2019-2020年高三数学一轮复习第八章立体几何第二节空间几何体的表面积和体积夯基提能作业本文
2023年高考数学(理科)一轮复习课件——空间几何体的表面积和体积

索引
2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径
为( B )
A.1 cm
B.2 cm
C.3 cm
3 D.2 cm
解析 设圆锥的底面圆的半径为r,母线长为l, 因为侧面展开图是一个半圆, 所以πl=2πr,即l=2r, 所以πr2+πrl=πr2+πr·2r=3πr2=12π,解得r=2.
得的截面是面积为8的正方形,则该圆柱的表面积为( B )
A.12 2π
B.12π
C.8 2π
D.10π
解析 由题意知,圆柱的轴截面是一个面积为 8 的正方形,则圆柱的高与底面 直径均为 2 2. 设圆柱的底面半径为 r,则 2r=2 2,得 r= 2. 所以圆柱的表面积 S 圆柱=2πr2+2πrh=2π( 2)2+2π× 2×2 2=4π+8π=12π.
索引
训练1 (1)(2020·新高考Ⅱ卷)棱长为2的正方体ABCD-A1B1C1D1中,M,N分别
为棱BB1,AB的中点,则三棱锥A1-D1MN的体积为____1____.
解析 如图,由正方体棱长为2及M,N分别为BB1,AB 的中点, 得 S△A1MN=2×2-2×12×2×1-21×1×1=32, 又易知D1A1为三棱锥D1-A1MN的高,且D1A1=2, ∴VA1-D1MN=VD1-A1MN=13·S△A1MN·D1A1=31×32×2=1.
角度1 简单几何体的体积
例1 (1)祖暅是我国南北朝时代的伟大科学家,他提出 的“幂势既同,则积不容异”称为祖暅原理,利用
该原理可以得到柱体的体积公式V柱体=Sh,其中S 是柱体的底面积,h是柱体的高.若某柱体的三视图
近年高考数学一轮复习第8章立体几何第2讲空间几何体的表面积与体积演练文(2021年整理)

2019高考数学一轮复习第8章立体几何第2讲空间几何体的表面积与体积分层演练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第8章立体几何第2讲空间几何体的表面积与体积分层演练文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第8章立体几何第2讲空间几何体的表面积与体积分层演练文的全部内容。
第2讲空间几何体的表面积与体积一、选择题1.圆柱的底面积为S,侧面展开图是一个正方形,那么圆柱的侧面积是()A.4πS B.2πSC.πS D.错误!πS解析:选A.由πr2=S得圆柱的底面半径是错误!,故侧面展开图的边长为2π·错误!=2错误!,所以圆柱的侧面积是4πS,故选A.2.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的体积是()A.πB.错误!C.错误!π D.错误!解析:选D.由三视图可知,该几何体是两个同底的半圆锥,其中底的半径为1,高为22-12=3,因此体积=2×错误!×错误!π×12×错误!=错误!π.3.如图所示的是一个几何体的三视图,则该几何体的表面积为( )A.20 B.22C.24 D.26解析:选D.该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长,宽,高分别为4,1,2,挖去半圆柱的底面半径为1,高为1,所以表面积为S=S长方体表-2S半圆柱底-S圆柱轴截面+S半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+错误!×2π×1=26.故选D.4.(2018·兰州诊断考试)某几何体的三视图如图所示,则该几何体的表面积为( )A.(9+错误!)π B.(9+2错误!)πC.(10+错误!)π D.(10+2错误!)π解析:选A.由三视图可知,该几何体为一个圆柱挖去一个同底的圆锥,且圆锥的高是圆柱高的一半.故该几何体的表面积S=π×12+4×2π+错误!×2π×错误!=(9+错误!)π.5.(2018·云南第一次统考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.12 B.18C.24 D.30解析:选C.由三视图知,该几何体是直三棱柱削去一个同底的三棱锥,其中三棱柱的高为5,削去的三棱锥的高为3,三棱锥与三棱柱的底面均为两直角边分别为3和4的直角三角形,所以该几何体的体积为错误!×3×4×5-错误!×错误!×3×4×3=24,故选C.6.正四棱锥PABCD的侧棱和底面边长都等于2错误!,则它的外接球的表面积是( )A.16πB.12πC.8πD.4π解析:选A.设正四棱锥的外接球半径为R,顶点P在底面上的射影为O,因为OA=错误!AC=错误!错误!=错误!错误!=2,所以PO=错误!=错误!=2.又OA=OB=OC=OD=2,由此可知R=2,于是S=4πR2=16π.球二、填空题7.将一个边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________.解析:当以长度为4π的边为底面圆时,底面圆的半径为2,两个底面的面积是8π;当以长度为8π的边为底面圆时,底面圆的半径为4,两个底面圆的面积为32π.无论哪种方式,侧面积都是矩形的面积32π2.故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π8.一个几何体的三视图如图所示,则该几何体的体积为________.解析:该几何体可视为正方体截去两个三棱锥所得,所以其体积为8-错误!-错误!=错误!.答案:错误!9.在长方体ABCD.A1B1C1D1中,AB=BC=2,过A1,C1,B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD。
高三数学一轮复习 8.2 空间几何体的表面积与体积

考点1
考点2
考点3
-16-
对点训练1如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条互相垂直的半径.若该几何体的体积是 283π, 则它的表面积 是( )
由三视图可知该几何体是球截去18后所得几何体, 则 所78以A×.它1473π的π×B表R.13面=8π2积83πC为,.解2078得×πD4Rπ.2R=82π2+, 34×πR2=14π+3π=17π.
