣基本作图,解题的关键是熟习作一个角等于已知角的方法.8.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.2m+3 B.2m+6 C.m+3 D.m+6【考点】整式的混合运算.【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积剩余部分的面积可以求出,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【解答】解:依题意得剩余部分为(m+3)2﹣m2=m2+6m+9﹣m2=6m+9,而拼成的矩形一边长为3,∴另一边长是(6m+9)÷3=2m+3.故选A.【点评】本题主要考查了多项式除以单项式,解题关键是熟悉除法法则.二、填空题(每小题3分,共21分)9.计算:= ﹣1 .【考点】实数的运算.【分析】首先进行开方运算,然后进行有理数的加减即可.【解答】解:原式=2﹣3=﹣1.故答案是:﹣1.【点评】本题考查了实数的混合运算,正确理解运算顺序,理解平方根的定义是关键.10.分解因式:3a2+6a+3= 3(a+1)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3a2+6a+3,=3(a2+2a+1),=3(a+1)2.故答案为:3(a+1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC=7,则△BDC的面积是7 .【考点】角平分线的性质.【分析】作DE⊥BC于E,根据角平分线的性质求出DE=AD=2,根据三角形面积公式计算即可.【解答】解:作DE⊥BC于E,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=2,∴△BDC的面积=×BC×DE=7,故答案为:7.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.12.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为13或.【考点】勾股定理.【专题】分类讨论.【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意12,5可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【解答】解:当12,5时两条直角边时,第三边==13;当12,5分别是一斜边和一直角边时,第三边==.故答案为:13或.【点评】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.13.已知2x+3y﹣4=0,则9x•27y的值为81 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】由2x+3y﹣4=0,可求得2x+3y=4,然后由幂的乘方与同底数幂的乘法,可得9x•27y=32x+3y,继而求得答案.【解答】解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x•27y=32x•33y=32x+3y=34=81.故答案为:81.【点评】此题考查了幂的乘方与同底数幂的乘法.注意掌握指数的变化是解此题的关键.14.如图,若AD=AE,BE=CD,∠1=∠2,∠1=110°,∠BAE=60°,那么∠CAE=20 °.【考点】等腰三角形的性质.【分析】运用SAS证明△ABD≌△ACE,得∠B=∠C.根据三角形内角和定理可求∠DAE的度数.则易求∠CAE的度数.【解答】解:∵∠1=∠2=110°,∴∠ADE=∠AED=70°,∴∠DAE=180°﹣2°.∵BE=CD,∴BD=CE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS)∴∠BAD=∠CAE.∵∠BAE=60°,∴∠BAD=∠CAE=20°,故答案为:20°.【点评】此题考查了等腰三角形的判定和性质,三角形内角和定理,全等三角形的判定和性质,证明三角形为等腰三角形是关键.15.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE= .【考点】等边三角形的性质;等腰三角形的判定与性质.【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.【点评】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.三、解答题(共7小题,满分67分)16.计算:(1)42﹣+(2)[(2x﹣y)(2x+y)+y(y﹣6x)]÷2x.【考点】实数的运算;整式的混合运算.【专题】计算题;实数.【分析】(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式中括号中利用平方差公式,单项式乘以多项式法则计算,再利用多项式除以单项式法则计算即可得到结果.【解答】解:(1)原式=16﹣8﹣3=5;(2)原式=(4x2﹣y2+y2﹣6xy)÷2x=(4x2﹣6xy)÷2x=2x﹣3y.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AE=CF;(2)AB∥CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)利用HL定理即可证明△ABF≌△CDE,证明AF=CE,据此即可得到AE=CF;(2)根据△ABF≌△CDE即可证得∠A=∠C,然后利用平行线的判定定理证明.【解答】证明:(1)∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°,∴在RT△ABF和RT△CDE中,,∴△ABF≌△CDE(HL);∴AF=CE,即AF﹣EF=CE﹣EF∴AE=CF;(2)∵△ABF≌△CDE,∴∠A=∠C,∴CD∥AB.【点评】本题考查了全等三角形的判定与性质以及平行线的判定,正确证明△ABF≌△CDE是关键.18.为了解学生对“大课间”的喜欢程度,现对某中学初中学生进行了一次问卷调查,具体情况如②求该校2015~2016学年度八年级学生人数及其扇形的圆心角度数.③请计算不喜欢“大课间”的学生的频率,并对不喜欢“大课间”的同学提出一条建议,希望能通过你的建议让他喜欢上“大课间”.【考点】扇形统计图;频数与频率.【分析】①由总人数=某年级人数÷所占比例计算;②由百分比的和为1计算2015~2016学年度八年级学生人数的比例,再由百分比×360°=等于该部分所对应的扇形圆心的度数计算圆心角;③不喜欢的人数除以总人数求出频率;提出有益建议即可.【解答】解:①初中学生总数=480÷40%=1200人;图2中喜欢的人数为500人;如图所示:②2015~2016学年度八年级学生人数占的比例=1﹣28%﹣40%=32%,2015~2016学年度八年级学生人数=1200×32%=384人;在扇形统计图中的圆心角=360°×32%=115.2°;③不喜欢的学生频率为:=;建议:大课间能是你劳逸结合,活跃思维,增长智慧.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.19.若a、b、c是△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判定这个三角形的形状.【考点】勾股定理的逆定理.【专题】证明题.【分析】把等式两边分解因式,左右两边同除以相同的因式,可得c2=a2+b2,根据勾股定理的逆定理即可判断三角形的形状.【解答】解:∵a2c2﹣b2c2=a4﹣b4,∴c2(a2﹣b2)=(a2﹣b2)(a2+b2)=(a+b)(a﹣b)(a2+b2),∵a+b≠0,∴a=b或c2=a2+b2,∴该三角形是等腰三角形或直角三角形.【点评】本题考查勾股定理的逆定理的应用,同时要灵活掌握分解因式.20.已知,如图在△ABC中,BC=6,AC=8,DE是AB边上的高,DE=7,△ABE的面积为35.(1)求AB的长;(2)求四边形ACBE的面积.【考点】勾股定理的逆定理;三角形的面积.【分析】(1)根据三角形的面积公式列方程即可得到结论;(2)根据勾股定理的逆定理得到△ABC是直角三角形,于是得到S△ABC=×6×8=24,即可得到结论.【解答】解:(1)∵在△ABE中,DE是AB边上的高,DE=7,△ABE的面积为35,∴S△ABE=AB•DE=AB×7=35,∴AB=10;(2)∵在△ABC中,BC=6,AC=8,AB=10,∴AC2+BC2=82+62=100,AB2=102=100,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴S△ABC=×6×8=24,∴四边形ACBE的面积=S△ABC+S△ABE=24+35=59.【点评】本题考查了三角形的面积,勾股定理的逆定理的应用,解此题的关键是求出△ABC是直角三角形.21.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G 在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△A DE和△BFE中,,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.22.如图1,在△ABC中,AB=AC,AD⊥BC于点D,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.试探索AE与BD的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)根据等腰三角形三线合一的性质可得AD垂直平分BC,再根据线段垂直平分线上的点到线段两端点的距离相等可得BE=CE;(2)判断出△ABF是等腰直角三角形,根据等腰直角三角形的性质可得AF=BF,再根据同角的余角相等求出∠CBF=∠AEF,然后利用“角边角”证明△AEF和△BCF全等,根据全等三角形对应边相等可得AE=BC,从而得到AE=2BD.【解答】证明:(1)∵AB=AC,点D是BC的中点,∴AD垂直平分BC,∴BE=CE;(2)AE=2BD.理由如下:∵∠BAC=45°,BF⊥AC,∴△ABF是等腰直角三角形,∴AF=BF,∵BF⊥AC,∴∠CBF+∠C=90°,∵AD垂直平分BC,∴∠EAF+∠C=90°,BC=2BD,∴∠CBF=∠AEF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA),∴AE=BC,∴AE=2BD.【点评】本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,熟记性质准确确定出全等三角形是解题的关键.。