(3)设正四面体棱长为 a,则正四面体表面积为 S1=4·43·a2= 3a2,
其内切球半径为正四面体高的14,即 r=14 ·36a=126a,因此内切球表面积
为 S2=4πr2=π6������2,则������������12 =
3������2 π6������2
=
6π3.
考点1
考点2
考点3
考点1
考点2
考点3
-28-
(2)设球半径为R,过AB作相互垂直的平面α,β,设圆M的直径为AC, 圆N的直径为AD,则BD⊥BC,BC2+BD2+4=(2R)2=12,
∴CD=2 2, ∵M,N分别是AC,AD的中点, ∴MN的长度是定值 2,故选B.
考点1
考点2
考点3
-29-
1.求柱体、锥体、台体与球的表面积的问题,要结合它们的结构 特点与平面几何知识来解决.
2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面. 3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认 真分析图形,明确切点和接点的位置,确定有关元素间的数量关系, 并作出合适的截面图.
考点1
考点2
考点3
-27-
解析 (1)∵AB=AC=3,∠BAC=23π,
高考数学一轮复习第8章立体几何第2讲空间几何体的表面积与体积课件文

【对点通关】
1.(必修 2 P27 例 4 改编)已知正四面体 A-BCD 的棱长为 12, 则其内切球的表面积为( )
A.12π
B.16π
C.20π
D.24π
解析:选 D.如图,作 BF⊥CD 于 F,AE⊥BF 于 E,
由 ABCD 为正四面体可知 AE⊥平面 BCD,设 O 为正四面体 ABCD 的内切球的球心,连接 OB.正四面体的棱长为 12, 则 OE 为内切球的半径,BF=AF=6 3,BE=4 3, 所以 AE= 122-(4 3)2=4 6.
空间几何体体积问题的常见类型及解题策略 (1)若所给定的几何体是可直接用公式求解的柱体、锥体或台 体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用 转换法、分割法、补形法等方法进行求解. (3)若以三视图的形式给出几何体,则应先根据三视图得到几 何体的直观图,然后根据条件求解.
令 f(a)=3a4-a6(0<a< 3),则 f′(a)=12a3-6a5=-6a3(a2-2),
令 f′(a)=0,解得 a= 2.
因为当 a∈(0, 2)时,f′(a)>0;当 a∈( 2, 3)时,f′(a)<0, 所以函数 f(a)在(0, 2)上单调递增,在( 2, 3)上单调递减. 所以 f(a)在 a= 2处取得极大值 f( 2)=4. 因为函数 f(a)在区间(0, 3)上有唯一的极值,所以 f( 2)=4 也是最大值.故三棱柱体积的最大值为 24=1.
第八章 立体几何
第 2 讲 空间几何体的表面积与体积
1.圆柱、圆锥、圆台的面展开图及侧面积公式
圆柱
圆锥
圆台
侧面展 开图
侧面积 公式
2020届高三理数一轮讲义:8.2-空间几何体的表面积和体积(含答案)

第2节空间几何体的表面积和体积最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式.知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l3.空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=S底h锥体(棱锥和圆锥)S表面积=S侧+S底V=13S底h台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR3[微点提醒]1.正方体与球的切、接常用结论正方体的棱长为a,球的半径为R,(1)若球为正方体的外接球,则2R=3a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=2a.2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.3.正四面体的外接球与内切球的半径之比为3∶1.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)锥体的体积等于底面面积与高之积.()(2)两个球的体积之比等于它们的半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=32a.()解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确.(2)球的体积之比等于半径比的立方,故不正确.答案(1)×(2)×(3)√(4)√2.(必修2P27练习1改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cmB.2 cmC.3 cmD.32cm解析由题意,得S表=πr2+πrl=πr2+πr·2r=3πr2=12π,解得r2=4,所以r=2(cm).答案 B3.(必修2P27例4改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V球∶V柱为()A.1∶2B.2∶3C.3∶4D.1∶3解析设球的半径为R,则V球V柱=43πR3πR2×2R=23.答案B4.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.323π C.8π D.4π解析设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3 a,即R= 3.所以球的表面积S=4πR2=12π.答案 A5.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4 C.π2 D.π4解析如图画出圆柱的轴截面ABCD,O为球心.球半径R=OA=1,球心到底面圆的距离为OM=1 2.∴底面圆半径r=OA2-OM2=32,故圆柱体积V=π·r2·h=π·⎝⎛⎭⎪⎫322×1=3π4.答案 B6.(2018·浙江卷改编)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)为________.解析 由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V =12×(1+2)×2×2=6. 答案 6考点一 空间几何体的表面积【例1】 (1)(2019·南昌模拟)一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是( )A.4 3B.4 5C.4(5+1)D.8(2)(2018·洛阳模拟)某几何体的三视图如图所示,则其表面积为( )A.17π2B.9πC.19π2D.10π解析 (1)因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图.由题意知底面正方形的边长为2,正四棱锥的高为2,则正四棱锥的斜高PE=22+12= 5.所以该四棱锥的侧面积S=4×12×2×5=4 5.故选B.(2)由三视图可知该几何体由一个圆柱与四分之一个球组合而成. 圆柱的底面半径为1,高为3,球的半径为1,所以几何体的表面积为π×12+2π×1×3+4π×12×14+12π×12+12π×12=9π.故选B.答案(1)B(2)B规律方法 1.由几何体的三视图求其表面积:(1)关键是分析三视图确定几何体中各元素之间的位置关系及度量大小.(2)还原几何体的直观图,套用相应的面积公式.2.