2015-2016学年新课标人教版八年级上期末数学试卷(有答案)

2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)55.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足__________.12.已知一个n边形的内角和是其外角和的5倍,则n=__________.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于__________度.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=__________cm.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号__________.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、有1条对称轴;B、有3条对称轴;C、有无数条对称轴;D、有4条对称轴.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得,|x|﹣1=0,且x﹣1≠0,解得x=﹣1.故选:B.【点评】本题考查了分式为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)5【考点】同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:A、底数不变指数相加,故A正确;B、底数不变指数相加,故B错误;C、底数不变指数相加,故C正确;D、底数不变指数相加,故D正确;故选:B.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加是解题关键.5.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)【考点】因式分解-十字相乘法等;因式分解-提公因式法.【专题】计算题.【分析】原式各项分解因式得到结果,即可做出判断.【解答】解:A、原式=(x﹣6)(x+1),错误;B、原式=(x﹣2)(x+3),错误;C、原式不能分解,错误;D、原式=ab(ma+mb+1),正确,故选D【点评】此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=30°∴∠BCD=∠ACB﹣∠ACD=45°.故选A.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【专题】几何图形问题.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对【考点】全等三角形的判定.【分析】利用全等三角形的判定方法,利用HL、ASA进而判断即可.【解答】解:由题意可得出:△ABE≌△ACF(HL),△ADF≌△ADE(HL),△ABD≌△ACD (SAS),△BFD≌△CED(ASA).故选:B.【点评】本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m【考点】含30度角的直角三角形.【专题】应用题.【分析】由于BC、DE垂直于横梁AC,可得BC∥DE,而D是AB中点,可知AB=BD,利用平行线分线段成比例定理可得AE:CE=AD:BD,从而有AE=CE,即可证DE是△ABC的中位线,可得DE=BC,在Rt△ABC中易求BC,进而可求DE.【解答】解:如右图所示,∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,∵∠ADE=60°,∴∠A=30°,∴BC=AB=6m,∴DE=3m.故选A.【点评】本题考查了平行线分线段成比例定理、三角形中位线定理、直角三角形30°的角所对的边等于斜边的一半.解题的关键是证明DE是△ABC的中位线.二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足x≠2.【考点】分式有意义的条件.【分析】根据分母不等于0列式求解即可.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.【点评】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.已知一个n边形的内角和是其外角和的5倍,则n=12.【考点】多边形内角与外角.【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的5倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×5,解得n=12.故答案为:12.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于50度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠AEF=65°,然后在△EAC中利用三角形内角和定理即可求出求出∠EAC的度数.【解答】解:∵△ABC≌△AFE,∴∠ACB=∠AEF=65°,∴∠EAC=180°﹣∠ACB﹣∠AEF=50°.故答案为50.【点评】本题考查了全等三角形的性质,三角形内角和定理,熟记性质并准确识图是解题的关键.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于80度.【考点】全等三角形的判定与性质.【分析】根据SSS证△BAD≌△CAD,根据全等得出∠BAD=∠CAD,∠B=∠C=20°,根据三角形的外角性质得出∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,求出∠BDC=∠B+∠C+∠BAC,代入求出即可.【解答】解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是求出∠BDC=∠B+∠C+∠BAC和∠C的度数,难度适中.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=2cm.【考点】角平分线的性质.【分析】过D作DF⊥BC于F,根据角平分线性质求出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB,∴DF=DE,∵S△ABC=10cm2,AB=6cm,BC=4cm,∴×BC×DF+×AB×DE=10,∴×4×DE+×6×DE=10,∴DE=2,故答案为:2.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号①②④.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.【考点】角平分线的性质;全等三角形的判定与性质.【分析】由射线OC上的任意一点到∠AOB的两边的距离都相等,根据角平分线的判定定理可知OC平分∠AOB.要得到OE=OF,就要让△ODE≌△ODF,①②④都行,只有③ED=FD不行,因为证明三角形全等没有边边角定理.【解答】解:∵射线OC上的任意一点到∠AOB的两边的距离都相等,∴OC平分∠AOB.①若①∠ODE=∠ODF,根据ASA定理可求出△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;②若∠OED=∠OFD,根据AAS定理可得△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;③若ED=FD条件不能得出.错误;④若EF⊥OC,根据ASA定理可求出△OGE≌△OGF,由三角形全等的性质可知OE=OF.正确.故答案为①②④.【点评】本题主要考查了角平分线的判定,三角形全等的判定与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.【考点】整式的混合运算.【分析】(1)先算乘方,再算乘法,最后算加减,合并同类项即可;(2)先用平方差公式计算,再用完全平方公式计算,然后合并同类项即可.【解答】解:(1)原式=7a2•4a2+a•(﹣27a3)=28a4﹣27a4=a4;(2)原式=(a+1)2﹣b2+b2﹣2a=a2+2a+1﹣2a=a2+1.【点评】本题考查了整式的混合运算:先算乘方,再算乘法,最后算加减;注意乘法公式的运用.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.【考点】分式的化简求值;整式的混合运算—化简求值.【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x=1,y=2代入进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x=1,y=3代入进行计算即可.【解答】解:(1)原式=4x2﹣y2﹣4y2+x2=5(x2﹣y2),当x=1,y=2时,原式=5×(1﹣4)=﹣15;(2)原式=﹣•=+===,当x=1,y=3,∴原式=3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.【考点】等腰三角形的性质.【分析】设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.【解答】解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.【点评】本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】利用等腰三角形的性质和全等三角形的判定定理ASA证得△AED≌△AFD,则由该全等三角形的对应边相等得到DE=DF.【解答】证明:∵AB=AC,D是BC边的中点,∴AD⊥BC,∠EAD=∠FAD.又∵DE和DF分别平分∠ADB和∠ADC,∴∠EDA=∠FDA=45°.在△AED与△AFD中,,∴△AED≌△AFD(ASA),∴DE=DF.【点评】本题考查了全等三角形的判定与性质和等腰三角形的性质.此题利用了等腰三角形“三线合一”的性质推知来证明三角形全等的对应角.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.【考点】分式方程的应用.【分析】可设客车的速度是x千米/小时,则货车的速度是千米/小时,以相遇时时间相等作为等量关系,列出方程求解即可.【解答】解:设客车的速度是x千米/小时,则货车的速度是千米/小时,依题意有=,解得x1=90,x2=﹣18(不合题意舍去),经检验,x=90是原方程的解,==60,90×4+60×9=360+540=900(千米).答:客车的速度是90千米/小时,则货车的速度是60千米/小时,甲乙两城间的路程是900千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.注意分式方程要验根.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AB上取一点F,使A F=AC,连结EF,就可以得出△ACE≌△AFE,就有∠C=∠AFE.由平行线的性质就有∠C+∠D=180°,由∠AFE+∠EFB=180°得出∠EFB=∠D,在证明△BEF≌△BED就可以得出BF=BD,进而就可以得出结论.【解答】证明:在AB上取一点F,使AF=AC,连结EF.∵EA、EB分别平分∠CAB和∠DBA,∴∠CAE=∠FAE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,∴∠EFB=∠D.在△BEF和△BED中,,∴△BEF≌△BED(AAS),∴BF=BD.∵AB=AF+BF,∴AB=AC+BD.【点评】本题考查了平行线的性质的运用,角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.【专题】证明题;探究型.【分析】(1)由PO=PD,利用等边对等角和三角形内角和定理可求得∠POD=67.5°,∠OPB=67.5°,然后利用等角对等边可得出结论;(2)过点O作OC⊥AB于C,首先利用等腰直角三角形的性质可以得到∠COB=∠B=45°,OC=5,然后证得∠POC=∠DPE,进而利用AAS证明△POC≌△DPE,再根据全等三角形的性质可得OC=PE.【解答】(1)证明:∵PO=PD,∠OPD=45°,∴∠POD=∠PDO==67.5°,∵等腰直角三角形AOB中,AO⊥OB,∴∠B=45°,∴∠OPB=180°﹣∠POB﹣∠B=67.5°,∴∠POD=∠OPB,∴BP=BO,即△BOP是等腰三角形;(2)解:PE的值不变,为PE=5,证明如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB=5,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE=5,∴PE的值不变,为5.【点评】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形等知识,解答(2)的关键是正确作出辅助线,并利用AAS证得△POC≌△DPE.。
河南省周口市八年级上学期数学期末考试试卷

河南省周口市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列说法中,正确的是()A . 数轴上的点都表示有理数B . 的立方根是±C . 用根号表示的数不一定都是无理数D . 任何实数的平方根都有两个,它们互为相反数2. (2分)计算的结果是().A . 6B .C .D . 123. (2分)小明手中有三根木棒,长分别为10cm、8cm、6cm,将三根木棒首尾顺次连接,能组成()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 以上都有可能4. (2分)一个正方体的水晶砖,体积为100cm3 ,它的棱长大约在()A . 4cm~5cm之间B . 5cm~6cm之间C . 6cm~7cm之间D . 7cm~8cm之间5. (2分)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A . -1B . 1C . -5D . 56. (2分)若|m|+|n|=0,则m,n()A . 相等B . 异号C . 互为相反数D . 均为零7. (2分)(2017·平顶山模拟) 为建设生态平顶山,某校学生在植树节那天,组织九年级八个班的学生到山顶公园植树,各班植树情况如下表:下列说法错误的是()班级一二三四五六七八棵数1518222529141819A . 这组数据的众数是18B . 这组数据的平均数是20C . 这组数据的中位数是18.5D . 这组数据的方差为08. (2分)(2018·随州) 某同学连续6次考试的数学成绩分别是85,97,93,79,85,95,则这组数据的众数和中位数分别为()A . 85 和 89B . 85 和 86C . 89 和 85D . 89 和 869. (2分)等腰三角形的一个角是94°,则腰与底边上的高的夹角为()A . 43°B . 53°C . 47°D . 90°10. (2分)(2017·房山模拟) 下列图形中,正方体展开后得到的图形不可能是()A .B .C .D .11. (2分)下列说法正确的是()A . 函数y=-x+2中y随x的增大而增大B . 直线y=2x-4与x轴的交点坐标是(0,-4)C . 图象经过(2,3)的正比例函数的表达式为y=6xD . 直线y=- x+1不过第三象限.二、填空题 (共4题;共5分)13. (1分) (2018八上·罗湖期末) 一组数据9,2,3,一3,1的极差是________.14. (1分) (2018八下·长沙期中) 已知直角三角形的两边长是方程x2-7x+12=0的两根,则第三边长为________.15. (2分)(2017·天津模拟) 已知一次函数y=ax+b(a、b为常数),x与y的部分对应值如右表:x﹣2﹣10123y6420﹣2﹣4那么方程ax+b=0的解是________,不等式ax+b>0的解是________.16. (1分)(2017·营口模拟) 如图,边长为2的正方形ABCD内接于⊙O,过点D作⊙O的切线交BA延长线于点E,连接EO,交AD于点F,则EF长为________.三、解答题 (共7题;共75分)17. (10分) (2019八下·浏阳期中) 计算:(1)(2)18. (10分) (2015七下·双峰期中) 解方程组:(1)(2).19. (15分) (2017九上·莒南期末) 如图,直线y=kx+3与x轴,y轴分别交于A,B两点,tan∠OAB= ,点C(x,y)是直线y=kx+3上与A,B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是6;(3)过点C的另一直线CD与y轴相交于D点,是否存在点C使△BCD与△AOB相似,且△BCD的面积是△AOB的面积的?若存在,请求出点C的坐标;若不存在,请说明理由.20. (10分)如图,点O是△ABC的内心,过点O作EF∥AB,与AC,BC分别交于点E,F.(1)比较EF与AE+BF的大小关系;(2)若AE=5,BF=3,求EF的长.21. (10分) (2019八下·泰兴期中) 如图,在平面直角坐标系中,直线y= x+4分别交x轴,y轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作PH⊥OA,垂足为H,连接NP.设点P的运动时间为t 秒.①若△NPH的面积为1,求t的值;②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.22. (10分)(2018·重庆模拟) 随着人民生活水平的提高,汽车进入家庭的越来越多.我市某小区在2007年底拥有家庭轿车64辆,到了2009年底,家庭轿车数为100辆.(1)若平均每年轿车数的增长率相同,求这个增长率.(2)为了缓解停车矛盾,多增加一些车位,该小区决定投资15万元,再造一些停车位.据测算,建造一个室内停车位,需5000元;建造一个室外停车位,需1000元.按实际情况考虑,计划室外停车位数不少于室内车位的2倍,又不能超过室内车位的2.5倍.问,该小区有哪几种建造方案?应选择哪种方案最合理?23. (10分)(2013·绍兴) 抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.(1)求点B及点D的坐标.(2)连结BD,CD,抛物线的对称轴与x轴交于点E.①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共75分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、。