(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(2)旋转体的表面积问题注意其侧面展开图的应用.【训练1】(1)(2019·西安模拟)如图,网格纸上正方形小格的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π(2)(2018·烟台二模)某几何体的三视图如图所示,其中俯视图右侧曲线为半圆弧,则几何体的表面积为( )A.3π+42-2B.3π+22-2C.3π2+22-2D.3π2+22+2解析 (1)由三视图知,该几何体由一圆锥和一个圆柱构成的组合体, ∵S 圆锥侧=π×3×32+42=15π,S 圆柱侧=2π×1×2=4π,S 圆锥底=π×32=9π.故几何体的表面积S =15π+4π+9π=28π.(2)由三视图,该几何体是一个半圆柱挖去一直三棱柱,由对称性,几何体的底面面积S 底=π×12-(2)2=π-2.∴几何体表面积S =2(2×2)+12(2π×1×2)+S 底 =42+2π+π-2=3π+42-2. 答案 (1)C (2)A考点二 空间几何体的体积多维探究角度1 以三视图为背景的几何体的体积【例2-1】 (2019·河北衡水中学调研)某几何体的三视图如图所示,则该几何体的体积为( )A.6B.4C.223D.203解析 由三视图知该几何体是边长为2的正方体挖去一个三棱柱(如图),且挖去的三棱柱的高为1,底面是等腰直角三角形,等腰直角三角形的直角边长为2.故几何体体积V =23-12×2×2×1=6.答案 A角度2 简单几何体的体积【例2-2】 (2018·天津卷)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.解析 连接AD 1,CD 1,B 1A ,B 1C ,AC ,因为E ,H 分别为AD 1,CD 1的中点,所以EH ∥AC ,EH =12AC .因为F ,G 分别为B 1A ,B 1C 的中点,所以FG ∥AC ,FG =12AC .所以EH ∥FG ,EH =FG ,所以四边形EHGF 为平行四边形,又EG =HF ,EH =HG ,所以四边形EHGF 为正方形.又点M 到平面EHGF 的距离为12,所以四棱锥M -EFGH 的体积为13×⎝ ⎛⎭⎪⎫222×12=112.答案 112角度3 不规则几何体的体积【例2-3】 如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23B.33C.43D.32解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12, AG =GD =BH =HC =32,取AD 的中点O ,连接GO ,易得GO =22, ∴S △AGD =S △BHC =12×22×1=24,∴多面体的体积V =V 三棱锥E -ADG +V 三棱锥F -BCH +V 三棱柱AGD -BHC =2V 三棱锥E -ADG +V 三棱柱AGD -BHC =13×24×12×2+24×1=23.故选A. 答案 A规律方法 1.(直接法)规则几何体:对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解.2.(割补法)不规则几何体:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.3.(等积法)三棱锥:利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.(1)求体积时,可选择“容易计算”的方式来计算;(2)利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.【训练2】 (1)如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )A.3B.32C.1D.32(2)某几何体的三视图如图所示,则该几何体的体积为( )A.8π-163B.4π-163C.8π-4D.4π+83解析(1)如题图,在正△ABC中,D为BC中点,则有AD=32AB=3,又∵平面BB1C1C⊥平面ABC,平面BB1C1∩平面ABC=BC,AD⊥BC,AD⊂平面ABC,由面面垂直的性质定理可得AD⊥平面BB1C1C,即AD为三棱锥A-B1DC1的底面B1DC1上的高,∴V A-B1DC1=13S△B1DC1·AD=13×12×2×3×3=1.(2)该几何体为一个半圆柱中间挖去一个四面体,∴体积V=12π×22×4-13×12×2×4×4=8π-163.答案(1)C(2)A考点三多面体与球的切、接问题典例迁移【例3】(经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2 C.6π D.32π3解析由AB⊥BC,AB=6,BC=8,得AC=10.要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC的内切圆的半径为r.则12×6×8=12×(6+8+10)·r,所以r=2.2r=4>3,不合题意.球与三棱柱的上、下底面相切时,球的半径R最大.由2R=3,即R=3 2.故球的最大体积V=43πR3=92π.答案 B【迁移探究1】 若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积. 解 将直三棱柱补形为长方体ABEC -A 1B 1E 1C 1,则球O 是长方体ABEC -A 1B 1E 1C 1的外接球.∴体对角线BC 1的长为球O 的直径.因此2R =32+42+122=13.故S 球=4πR 2=169π.【迁移探究2】 若将题目的条件变为“如图所示是一个几何体的三视图”,试求该几何体外接球的表面积.解 设外接球的半径为R ,由三视图可知该几何体是两个正四棱锥的组合体(底面重合),上、下两顶点之间的距离为2R ,正四棱锥的底面是边长为2R 的正方形,由R 2+⎝ ⎛⎭⎪⎫22R 2=32解得R 2=6,故该球的表面积S =4πR 2=24π. 规律方法 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【训练3】 (2019·广州模拟)三棱锥P -ABC 中,平面PAC ⊥平面ABC ,AB ⊥AC ,PA =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( )A.23πB.234πC.64πD.643π解析如图,设O′为正△PAC的中心,D为Rt△ABC斜边的中点,H为AC中点.由平面PAC⊥平面ABC.则O′H⊥平面ABC.作O′O∥HD,OD∥O′H,则交点O为三棱锥外接球的球心,连接OP,又O′P=23PH=23×32×2=233,OO′=DH=12AB=2.∴R2=OP2=O′P2+O′O2=43+4=163.故几何体外接球的表面积S=4πR2=64 3π.答案 D[思维升华]1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2.求体积的两种方法:(1)割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2)等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高.[易错防范]1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.直观想象——简单几何体的外接球与内切球问题1.