周口市川汇区-八年级上期中数学试卷含答案解析.doc

2015-2016学年河南省周口市川汇区八年级(上)期中数学试卷一、选择题1.如图所示,图中不是轴对称图形的是()A.B.C.D.2.以下列各组线段为边(单位:cm),能组成三角形的是()A.1,2,4 B.4,6,8 C.5,6,12 D.2,3,53.已知△ABC≌△DEF,若∠A=60°,∠B=80°,则∠F等于()A.60° B.80° C.140°D.40°4.△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<195.在四边形ABCD中,AB=CD,BC=DA,则下列结论不一定成立的是()A.AB=CB B.∠B=∠D C.AB∥CD D.∠A+∠B=180°6.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF7.如图,点O是△ABC内一点,∠A=80°,∠ABO=15°,∠ACO=40°,则∠BOC等于()A.95° B.120°C.135°D.无法确定8.在△ABC中,∠ACB=90°,∠B=60°,AC=6,点D、E在AB边上,AD=CD,点E关于AC、CD的对称点分别为F、G,则线段FG的最小值等于()A.2 B.3 C.4 D.5二、填空题9.三角形的三边长分别是2、3、x,则x的取值范围是.10.六边形的内角和是外角和的n倍,则n等于.11.点P关于x、y轴的对称点为M、N,若M(﹣1,2),则N的坐标为.12.尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法.13.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为.14.如图,△ABC中,BA=BC,∠ABC=40°,∠ABC的平分线与BC的垂直平分线交于点O,E在BC边上,F在AC边上,将∠A沿直线EF翻折,使点A与点O恰好重合,则∠OEF的度数是.15.如图,在四边形ABCD中,点E在CB的延长线上,对角线AC平分∠BCD,∠ABE=∠ABD,若∠BDC=80°,则∠ADB等于.三、解答题(本大题共8个小题,满分75分)16.求证:“三角形的内角和定理”,画出图形,写出已知、求证、证明.17.如图,在△ABC中,D、E分别在AB、AC边上,BE平分∠ABC,DE∥BC,∠A=30°,∠BEC=60°,求△BDE各内角的度数.18.如图,在△ABC中,边BC的垂直平分线交AB于点E,垂足为D,若BD=4cm,△AEC的周长为15cm,求△ABC的周长.19.如图,在四边形ABCD中,AB=CD,AB∥CD,求证:∠B=∠D,BC∥AD.20.如图,在△ABC中,AB=AC,点D、E、F分别在△ABC的三条边上,且BF=CD,BD=CE.(1)求证:△DFE是等腰三角形;(2)若∠A=56°,求∠EDF的度数.21.如图,已知△ABC,按照下列步骤作图:①以B为圆心,BA长为半径画弧;②以C为圆心,CA长为半径画弧,两弧交于点D;③连接AD,与BC交于点E,连接BD、CD.(1)求证:△ABC≌△DBC;(2)若∠ABC=30°,∠ACB=45°,AB=4,求EC的长.22.如图①,△ABC是等边三角形,DE∥BC,分别交AB、AC于点D、E.(1)求证:△ADE是等边三角形;(2)如图②,将△ADE绕着点A逆时针旋转适当的角度,使点B在ED的延长线上,连接CE,判断∠BEC的度数及线段AE、BE、CE之间的数量关系,并说明理由.23.下面是一个研究性解题案例,请补充完整:如图,在四边形ABCD中,AD∥BC,AB=AD,∠ABC=90°,∠ADC=135°(1)探究发现当点P在线段AD上时(点P不与A、D重合),连接PB,作PE⊥PB,交直线CD于点E,猜想线段PB和PE的数量关系:.(2)猜想论证为了证明(1)中的猜想,小明尝试在AB上截取BF=PD,连结PF,请你完成以下的证明.(3)拓展探究若点P为DA延长线上一点,其它条件不变,(1)中的结论是否仍然成立?请画出相应图形,并直接给出判断.2015-2016学年河南省周口市川汇区八年级(上)期中数学试卷参考答案与试题解析一、选择题1.如图所示,图中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:A、有四条对称轴,是轴对称图形,故本选项错误;B、有三条对称轴,是轴对称图形,故本选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项正确;D、有二条对称轴,是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.以下列各组线段为边(单位:cm),能组成三角形的是()A.1,2,4 B.4,6,8 C.5,6,12 D.2,3,5【考点】三角形三边关系.【分析】根据三角形两边之和大于第三边进行判断即可.【解答】解:在A选项中,1+2<4,不符合三角形的三边关系,故A不能;在B选项中,4+6>8,符合三角形的三边关系,故B能;在C选项中,5+6<12,不符合三角形的三边关系,故C不能;在D选项中,2+3=5,不符合三角形的三边关系,故D不能;故选B.【点评】本题主要考查三角形的三边关系,掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.3.已知△ABC≌△DEF,若∠A=60°,∠B=80°,则∠F等于()A.60° B.80° C.140°D.40°【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠D=∠A=60°,∠E=∠B=80°,根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=60°,∠B=80°,∴∠D=∠A=60°,∠E=∠B=80°,∴∠F=180°﹣∠D﹣∠E=40°,故选D.【点评】本题考查了全等三角形的性质,三角形的内角和定理的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等.4.△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19【考点】三角形三边关系;平行四边形的性质.【分析】延长AD至E,使DE=AD,连接CE,使得△ABD≌△ECD,则将AB和已知线段转化到一个三角形中,进而利用三角形的三边关系确定AB的范围即可.【解答】解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,BD=CD,∠ADB=∠EDC,AD=ED,∴△ABD≌△ECD(SAS).∴AB=CE.在△ACE中,根据三角形的三边关系,得AE﹣AC<CE<AE+AC,即9<CE<19.则9<AB<19.故选D.【点评】解决此题的关键是通过倍长中线,构造全等三角形,把要求的线段和已知的线段放到一个三角形中,再根据三角形的三边关系进行计算.5.在四边形ABCD中,AB=CD,BC=DA,则下列结论不一定成立的是()A.AB=CB B.∠B=∠D C.AB∥CD D.∠A+∠B=180°【考点】平行四边形的判定与性质.【分析】证出四边形ABCD是平行四边形,由平行四边形的性质即可得出结论.【解答】解:∵AB=CD,BC=DA,∴四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,AD∥BC,∴∠A+∠B=180°,∴选项B、C、D正确,选项A不一定正确;故选:A.【点评】本题考查了平行四边形的性质:平行四边形的性质:平行四边形的对边相等,对角线互相平分,理解性质定理是关键.6.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.7.如图,点O是△ABC内一点,∠A=80°,∠ABO=15°,∠ACO=40°,则∠BOC等于()A.95° B.120°C.135°D.无法确定【考点】三角形的外角性质.【分析】延长BO交AC于E,根据三角形内角与外角的性质可得∠1=∠A+∠ABO,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【解答】解:延长BO交AC于E,∵∠A=80°,∠AB O=15°,∴∠1=80°+15°=95°,∵∠ACO=40°,∴∠BOC=∠1+∠ACO=95°+40°=135°.故选:C.【点评】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理.8.在△ABC中,∠ACB=90°,∠B=60°,AC=6,点D、E在AB边上,AD=CD,点E关于AC、CD的对称点分别为F、G,则线段FG的最小值等于()A.2 B.3 C.4 D.5【考点】轴对称的性质;含30度角的直角三角形.【分析】根据轴对称的性质得出CE=CF,∠CEF=∠CFE,CE=CG,EH=GH,∠CEF=∠CGH,进而得出CE=CG=CF,∠CGH=∠CFE,然后证得△BCD是等边三角形,从而证得∠FHG=60°,进一步证得∠FCG=∠FHG=60°,证得△CFG是等边三角形,得出FG=CF=CE,因为CE的最小值为3,所以FG的最小值为3.【解答】】解:∵点E和F关于AC对称,∴AC垂直平分EF,∴CE=CF,∠CEF=∠CFE,∵点E和G关于CD对称,∴CD垂直平分FG,∴CE=CG,EH=GH,∠CEF=∠CGH,∴CE=CG=CF,∠CGH=∠CFE,∵∠ACB=90°,∠B=60°,∴∠A=30°,∵AD=CD,∴∠ACD=∠A=30°,∴∠BCD=60°,∴△BCD是等边三角形,∵EF∥BC,∴∠DEH=∠B=60°,∠EHD=∠BCD=60°,∴∠DHG=∠EHD=60°,∴∠FHG=60°∵∠CGH=∠CFE,∠CKF=∠HKG,∴∠FCG=∠FHG=60°,∵CF=CG,∴△CFG是等边三角形,∴FG=CF=CE,∵当CE⊥AB时,CE最短,此时CE=AC=3,∴FG的最小值为3,故选B.【点评】本题考查了轴对称的性质和等边三角形的判定和性质,证得△CFG是等边三角形是解题的关键.二、填空题9.三角形的三边长分别是2、3、x,则x的取值范围是1<x<5 .【考点】三角形三边关系.【分析】直接根据三角形的三边关系求出x的取值范围即可.【解答】解:∵三角形的三边长分别是2、3、x,∴3﹣2<x<2+3,即1<x<5.故答案为:1<x<5.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.10.六边形的内角和是外角和的n倍,则n等于 2 .【考点】多边形内角与外角.【分析】六边形的内角和根据多边形的内角和公式即可求出,又外角和是360度,问题即可求解.【解答】解:六边形的内角和是(6﹣2)•180°=720°,外角和=360°,720°÷360°=2.故答案为:2.【点评】本题主要考查了多边形的内角和定理,以及外角和定理,是一个基础的问题.11.点P关于x、y轴的对称点为M、N,若M(﹣1,2),则N的坐标为(1,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据题意可以求得点P的坐标,从而可以求得点N的坐标.【解答】解:∵点P关于x轴的对称点为M(﹣1,2),∴点P的坐标为(﹣1,﹣2),点P关于y轴的对称点为N,∴点N的坐标为(1,﹣2),故答案为:(1,﹣2).【点评】本题考查关于x轴、y轴对称的点的坐标,解题的关键是明确题意,找出所求问题需要的条件.12.尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法SSS .【考点】作图—基本作图;全等三角形的判定.【分析】通过对尺规作图过程的探究,找出三条对应相等的线段,判断三角形全等.因此判定三角形全等的依据是边边边公理.【解答】解:在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证,因此由作法知其判定依据是SSS,即边边边公理.故答案为:SSS.【点评】本题考查了三角形全等的判定方法;可以让学生明确作图的依据,也是全等三角形在实际中的运用.注意在作法中找已知,根据已知决定方法.13.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为4cm .【考点】角平分线的性质.【专题】计算题.【分析】先由BC=10cm,BD:DC=3:2计算出DC=4cm,由于∠ACB=90°,则点D到AC的距离为4cm,然后根据角平分线的性质即可得到点D到AB的距离等于4cm.【解答】解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.【点评】本题考查了角平分线的判定与性质:角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在这个角的角平分线上.14.如图,△ABC中,BA=BC,∠ABC=40°,∠ABC的平分线与BC的垂直平分线交于点O,E在BC边上,F在AC边上,将∠A沿直线EF翻折,使点A与点O恰好重合,则∠OEF的度数是70°.【考点】翻折变换(折叠问题).【分析】连接OA、OC,根据角平分线的定义求出∠DBO=20°,根据等腰三角形两底角相等求出∠BAC=∠BCA=70°,再根据线段垂直平分线上的点到线段两端点的距离相等可得OB=OC,根据等边对等角可得∠DCO=∠DBO=20°,从而求得∠OCF=50°,然后证明△ABO≌△CBO,于是得到∠EAO=∠BCO=20°,根据翻折的性质可知OA⊥EF,∠AEF=∠OEF,从而可求得∠OEF=70°.【解答】解:如图,连接OA、OC,∵∠ABC=40°,BO为∠ABC的平分线,∴∠OBD=∠ABC=20°.又∵BA=BC,∴∠BAC=∠BCA=(180°﹣∠ABC)=×(180°﹣40°)=70°.∵DO是BC的垂直平分线,∴OB=OC.∴∠OCB=∠OBC=20°.在△AOB和△COB中,∴∠BAO=∠OCB=20°.由翻折的性质可知:OA⊥EF,∠AEF=∠OEF.∴∠AEF=90°﹣20°=70°.∴∠OEF=70°.故答案为:70°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.15.如图,在四边形ABCD中,点E在CB的延长线上,对角线AC平分∠BCD,∠ABE=∠ABD,若∠BDC=80°,则∠ADB等于50°.【考点】多边形内角与外角;角平分线的性质.【分析】先过点A作AF⊥CE于F,作AG⊥BD于G,作AH⊥CD于H,根据角平分线的性质得出AH=AG,再根据AG⊥BD,AH⊥CD,得出点A在∠BDH的角平分线上,进而求得∠ADB的度数.【解答】解:过点A作AF⊥CE于F,作AG⊥BD于G,作AH⊥CD于H,∵AC平分∠BCD,∠ABE=∠ABD,∴AF=AH,AF=AG,∴AH=AG,∵AG⊥BD,AH⊥CD,∴点A在∠BDH的角平分线上,即∠ADB=∠BDH=(180°﹣∠BDC)=(180°﹣80°)=50°.故答案为:50°.【点评】本题主要考查了多边形的内角与外角,解决问题的关键是作辅助线,运用角平分线的性质定理及其判定定理进行推导计算.解题时注意:角内部到角两边距离相等的点在这个角的平分线上.三、解答题(本大题共8个小题,满分75分)16.求证:“三角形的内角和定理”,画出图形,写出已知、求证、证明.【考点】三角形内角和定理.【分析】先写出已知、求证,再画图,然后证明.过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.【点评】本题考查证明三角形内角和定理,解题的关键是做平行线,利用平行线的性质进行证明.17.如图,在△ABC中,D、E分别在AB、AC边上,BE平分∠ABC,DE∥BC,∠A=30°,∠BEC=60°,求△BDE各内角的度数.【考点】平行线的性质.【分析】首先求出∠DBC的度数,进而利用平分线的知识求出∠EBC的度数,再利用利用平行线的知识求出∠DEB的度数,最后求出∠BDE的度数.【解答】解:∵∠A=30°,∠BEC=60°,∴∠DBC=∠BEC﹣∠A=60°﹣30°=30°,∵BE平分∠ABC,∴∠EBC=∠DBE=30°,∵DE∥BC,∴∠DEB=∠EBC=30°,∠BDE=180°﹣∠DBC=180°﹣60°=120°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.18.如图,在△ABC中,边BC的垂直平分线交AB于点E,垂足为D,若BD=4cm,△AEC的周长为15cm,求△ABC的周长.【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到EB=EC,根据三角形的周长公式计算即可.【解答】解:∵ED是BC的垂直平分线,∴EB=EC,BC=2BD=8cm,∵△AEC的周长为15cm,∴AE+EC+AC=15,则△ABC的周长=AB+BC+AC=AE+EC+BD=23cm.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.19.如图,在四边形ABCD中,AB=CD,AB∥CD,求证:∠B=∠D,BC∥AD.【考点】全等三角形的判定与性质;平行线的判定与性质.【专题】证明题.【分析】连接AC,由AB∥CD可得出∠BAC=∠DCA,结合AB=CD、AC=CA即可证出△ABC≌△CDA(SAS),由此即可得出∠B=∠D,∠BCA=∠DAC,再依据“内错角相等,两直线平行.”即可证出BC∥AD.【解答】证明:连接AC,如图所示.∵AB∥CD,∴∠BAC=∠DCA.在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),∴∠B=∠D,∠BCA=∠DAC,∴BC∥AD.【点评】本题考查了全等三角形的判定与性质以及平行线的判定与性质,解题的关键是证出△ABC ≌△CDA(SAS).本题属于基础题,难度不大,解决该题型题目时,数据各全等三角形的判定定理是关键.20.如图,在△ABC中,AB=AC,点D、E、F分别在△ABC的三条边上,且BF=CD,BD=CE.(1)求证:△DFE是等腰三角形;(2)若∠A=56°,求∠EDF的度数.【考点】等腰三角形的判定与性质.【分析】(1)由SAS可得△FBD≌△DCE,得出DF=ED,第一问可求解;(2)由角之间的转化,从而可求解∠EDF的大小.【解答】证明:(1):∵AB=AC∴∠B=∠C,在△FBD与△DCE中∴△FBD≌△DCE.∴DF=ED,即△DEF是等腰三角形(2)∵AB=AC,∠A=56°,∴∠B=∠C=.∴∠EDF=∠B=62°.【点评】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定和性质问题,能够熟练掌握三角形的性质求解一些简单的计算、证明等问题.21.如图,已知△ABC,按照下列步骤作图:①以B为圆心,BA长为半径画弧;②以C为圆心,CA长为半径画弧,两弧交于点D;③连接AD,与BC交于点E,连接BD、CD.(1)求证:△ABC≌△DBC;(2)若∠ABC=30°,∠ACB=45°,AB=4,求EC的长.【考点】全等三角形的判定与性质;线段垂直平分线的性质;含30度角的直角三角形.