直观想象主要表现为利用几何图形描述问题,借助几何直观理解问题,运用空间想象认识事物,解决与球有关的问题对该素养有较高的要求.2.简单几何体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径长或确定球心O的位置问题,其中球心的确定是关键.类型1外接球的问题1.必备知识:(1)简单多面体外接球的球心的结论.结论1:正方体或长方体的外接球的球心是其体对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.(2)构造正方体或长方体确定球心.(3)利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.2.方法技巧:几何体补成正方体或长方体.【例1-1】某几何体的三视图如图所示,则该几何体的外接球的表面积为()A.25πB.26πC.32πD.36π解析由三视图可知,该几何体是以俯视图的图形为底面,一条侧棱与底面垂直的三棱锥.如图,三棱锥A-BCD即为该几何体,且AB=BD=4,CD=2,BC=23,则BD2=BC2+CD2,即∠BCD=90°,故底面外接圆的直径2r=BD=4.易知AD 为三棱锥A -BCD 的外接球的直径.设球的半径为R ,则由勾股定理得4R 2=AB 2+4r 2=32,故该几何体的外接球的表面积为4πR 2=32π.答案 C【例1-2】 (2019·东北三省四市模拟)已知边长为2的等边三角形ABC ,D 为BC的中点,沿AD 进行折叠,使折叠后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( )A.3πB.4πC.5πD.6π解析 连接BC ,由题知几何体ABCD 为三棱锥,BD =CD =1,AD =3,BD ⊥AD ,CD ⊥AD ,BD ⊥CD ,将折叠后的图形补成一个长、宽、高分别是3,1,1的长方体,其体对角线长为1+1+3=5,故该三棱锥外接球的半径是52,其表面积为5π.答案 C【例1-3】 (2019·广州二测)体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,PA ⊥平面ABC ,PA =2,∠ABC =120°,则球O 的体积的最小值为( ) A.773πB.2873πC.19193π D.76193π 解析 设AB =c ,BC =a ,AC =b ,由题可得3=13×S △ABC ×2,解得S △ABC =332.因为∠ABC =120°,S △ABC =332=12ac sin 120°,所以ac =6,由余弦定理可得b 2=a 2+c 2-2ac cos 120°=a 2+c 2+ac ≥2ac +ac =3ac =18,当且仅当a =c 时取等号,此时b min=3 2.设△ABC外接圆的半径为r,则bsin 120°=2r(b最小,则外接圆半径最小),故3232=2r min,所以r min= 6.如图,设O1为△ABC外接圆的圆心,D为PA的中点,R为球的半径,连接O1A,O1O,OA,OD,PO,易得OO1=1,R2=r2+OO21=r2+1,当r min=6时,R2min=6+1=7,R min=7,故球O体积的最小值为43πR3min=43π×(7)3=287π3.答案 B类型2内切球问题1.必备知识:(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(2)正多面体的内切球和外接球的球心重合.(3)正棱锥的内切球和外接球球心都在高线上,但不一定重合.2.方法技巧:体积分割是求内切球半径的通用做法.【例2】体积为4π3的球与正三棱柱的所有面均相切,则该棱柱的体积为________. 解析设球的半径为R,由4π3R3=4π3,得R=1,所以正三棱柱的高h=2.设底面边长为a,则13×32a=1,所以a=2 3.所以V=34×(23)2×2=6 3.答案6 3基础巩固题组(建议用时:40分钟)一、选择题1.一个球的表面积是16π,那么这个球的体积为( )A.163πB.323πC.16πD.24π解析 设球的半径为R ,则S =4πR 2=16π,解得R =2,则球的体积V =43πR 3=323π.答案 B2.(2015·全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛解析 设米堆的底面半径为r 尺,则π2r =8,所以r =16π.所以米堆的体积为V =14×13π·r 2·5=π12·⎝ ⎛⎭⎪⎫16π2·5≈3209(立方尺). 故堆放的米约有3209÷1.62≈22(斛).答案 B3.(2018·茂名模拟)一个几何体的三视图如图所示,则该几何体的体积是( )A.7B.152C.233D.476解析 由三视图可知,该几何体是正方体去掉一个三棱锥,正方体的棱长为2,三棱锥的三个侧棱长为1,则该几何体的体积V =23-13×12×1×1×1=8-16=476.答案 D4.(2019·安徽皖南八校二联)榫卯是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部位相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.图中网格纸上小正方形的边长为1,粗实线画出的是一种榫卯构件中榫的三视图,则其体积与表面积分别为( )A.24+52π,34+52πB.24+52π,36+54πC.24+54π,36+54πD.24+54π,34+52π解析 由三视图可知,这榫卯构件中的榫由一个长方体和一个圆柱拼接而成,故其体积V =4×2×3+π×32×6=24+54π,表面积S =2×π×32+2×π×3×6+4×3×2+2×2×3=54π+36.答案 C5.(2019·商丘模拟)一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10 cm的正方形,将该材料切削、打磨,加工成球,则能得到的最大球的半径最接近()A.3 cmB.4 cmC.5 cmD.6 cm解析由题意,知该硬质材料为三棱柱(底面为等腰直角三角形),所以最大球的半径等于侧视图直角三角形内切圆的半径,设为r cm,则10-r+10-r=10 2. ∴r=10-52≈3(cm).答案 A二、填空题6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析设新的底面半径为r,由题意得13πr2·4+πr2·8=13π×52×4+π×22×8,解得r=7.答案77.如图,三棱柱ABC-A1B1C1的体积为1,P为侧棱B1B上的一点,则四棱锥P-ACC1A1的体积为________.解析 设点P 到平面ABC 、平面A 1B 1C 1的距离分别为h 1,h 2,则棱柱的高为h =h 1+h 2,又记S =S △ABC =S △A 1B 1C 1,则三棱柱的体积为V =Sh =1.而从三棱柱中去掉四棱锥P -ACC 1A 1的剩余体积为V ′=V P -ABC +VP -A 1B 1C 1=13Sh 1+13Sh 2=13S (h 1+h 2)=13,从而VP -ACC 1A 1=V -V ′=1-13=23.答案 238.(2018·广州调研)如图是一个几何体的三视图,其中正视图和侧视图均是高为2,底边长为22的等腰三角形,俯视图是边长为2的正方形,则该几何体的外接球的体积是________.解析 如图所示,由三视图可得该几何体是三棱锥A -BCD ,其中点A ,B ,C ,D 均是该三棱锥所在长方体的棱的中点,AB =CD =22,长方体的高为2,易得该三棱锥的外接球的半径R =12+(2)2=3,因此该三棱锥的外接球的体积为4πR 33=43π.