【分析】(1)直接运用SSS判定两三角形全等;(2)根据线段垂直平分线的逆定理得:BC是AD的垂直平分线,得△ABE是直角三角形,△AEC是等腰直角三角形,根据直角三角形中30°角所对的直角边等于斜边的一半求出AE的长,从而得出CE的长.【解答】证明:(1)由题意得:AB=BD,AC=CD,∵BC=BC,∴△ABC≌△DBC;(2)∵AB=BD,AC=CD,∴BC是AD的垂直平分线,∴AD⊥BC,在Rt△ABE中,∵∠ABE=30°,AB=4,∴AE=AB=2,∵∠ACB=45°,∴△AEC是等腰直角三角形,∴AE=EC,∵AE=2,∴EC=2.【点评】本题考查了全等三角形的性质和判定及线段垂直平分线的性质,要熟知全等三角形的判定方法:SSS、SAS、AAS、ASA;在判定两全等三角形全等时,要注意三角形间的公共边和公共角;在直角三角形中,要熟练掌握几下性质:①勾股定理,②等腰直角三角形,③30°角所对的直角边等于斜边的一半.22.(如图①,△ABC是等边三角形,DE∥BC,分别交AB、AC于点D、E.(1)求证:△ADE是等边三角形;(2)如图②,将△ADE绕着点A逆时针旋转适当的角度,使点B在ED的延长线上,连接CE,判断∠BEC的度数及线段AE、BE、CE之间的数量关系,并说明理由.【考点】旋转的性质;平行线的性质;等边三角形的判定与性质.【分析】(1)根据△ABC为等边三角形,则∠C=∠B=60°,由DE∥BC得到∠ADE=∠C=∠B=∠AED=60°,然后根据等边三角形的判定方法得到△ADE是等边三角形;(2)由SAS证明△ABD≌△ACE,得出AD=AE,求出∠DAE=∠CAE+∠DAC=60°,证出△ADE是等边三角形,得出AE=DE,即可得出结论.【解答】(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠C,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠A=∠ADE=∠AED,∴△ADE是等边三角形.∵△ABC是等边三角形;(2)解:AE+CE=BE;理由如下:∵AB=AC,AD=AE,∠BAD=60°﹣∠DAC=∠CAE,由旋转的性质得:△ABD≌△ACE,∴AD=AE,∵∠DAE=∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=60°,∴△ADE是等边三角形,∴AE=DE,∴AE+CE=DE+BD=BE.【点评】本题考查了等边三角形的判定与性质、旋转的性质、平行线的性质;熟练掌握等边三角形的判定与性质是解决问题的关键.23.下面是一个研究性解题案例,请补充完整:如图,在四边形ABCD中,AD∥BC,AB=AD,∠ABC=90°,∠ADC=135°(1)探究发现当点P在线段AD上时(点P不与A、D重合),连接PB,作PE⊥PB,交直线CD于点E,猜想线段PB和PE的数量关系:PB=PE .(2)猜想论证为了证明(1)中的猜想,小明尝试在AB上截取BF=PD,连结PF,请你完成以下的证明.(3)拓展探究若点P为DA延长线上一点,其它条件不变,(1)中的结论是否仍然成立?请画出相应图形,并直接给出判断.【考点】四边形综合题.【分析】(1)通过观察和测量可猜想PB=PE;(2)首先证明△APF为等腰直角三角形,于是得到∠AFP=45°,从而可求得∠BFP=∠PDE=135°,然后依据同角的余角相等可证明∠DPE=∠PBF,接下来依据ASA证明△PFB≌△EDP,依据全等三角形的性质可得到PB=PE;(3)延长AB到F使AF=PA,连结PF.题意可知△PFA为等腰直角三角形,于是可证明∠PFB=∠EDP=45°,然后依据同角的余角相等可证明∠PBA=∠EPD,接下来证明PD=BF,依据ASA可证明△PED ≌△BPF,于是可得到PE=PB.【解答】解:(1)PB=PE.(2)如图1所示:∵AD∥BC,∠ABC=90°,∴∠A=90°.∵AB=AD,BF=PD,∴AF=AP.∴∠AFP=45°.∴∠BFP=135°.∴∠BFP=∠PDE.∵∠BPE=90°,∴∠APB+∠DPE=90°.又∵∠APB+∠PBF=90°,∴∠DPE=∠PBF.在△PFB和△EDP中,,∴△PFB≌△EDP.∴PB=PE.故答案为:PB=PE.(3)成立.理由:如图2所示:延长AB到F使AF=PA,连结PF.∵FA=PF,∠A=90°,∴∠F=45°.∵∠ADC=135°,∴∠EDP=45°.∴∠PFB=∠EDP.∵∠EPD+DPB=90°,∠DPB+∠PBA=90°,∴∠PBA=∠EPD.∵AF=PA,AB=AD,∴PD=BF.在△PED和△BPF中,,∴△PED≌△BPF.∴PE=PB.【点评】本题主要考查的是主要考查的是四边形,三角形的综合应用,解答本题主要应用了全等三角形的性质和判定、等腰直角三角形的性质和判定,掌握本题的辅助线的作法是解题的关键.。
河南省周口市八年级上学期数学期末考试试卷
河南省周口市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分) (2017八下·简阳期中) 在式子、、、中,分式的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分) (2019八下·温江期中) 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .3. (2分) (2017九下·简阳期中) 下列运算正确的是()A . (ab)5=ab5B . a8÷a2=a6C . (a2)3=a5D . (a﹣b)2=a2﹣b24. (2分) (2019八上·江阴期中) 等腰三角形的两边长分别为4和9,这个三角形的周长是()A . 17B . 22C . 17或22D . 17和225. (2分)如果2x2+mx﹣2可因式分解为(2x+1)(x﹣2),那么m的值是()A . ﹣1B . 1C . ﹣3D . 36. (2分)如图,在△ABC中,∠C=90°,DE⊥AB于点D,BC=BD.如果AC=3cm,那么AE+DE=()A . 2 cmB . 4 cmC . 3 cmD . 5 cm7. (2分)点M(-2,1)关于x轴对称的点的坐标是()A . (-2,-1)B . (2,1)C . (2,-1)D . (1,-2)8. (2分)已知等腰三角形的一个底角为40°,则这个等腰三角形的顶角为()A . 40°B . 100°C . 40°或100°D . 50°或70°9. (2分) (2016八上·岑溪期末) 某工厂现在平均每天比原计划多生产60台机器,现在生产900台机器所需时间与原计划生产750台机器所需时间相同.设原计划平均每天生产x台机器,则可列方程为()A .B .C .D .10. (2分)(2014·贵港) 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A .B . 4C .D . 5二、填空 (共8题;共8分)11. (1分) (2017七下·博兴期末) 已知一个三角形的三条边长为2、7、,则的取值范围是________.12. (1分)当x=________ 时,分式的值为零.13. (1分) (2017八下·萧山期中) 一个多边形的内角和是它的外角的和的2倍,这个多边形的边数是________14. (1分)(2018·甘孜) 直线上依次有A,B,C,D四个点,AD=7,AB=2,若AB,BC,CD可构成以BC为腰的等腰三角形,则BC的长为________。
周口市八年级上学期期末数学试卷
周口市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选一选,比比谁细心 (共8题;共16分)1. (2分)如果∠A是锐角,且sinA=,那么∠A的度数是()A . 90°B . 60°C . 45°D . 30°2. (2分) (2015九上·山西期末) 有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角;③平行四边形;④等腰梯形;⑤圆。
将卡片背面朝上洗匀,从中抽取一张,正面图形满足既是轴对称图形,又是中心对称图形的概率是()A .B .C .D .3. (2分) (2017八上·东台期末) 在,,﹣,1.732,这五个数中,无理数有()个.A . 1B . 2C . 3D . 44. (2分) (2017八上·东台期末) 已知等腰三角形的一个角是100°,则它的顶角是()A . 40°B . 60°C . 80°D . 100°5. (2分) (2017八上·东台期末) 已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图像上的两点,则a与b的大小关系是()A . a>bB . a=bC . a<bD . 以上都不对6. (2分) (2017八上·东台期末) 在元旦联欢会上,3名小朋友分别站在△ABC三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先做到凳子上谁获胜,为使游戏公平,则凳子应放置的最适当的位置时在△ABC的()A . 三边中线的交点B . 三条角平分线的交点C . 三边垂直平分线的交点D . 