答案 43π三、解答题9.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解 由PO 1=2 m ,知O 1O =4PO 1=8 m.因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCD -A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).故仓库的容积是312 m 3.10.如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.解 (1)交线围成的正方形EHGF 如图所示.(2)如图,作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10.于是MH =EH 2-EM 2=6,AH =10,HB =6.故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确. 能力提升题组(建议用时:20分钟)11.(2018·德阳模拟)已知一个简单几何体的三视图如图所示,则该几何体的体积为( )A.3π+6B.6π+6C.3π+12D.12解析 由三视图还原几何体如图,该几何体为组合体,左半部分是四分之一圆锥,右半部分是三棱锥,则其体积V =14×13×π×32×4+13×12×3×3×4=3π+6.故选A.答案 A12.用长度分别为2,3,5,6,9(单位:cm)的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,则能够得到的长方体的最大表面积为()A.258 cm2B.414 cm2C.416 cm2D.418 cm2解析设长方体从同一顶点出发的三条棱的长分别为a,b,c,则长方体的表面积S=2(ab+bc+ac)≤12[(a+b)2+(b+c)2+(a+c)2],当且仅当a=b=c时上式“=”成立.由题意可知,a,b,c,不可能相等,故当a,b,c的大小最接近时,长方体的表面积最大,此时从同一顶点出发的三条棱的长为8,8,9,用长度为2,6的木棒连接,长度为3,5的木棒连接各为一条棱,长度为9的木棒为第三条棱,组成长方体,此时能够得到的长方体的最大表面积为2×(8×8+8×9+8×9)=416(cm2).答案 C13.(2019·合肥一检)如图,已知平面四边形ABCD满足AB=AD=2,∠A=60°,∠C=90°,将△ABD沿对角线BD翻折,使平面ABD⊥平面CBD,则四面体ABCD外接球的体积为________.解析在四面体ABCD中,∵AB=AD=2,∠A=60°,∴△ABD为正三角形.设BD的中点为M,连接AM,则AM⊥BD,又平面ABD⊥平面CBD,平面ABD∩平面CBD=BD,∴AM⊥平面CBD.∵△CBD为直角三角形,∴其外接圆的圆心是斜边BD的中点M,由球的性质知,四面体ABCD外接球的球心必在线段AM上.又△ABD为正三角形,∴球心是△ABD的中心,则外接球的半径为23×32×2=233,∴四面体ABCD外接球的体积为43×π×⎝⎛⎭⎪⎫2333=323π27.答案323π2714.(2018·沈阳质检)在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且点O为AC中点.(1)证明:A1O⊥平面ABC;(2)求三棱锥C1-ABC的体积.(1)证明因为AA1=A1C,且O为AC的中点,所以A1O⊥AC,又平面AA1C1C⊥平面ABC,平面AA1C1C∩平面ABC=AC,且A1O⊂平面AA1C1C,∴A1O⊥平面ABC.(2)解∵A1C1∥AC,A1C1⊄平面ABC,AC⊂平面ABC,∴A1C1∥平面ABC,即C1到平面ABC的距离等于A1到平面ABC的距离.由(1)知A1O⊥平面ABC且A1O=AA21-AO2=3,∴V C1-ABC =V A1-ABC=13S△ABC·A1O=13×12×2×3×3=1.。
2020高考数学一轮复习第八章立体几何8-2空间几何体的表面积与体积理

【2019最新】精选高考数学一轮复习第八章立体几何8-2空间几何体的表面积与体积理1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=.(3)正四面体的外接球与内切球的半径之比为3∶1.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)多面体的表面积等于各个面的面积之和.( √)(2)锥体的体积等于底面积与高之积.( ×)(3)球的体积之比等于半径比的平方.( ×)(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √)(5)长方体既有外接球又有内切球.( ×)(6)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.(×)1.(教材改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1 cm B.2 cmC.3 cm D. cm答案B解析S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2 cm.2.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm2 B.129 cm2C.132 cm2 D.138 cm2答案D解析该几何体如图所示,长方体的长,宽,高分别为6 cm,4 cm,3 cm,直三棱柱的底面是直角三角形,边长分别为3 cm,4 cm,5 cm,所以表面积S=[2×(4×6+4×3)+3×6+3×3]+(5×3+4×3+2××4×3)=99+39=138(cm2).3.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A.12π B.πC.8π D.4π答案A解析由题意可知正方体的棱长为2,其体对角线2即为球的直径,所以球的表面积为4πR2=(2R)2π=12π,故选A.4.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺3寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为( )A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺答案B解析设圆柱底面半径为r尺,高为h尺,依题意,圆柱体积为V=πr2h=2 000×1.62≈3×r2×13.33,所以r2≈81,即r≈9,所以圆柱底面圆周长为2πr≈54,54尺=5丈4尺,即圆柱底面圆周长约为5丈4尺,故选B. 5.(2016·成都一诊)如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为________.答案1∶1解析由三视图可知半球的半径为2,圆锥底面圆的半径为2,高为2,所以V圆锥=×π×23=π,V半球=×π×23=π,所以V剩余=V半球-V圆锥=π,故剩余部分与挖去部分的体积之比为1∶1.题型一求空间几何体的表面积例 1 (1)(2017·淮北月考)一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+B.18+ 3C.21 D.18(2)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.答案(1)A (2)12解析 (1)由几何体的三视图可知,该几何体的直观图如图所示,因此该几何体的表面积为6×(4-)+2××()2=21+.