三边上高的交点7. (2分) (2017八上·东台期末) 正比例函数y=kx(k≠0)的图像在第二、四象限,则一次函数y=x+k的图像大致是()A .B .C .D .8. (2分) (2017八上·东台期末) 在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A . (7,6)B . (7,﹣6)C . (﹣7,6)D . (﹣7,﹣6)二、填一填,看看谁仔细 (共10题;共10分)9. (1分) (2017七上·杭州月考) 如图中数轴形象的表示乘法的意义,请用一个等式表示其中包含的有理数运算之间的关系________10. (1分) (2017八上·东台期末) 取=1.4142135623731…的近似值,若要求精确到0.01,则=________.11. (1分) (2017八上·东台期末) 据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,可选用________统计图表示收集到的数据.12. (1分) (2017八上·东台期末) 如图,AC⊥CB,AD⊥DB,要使△ABC≌△ABD,可补充的一个条件是________.13. (1分) (2017八上·东台期末) 如图,已知函数y=ax+b和y=kx的图像交于点P,则根据图像可得,关于x,y的二元一次方程组的解是________.14. (1分) (2017八上·东台期末) 如图,在△ABC中,AD⊥BC于D点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为________.15. (1分) (2017八上·东台期末) 一个三角形三边长的比为3:4:5,它的周长是24cm,这个三角形的面积为________ cm2 .16. (1分) (2017八上·东台期末) 下列事件:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球;②随意调查1位青年,他接受过九年制义务教育;③花2元买一张体育彩票,喜中500万大奖;④抛掷1个小石块,石块会下落.估计这些事件的可能性大小,并将它们的序号按从小到大排列:________.17. (1分) (2017八上·东台期末) 小聪用刻度尺画已知角的平分线,如图,在∠MAN两边上分别量取AB=AC,AE=AF,连接FC,EB交于点D,作射线AD,则图中全等的三角形共有________对.18. (1分) (2017八上·东台期末) 如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y 轴上是否存在点P,使△MNP为等腰直角三角形,请写出符合条件的点P的坐标________.三、解答题 (共7题;共70分)19. (10分) (2017七上·槐荫期末) 计算:(1)﹣8×2﹣(﹣10)(2)﹣9÷3﹣(﹣)×12﹣32 .20. (10分) (2019七上·中山期末) 体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒.﹣1.2+0.70﹣1﹣0.3+0.2+0.3+0.5(1)求这个小组男生百米测试的达标率是多少?(2)求这个小组8名男生的平均成绩是多少?21. (12分)(2019·毕节) 某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2 , 22 ,﹣22}=________;②min{sin30°,cos60°,tan45°}=________;(2)若M{﹣2x,x2 , 3}=2,求x的值;(3)若min{3﹣2x,1+3x,﹣5}=﹣5,求x的取值范围.22. (10分) (2017八上·东台期末) 如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=8,△CBD周长为13,求BC的长.23. (2分) (2017八上·东台期末) 教学实验:画∠AOB的平分线OC.(1)将一块最够大的三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边分别于OA,OB交于E,F(如图①).度量PE、PF的长度,PE________PF(填>,<,=);(2)将三角尺绕点P旋转(如图②):①PE与PF相等吗?若相等请进行证明,若不相等请说明理由;②若OP= ,请直接写出四边形OEPF的面积:________.24. (15分) (2017八上·东台期末) 某中学九年级甲、乙两班商定举行一次远足活动,A、B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1、y2千米,y1、y2与x的函数关系图像如图所示.根据图像解答下列问题:(1)直接写出,y1、y2与x的函数关系式;(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?(3)甲、乙两班首次相距4千米时所用时间是多少小时?25. (11分) (2017八上·东台期末) 如图,在平面直角坐标系xOy中,已知点A(﹣1,0),点B(0,2),点C(3,0),直线a为过点D(0,﹣1)且平行于x轴的直线.(1)直接写出点B关于直线a对称的点E的坐标________;(2)若P为直线a上一动点,请求出△PBA周长的最小值和此时P点坐标;(3)若M为直线a上一动点,且S△ABC=S△MAB ,请求出M点坐标.参考答案一、选一选,比比谁细心 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填一填,看看谁仔细 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共70分)19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、第11 页共11 页。
河南省周口市八年级上学期期末数学试卷
河南省周口市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共7题;共14分)1. (2分)用计算器计算某个运算式,若正确的按键顺序是,则此运算式应是()A . 43B . 34C .D .2. (2分) (2019七下·江苏月考) 下列计算正确的是()A . x3+x3=x6B . x4÷x2=x2C . (m5)5=m10D . x2y3=(xy)33. (2分)△ABC中,若a=5,b=13,c=12,则△ABC是()A . 等腰三角形B . 锐角三角形C . 钝角三角形D . 直角三角形4. (2分) (2017·安徽模拟) 如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A . 6B . 5C . 4D . 35. (2分)(2014·韶关) 把x3﹣9x分解因式,结果正确的是()A . x(x2﹣9)B . x(x﹣3)2C . x(x+3)2D . x(x+3)(x﹣3)6. (2分)在下列条件中不能判断两个直角三角形全等的是()A . 已知两个锐角B . 已知一条直角边和一个锐角C . 已知两条直角边D . 已知一条直角边和斜边7. (2分) (2018八下·深圳期中) 如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以点A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A . 16B . 15C . 14D . 13二、填空题 (共10题;共21分)8. (1分) (2016八上·射洪期中) 9的算术平方根是________.9. (1分) (2020八上·龙岩期末) 计算: ________;10. (1分)比较大小:4________(填“>”或“<”).11. (1分)用反证法证明命题“在同一平面中,若a∥b,a∥c,则b∥c”,应先假设________12. (1分) (2019八上·朝阳期中) 如图,在ΔABC中,∠ABC=120°,点D、E分别在AC和AB上,且AE =ED=DB=BC,则∠A的度数为________°.13. (1分) (2016七下·南陵期中) 把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为________.14. (1分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是________ .15. (1分)(2017·顺义模拟) 阅读下面材料:在数学课上,老师提出如下问题:已知:如图,四边形ABCD是平行四边形.求作:菱形AECF,使点E,F分别在BC,AD上.小凯的作法如下:(i)连接AC;(ii)作AC的垂直平分线EF分别交BC,AD于E,F;(iii)连接AE,CF.所以四边形AECF是菱形.老师说:“小凯的作法正确.”请回答:在小凯的作法中,判定四边形AECF是菱形的依据是________.16. (3分)把下列各式填在相应的大括号里:x﹣7,x,4ab,, 5﹣, y,, x+,+, x2++1,, 8a3x,﹣1单项式集合{________ …};多项式集合{ ________ …};整式集合{________ …}.17. (10分) (2015九上·海南期中) 如图,现将一张矩形ABCD的纸片一角折叠,若能使点D落在AB边上F 处,折痕为CE,恰好∠AEF=60°,延长EF交CB的延长线于点G.(1)求证:△CEG是等边三角形;(2)若矩形的一边AD=3,求另一边AB的长.三、解答题 (共9题;共82分)18. (15分)计算(1).(2).(3).19. (5分) (2017八下·容县期末) 先化简,再求值:2(a+ )(a- )-a(a-6)+6,其中a=-1.20. (5分)因式分解:(1)3a3b﹣12ab2(2)a2﹣4b2(3)﹣4x2+12xy﹣9y2(4)(x2+4)2﹣16x2(5)(x+y)2﹣4xy(6)9a2(x﹣y)+(y﹣x)21. (5分)已知(x+y)2=25,(x﹣y)2=81,求x2+y2和xy的值.22. (5分)(2011·淮安) 如图,四边形ABCD是平行四边形,E、F分别是BC.AD上的点,∠1=∠2求证:△ABE≌△CDF.23. (12分)(2017·莒县模拟) 某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,按A,B,C,D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.