故选A.(2)设正六棱锥的高为h,侧面的斜高为h′.由题意,得×6××2××h=2,∴h=1,∴斜高h′==2,∴S侧=6××2×2=12.思维升华空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.(2016·大连模拟)如图所示的是一个几何体的三视图,则该几何体的表面积为________.答案26解析该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长,宽,高分别为4,1,2,挖去半圆柱的底面半径为1,高为1,所以表面积为S=S长方体表-2S半圆柱底-S圆柱轴截面+S半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+×2π×1=26.题型二求空间几何体的体积命题点1 求以三视图为背景的几何体的体积例2 (2016·山东)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.+πB.+πC.+π D.1+π答案C解析由三视图知,半球的半径R=,四棱锥为正四棱锥,它的底面边长为1,高为1,∴V=×1×1×1+×π×3=+π,故选C.命题点2 求简单几何体的体积例3 (2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.答案7解析设新的底面半径为r,由题意得πr2·4+πr2·8=π×52×4+π×22×8,解得r=.思维升华空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.(1)(2016·四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.(2)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )A. B. C. D.32答案(1) (2)A解析(1)由题意可知,因为三棱锥每个面都是腰为2的等腰三角形,由正视图可得俯视图(如图),且三棱锥高为h=1,则体积V=Sh=×(×2×1)×1=.(2)如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,∴S△AGD=S△BHC=××1=,∴V=VE-ADG+VF-BCH+VAGD-BHC=2VE-ADG+VAGD-BHC=×××2+×1=.故选A.题型三与球有关的切、接问题例4 已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )A. B.210C. D.310答案C解析如图所示,由球心作平面ABC的垂线,则垂足为BC的中点M.又AM=BC=,OM=AA1=6,所以球O的半径R=OA==.引申探究1.已知棱长为4的正方体,则此正方体外接球和内切球的体积各是多少?解由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R,内切球的半径为r.又正方体的棱长为4,故其体对角线长为4,从而V外接球=πR3=π×(2)3=32π,V内切球=πr3=π×23=.2.已知棱长为a的正四面体,则此正四面体的表面积S1与其内切球的表面积S2的比值为多少?解正四面体的表面积为S1=4··a2=a2,其内切球半径r为正四面体高的,即r =·a=a,因此内切球表面积为S2=4πr2=,则==.3.已知侧棱和底面边长都是3的正四棱锥,则其外接球的半径是多少?解依题意得,该正四棱锥的底面对角线的长为3×=6,高为=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.(2016·全国丙卷)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )A.4π B. C.6π D.32π3答案B解析由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V的最大值为.15.巧用补形法解决立体几何问题典例(2016·青岛模拟)如图,在△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,FC=4,AE=5,则此几何体的体积为________.思想方法指导解答本题时可用“补形法”完成.“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”,将不规则的几何体补成规则的几何体等.解析用“补形法”把原几何体补成一个直三棱柱,使AA′=BB′=CC′=8,所以V几何体=V三棱柱=×S△ABC×AA′=×24×8=96.答案961.已知某几何体的三视图如图所示,则该几何体的体积为( )A.4+ B.4+ C.4+ D.4+π答案C解析由题意可知,几何体的体积为圆柱的体积加长方体的体积再减去与长方体等高的圆柱的体积的,即π·12·3+2·2·1-π·12·1=4+.2.(2016·大同模拟)一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A. B.C. D.(4+π) 3答案B解析由三视图可知该几何体是由一个半圆锥和一个四棱锥组成的,其中半圆锥的底面半径为1,四棱锥的底面是一个边长为2的正方形,它们的高均为.则V=··=.故选B.3.(2015·山东)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. B. C. D.2π答案C解析过点C作CE垂直AD所在直线于点E,梯形ABCD绕AD所在直线旋转一周而形成的旋转体是由以线段AB的长为底面圆半径,线段BC为母线的圆柱挖去以线段CE 的长为底面圆半径,ED为高的圆锥,如图所示,该几何体的体积为V=V圆柱-V圆锥=π·AB2·BC-·π·CE2·DE=π×12×2-π×12×1=,故选C. 4.(2015·安微)一个四面体的三视图如图所示,则该四面体的表面积是( ) A.1+B.2+ 3C.1+2 D.2 2答案 B解析由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S表=2××2×1+2××()2=2+,故选B.5.(2016·广东东莞一中、松山湖学校联考)某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.π B.6π C.π D.π答案C解析该几何体是由半个圆柱和半个圆锥构成的组合体,所以V=×π×4×1+××π×4×2=π.故选C.6.(2016·福建三明一中第二次月考)如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为( )A. B. C.2 D.1答案A解析由题意知,球心在正方形的中心上,球的半径为1,则正方形的边长为.∵ABC—A1B1C1为直三棱柱,∴平面ABC⊥平面BCC1B1,∴BC为截面圆的直径,∴∠BAC=90°.∵AB=AC,∴AB=1.∴侧面ABB1A1的面积为×1=.故选A.7.如图,正方体ABCD-A1B1C1D1的棱长为,以顶点A为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和为________.答案π解析由题意,图中弧为过球心的平面与球面相交所得大圆的一段弧,因为∠A1AE =∠BAF=,所以∠EAF=,由弧长公式知弧的长为2×=.弧为不过球心的平面与球面相交所得小圆的一段弧,其圆心为B,因为球心到平面BCC1B1的距离d=,球的半径R=2,所以小圆的半径r==1,又∠GBF=,所以弧的长为1×=.故两段弧长之和为.8.(2016·新疆乌鲁木齐地区二诊)已知四面体ABCD满足AB=CD=,AC=AD=BC=BD=2,则四面体ABCD的外接球的表面积是________.答案7π解析(图略)在四面体ABCD中,取线段CD的中点为E,连接AE,BE.∵AC=AD=BC =BD=2,∴AE⊥CD,BE⊥CD.在Rt△AED中,CD=,∴AE=.同理BE=.取AB的中点为F,连接EF.由AE=BE,得EF⊥AB.在Rt△EFA中,∵AF=AB=,AE=,∴EF=1.取EF的中点为O,连接OA,则OF=.在Rt△OFA中,OA=.∵OA=OB=OC=OD,∴该四面体的外接球的半径是,∴外接球的表面积是7π.9. (2016·三门峡陕州中学对抗赛)如图所示,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.则三棱锥P-ABC体积的最大值为________.答案13解析VP-ABC=PO·S△ABC,当△ABC的面积最大时,三棱锥P-ABC体积达到最大值.当CO⊥AB时,△ABC的面积最大,最大值为×2×1=1,此时VP-ABC=PO·S△ABC =.10.(2016·浙江)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是________.答案12解析设PD=DA=x,在△ABC中,AB=BC=2,∠ABC=120°,∴AC=AB2+BC2-2·AB·BC·cos∠ABC==2,∴CD=2-x,且∠ACB=(180°-120°)=30°,∴S△BCD=BC·DC·sin∠ACB=×2×(2-x)×=(2-x).要使四面体体积最大,当且仅当点P到平面BCD的距离最大,而P到平面BCD的最大距离为x.则V四面体PBCD=×(2-x)x=[-(x-)2+3],由于0<x<2,故当x=时,V四面体PBCD的最大值为×3=.11.(2015·课标全国Ⅰ)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥EACD的体积为,求该三棱锥的侧面积.(1)证明因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,所以AC⊥BE.因为BE∩BD=B,故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)解设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=x,GB=GD=.因为AE⊥EC,所以在Rt △AEC中,可得EG=x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=x.由已知得,三棱锥EACD的体积VEACD=·AC·GD·BE=x3=.故x=2.从而可得AE=EC=ED=.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为.故三棱锥EACD的侧面积为3+2.*12.如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,EB=.(1)求证:DE⊥平面ADC;(2)设AC=x,V(x)表示三棱锥B-ACE的体积,求函数V(x)的解析式及最大值.(1)证明∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE.∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC.∵AB是圆O的直径,∴BC⊥AC,且DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,∴DE⊥平面ADC.(2)解∵DC⊥平面ABC,∴BE⊥平面ABC.在Rt△ABE中,AB=2,EB=.在Rt△ABC中,∵AC=x,BC=(0<x<2),∴S△ABC=AC·BC=x·,∴V(x)=VE-ABC=x·(0<x<2).∵x2(4-x2)≤()2=4,当且仅当x2=4-x2,即x=时,取等号,∴x=时,体积有最大值.。
2020版广西高考人教版数学(文)一轮复习课件:8.2 空间几何体的表面积与体积
第八章
知识梳理 双基自测
8.2
空间几何体的表面积与体积
知识梳理 核心考点 学科素养
-3-
1
2
3
4
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆 侧面 展开图 侧面积 公式
柱
圆
锥
圆
台
S 圆柱侧= 2πrl
S 圆锥侧= πrl
S 圆台侧= π(r1+r2)l
第八章
知识梳理 双基自测
8.2
空间几何体的表面积与体积
2 1 3 3 2 2 2 3π 4
关闭
V= B πr h=π×
2
×1= ,故选 B.
解析
答案
第八章
知识梳理 双基自测
8.2
空间几何体的表面积与体积
知识梳理 核心考点 学科素养-9-1 Nhomakorabea2
3
4
5
4.已知一个正方体的所有顶点在一个球面上,若这个正方体的表 面积为18,则这个球的体积为 .
关闭
设正方体的棱长为 a,外接球的半径为 R,则 2R= 3a. ∵正方体的表面积为 18, ∴6a2=18. 3 ∴a= 3,R= .
考点1 考点2 考点3
8.2
空间几何体的表面积与体积
知识梳理 核心考点 学科素养
-12-
考点 1
空间几何体的表面积
例1(2018福建龙岩质检)某几何体的三视图如图所示,则该几何体 的表面积为( )
关闭
由三视图可知,该几何体是一个组合体,左边是一个半球,球的半径为 1,右边是一个三棱柱,三棱柱底面是斜边长为 2 的等腰直角三角形, 高为 2,组合体的表面由球面积的一半、 圆面积、 棱柱的侧面积组成, 1 2+π×12+(2 2+2)×2=3π+4+4 2,故选 D. 表面积为 A.3π+8×4π×1 B.2 π+8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高三数学一轮复习第八章立体几何第二节空间几何体的表面积
和体积夯基提能作业本文
1.(2016广东3月适应性考试)一空间几何体的三视图如图所示,则该几何体的体积为( )
A.12
B.6
C.4
D.2
2.(2015山东,9,5分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )
A. B. C.2π D.4π
3.(2015课标Ⅱ,6,5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )
A. B. C. D.
4.(2015课标Ⅰ,6,5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )
A.14斛
B.22斛
C.36斛
D.66斛
5.(2017福建南平模拟)如图,一个几何体的三视图分别为两个等腰直角三角形和一个边长为2的正方形(含一条对角线),则该几何体的侧面积为( )
A.8(1+)
B.4(1+)
C.2(1+)
D.1+
6.(2016山西太原一模)如图,平面四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将其沿对角线BD折成四面体A'-BCD,使平面A'BD⊥平面BCD,若四面体A'-BCD的顶点在同一个球面上,则该球的表面积为( )
A.3π
B.π
C.4π
D.π
7.在棱长为3的正方体ABCD-A1B1C1D1中,P在线段BD1上,且=,M为线段B1C1上的动点,则三棱锥M-PBC 的体积为.