(1)求抽取了多少份作品;(2)此次抽取的作品中等级为B的作品有________,并补全条形统计图________ ;(3)若该校共征集到800份作品,请估计等级为A的作品约有多少份.24. (15分)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以P,B,C三点为顶点的三角形是等腰三角形.请直接写出P点坐标.25. (10分)如图,四边形ABCD表示一张矩形纸片,AB=10,AD=8.E是BC上一点,将△ABE沿折痕AE向上翻折,点B恰好落在CD边上的点F处,⊙O内切于四边形ABEF.求:(1)折痕AE的长.(2)⊙O的半径.26. (10分) (2017八下·宁城期末) 如图,在边长为4的正方形ABCD中,E是BC的中点,F是CD上一点,且CF= CD,(1)求线段AF的长.(2)试判断△AEF的形状,并说明理由.参考答案一、选择题 (共7题;共14分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、二、填空题 (共10题;共21分)8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、17-2、三、解答题 (共9题;共82分) 18-1、18-2、18-3、19-1、20-1、21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、。
周口市八年级上学期期末数学试卷
周口市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018九上·硚口期中) 下列图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .2. (2分)下列各式,, x2y,﹣,,中,是分式的有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2016九上·黑龙江月考) 三角形的两边分别2和6,第三边是方程x2-10x+21=0的解,则三角形周长为()A . 11B . 15C . 11或15D . 不能确定4. (2分) (2015八上·广饶期末) 如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A . AD=AEB . ∠AEB=∠ADCC . BE=CDD . AB=AC5. (2分) (2018七下·宝安月考) 下列运算正确的是()A . 5﹣1=﹣5B . m4÷m﹣3=mC . (x﹣2)﹣3=x6D . (﹣20)0=﹣16. (2分) (2018八上·开封期中) 如图所示,下列结论正确的是()A . ∠1>∠B>∠2B . ∠B>∠2>∠1C . ∠2>∠1>∠BD . ∠1>∠2>∠B7. (2分) (2018八上·泰兴月考) 如图,△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,DE⊥AB,连接CE.有下列结论:①DC=DE;②DA平分∠CDE;③AB=AC+CD;④D为BC的中点;⑤AD被CE垂直平分.其中正确的个数为()A . 2B . 3C . 4D . 58. (2分)如图,等腰三角形ABC中,AB=AC,∠A=48°,CD⊥AB于D,则∠DCB等于()A . 48°B . 66°C . 46°D . 24°9. (2分)下列计算错误的有()①(2x+y)2=4x2+y2②(﹣3b﹣a)(a﹣3b)=a2﹣9b2③2×2﹣2=④(﹣1)0=﹣1⑤(x﹣)2=x2﹣2x+⑥(﹣a2)m=(﹣am)2 .A . 2个B . 3个C . 4个D . 5个10. (2分)计算a3· 的结果是()A . aB . a3C . a6D . a9二、填空题 (共6题;共7分)11. (1分)计算:(m+2)(m﹣2)﹣(m﹣1)(m+5)=________.12. (1分)化简:= ________.13. (2分)如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2= ________.,∠ABC________.14. (1分)(2019·绍兴模拟) 分式方程的解为________.15. (1分) (2018八上·蔡甸期中) 凸多边形的外角和等于________.16. (1分) (2018八上·抚顺期末) 已知,,则 =________.三、解答题 (共7题;共43分)17. (5分)(2014·梧州) 如图,已知AB∥CD,AB=CD,BF=CE,求证:AE=DF.18. (5分)已知A=2x,B是多项式,在计算B+A时,某同学把B+A看成B÷A结果得x2+x,求B+A.19. (5分)如图,草原上,一牧童在A处放马,牧童家在B处,A、B处距河岸的距离AC,BD的长分别为500m 和700m,且CD=500m,天黑前牧童从A点将马牵到河边去饮水后,再赶回家,牧童将马牵到河边什么地方饮水,才能使走过的路程最短?牧童最少要走多少m?20. (5分) (2018九下·江都月考) 为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小明建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,若将其全部改成双面打印,用纸将减少一半;现用A4薄型纸双面打印,总质量仅为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)提示:总质量=每页纸的质量×纸张数21. (6分) (2019七下·深圳期中) 乘法公式的探究及应用:(1)比较左、右两图的阴影部分面积,可以得到乘法公式________(用式子表达);(2)运用你所得到的公式,计算 .22. (10分) (2015七上·深圳期末) 计算题(1)( +1 ﹣2.75)×(﹣24)+(﹣1)2016;(2)﹣12﹣[1 +(﹣12)÷6]2×(﹣1 )2.23. (7分) (2019九上·孝南月考) 如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为________度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.________参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共43分)17-1、18-1、19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015—2016学年度上期期末考试试卷
八年级数学参考答案
一、选择题:1.(C )2.(D )3.(B )4.(B )5.(B )6.(C )7.(D )8.(C )
二、填空题:9.【61.2210-⨯】10.【292x y -】11.【11n +】12.【2】13.【2(1)(1)1n n n -++=】14.【8】15.【23AD ≤≤】
三、解答题:
16.⑴【原式32222333a a b ab a b ab b a b =-++-+=+】 ⑵【原式221123
xy x y =-++】 17.⑴【原式2211(144)(12)44x y y x y =++=+或2
12x y ⎛⎫=+ ⎪⎝⎭.】 ⑵【原式2()[()4]()(2)(2)m n m n m n m n m n =++-=++++-】
18.⑴ 【解:(1)(3)(1)x x x x -=-+,2223x x x x -=--,3x =-.
经检验,3x =-是原方程的根.】
⑵ 【解:(4)(2)(4)12x x x x +--+=,2242812x x x x +--+=,2x =. 当2x =时,(2)(4)0x x -+=.原方程无实根.】
19.【原式22()()2()2()2
a b a b a b ab ab a b ab a b a b ---=÷=⨯=---.
当1a ,1b =时,原式=3112-==.】 20.【解:设提速前的平均速度为x km/h ,依题意,可得
1001004050
x x +=+.解得125x =.经检验,125x =是原方程的根.所以,提速前列车的平均速度为125 km/h .】 21.【证明:CD =BE ,CD ⊥BE ,理由如下:
因为90BAD CAE ∠=∠=︒,所以BAD DAE CAE DAE ∠+∠=∠+∠.
即BAE DAC ∠=∠.
因为AB AD =,AE AC =,所以△BAE ≌△DAC .
所以BE =CD ,BEA DCA ∠=∠.
如图,设AE 与CD 相交于点F ,因为90ACF AFC ∠+∠=︒,AFC DFE ∠=∠, 所以90BEA DFE ∠+∠=︒.即CD ⊥BE .】
22.【解:⑴14,14,2222(311)(410)14+-+=;
⑵计算结果等于14.
设最小的数字为n ,则其余三个分别为1n +,7n +,8n +.
所以2222(8)(1)(7)n n n n ++-+-+
=221664n n n +++22(21)(1449)n n n n -++-++=14】
23.【解:设该商品原来的销售价格为m.
⑴方案1:两次降价后的价格为(1)(1)
m a b
--;
方案2:两次降价后的价格为
2
1
2
a b
m
+
⎛⎫
-
⎪
⎝⎭。
因为()()
11
m a b
---
2
1
2
a b
m
+
⎛⎫
-
⎪
⎝⎭
=()20
4
m
a b
--<,所以方案1降价幅度最多.
⑵①
1A
x
-
,
2
(1)
B
x
-
.
②由
1A
x
-
=
2
(1)
B
x
-
,
4
5
B A
=得,0.2
x=.
经检验,0.2
x=是原方程的根.两次均降了20%.】。