8.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.
9.已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.
10.(2015课标Ⅱ,19,12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(不必说明画法和理由);
(2)求平面α把该长方体分成的两部分体积的比值.
B组提升题组
11.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )
A.6
B.9
C.12
D.18
12.(2017贵州遵义模拟)某几何体的三视图如图所示,则该几何体的表面积为( )
A.24+12
B.24+5
C.12+15
D.12+12
13.某几何体的三视图如图所示,则该几何体的体积为( )
A.16+8π
B.8+8π
C.16+16π
D.8+16π
14.(2015课标Ⅱ,10,5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )
A.36π
B.64π
C.144π
D.256π
15.(2017安徽师大附中)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为( )
A.4
B.2
C.4
D.8
16.(2016课标全国Ⅱ,19,12分)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD
上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D'EF的位置.
(1)证明:AC⊥HD';
(2)若AB=5,AC=6,AE=,OD'=2,求五棱锥D'-ABCFE的体积.
答案全解全析
A组基础题组
1.D 该几何体为四棱锥P-ABCD,其中PA⊥平面ABCD,如图,
则该几何体的体积为V=×2××(2+1)×2=2.
2.B 依题意知,该几何体是以为底面半径,为高的两个同底圆锥组成的组合体,则其体积为
π()2××2=π,故选B.
3.D 如图,由已知条件可知,截去部分是以△ABC为底面且三条侧棱两两垂直的正三棱锥D-ABC.设正方体的棱长为a,则截去部分的体积为a3,剩余部分的体积为a3-a3=a3,它们的体积之比为.故选D.
4.B 设圆锥底面的半径为R尺,由×2πR=8得R=,从而米堆的体积V=×πR2×5=(立方尺),因
此堆放的米约有≈22(斛).故选B.
5.B 由已知中的三视图可得该几何体的直观图如图所示:
底面为正方形,AB=AD=2,棱锥的高为SA=2.
SB=SD=2,CD⊥SD,CB⊥SB,
所以S侧=S△SAB+S△SAD+S△SCB+S△SCD
=2S△SAB+2S△SCB
=2××2×2+2××2×2
=4+4.故选B.
6.A 由题意可得BD=A'C=,BC=,△BDC与△A'BC都是以BC为斜边的直角三角形,由此可得BC中点到A',B,C,D四个点的距离相等,故可得该三棱锥的外接球的直径为,所以该外接球的表面积
S=4π×=3π.
7.答案
解析∵=,∴点P到平面BC
1C的距离是点D1到平面BC1C距离的,即为=1,∵M为线段B1C1上的点,
∴S△MBC=×3×3=,∴V M-PBC=V P-MBC=××1=.
8.答案
解析该几何体由一个圆锥和一个圆柱组成,故体积V=π×12×4+×π×22×2=(m3).
9.答案
解析如图,设截面小圆的半径为r,球的半径为R,因为AH∶HB=1∶2,所以OH=R.由勾股定理,有
R2=r2+OH2,又由题意得πr2=π,则r=1,故R2=1+,即R2=.由球的表面积公式,得所求表面积
S=4πR2=.
10.解析(1)交线围成的正方形EHGF如图:
(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.
因为EHGF为正方形,所以EH=EF=BC=10.
于是MH==6,AH=10,HB=6.
因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.
B组提升题组
11.B 由三视图可得,该几何体为如图所示的三棱锥,其底面△ABC为等腰三角形且BA=BC,AC=6,AC边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=××6×3×3=9.故选B.
12.A 由已知可得该几何体为三棱柱,
底面是斜边长为4,斜边上的高为的直角三角形,
棱柱的高为4,
故棱柱的表面积S=2××4×+4×4+4×4sin 30°+4×4cos 30°=24+12,故选A.
13.A 由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4、2、2,圆柱的底面半径为2,高为4.所以该几何体的体积为V=4×2×2+π×22×4=16+8π.故选A.
14.C △AOB的面积为定值,当OC垂直于平面AOB时,三棱锥O-ABC的体积取得最大值.由R3=36得R=6.从而球O的表面积S=4πR2=144π.故选C.
15.D 根据题中三视图可得该几何体的直观图如图所示,则这个几何体的体积为2×2×3×=8.故选D.
16.解析(1)证明:由已知得AC⊥BD,AD=CD.
又由AE=CF得=,故AC∥EF.
由此得EF⊥HD,EF⊥HD',所以AC⊥HD'.
(2)由EF∥AC得==.
由AB=5,AC=6得DO=BO==4.
所以OH=1,D'H=DH=3.
于是OD'2+OH2=(2)2+12=9=D'H2,故OD'⊥OH.
由(1)知AC⊥HD',又AC⊥BD,BD∩HD'=H,所以AC⊥平面BHD',于是AC⊥OD'.
又由OD'⊥OH,AC∩OH=O,所以OD'⊥平面ABC.
又由=得EF=.
五边形ABCFE的面积S=×6×8-××3=.
所以五棱锥D'-ABCFE的体积V=××2=.。