常微分方程知识点总结

合集下载

常微分方程知识点整理

常微分方程知识点整理

常微分方程知识点整理常微分方程是数学中的一个重要分支,研究描述自然界中各种变化规律的微分方程。

在物理、工程、经济学等领域具有广泛的应用。

本文将对常微分方程的基本概念、分类、求解方法等知识点进行整理。

一、常微分方程的基本概念常微分方程是指未知函数的导数及其自变量的关系式。

一般形式为dy/dx = f(x, y),其中y是未知函数,x是自变量,f是已知的函数。

常微分方程可以分为一阶常微分方程和高阶常微分方程。

1. 一阶常微分方程:一阶常微分方程是指方程中只涉及到一阶导数的微分方程。

常见形式为dy/dx = f(x, y)。

其中f(x, y)是已知的函数,也可以是常数。

2. 高阶常微分方程:高阶常微分方程是指方程中涉及到二阶及以上导数的微分方程。

常见形式为d^n y/dx^n = f(x, y, dy/dx, ..., d^(n-1)y/dx^(n-1)),其中n为方程的阶数,f是已知的函数。

二、常微分方程的分类根据方程的形式和性质,常微分方程可以分为线性常微分方程、非线性常微分方程、齐次线性常微分方程等多种类型。

1. 线性常微分方程:线性常微分方程是指方程中未知函数及其导数之间的关系是线性的微分方程。

常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = f(x),其中a_n(x)、a_(n-1)(x)、...、a_1(x)、a_0(x)是已知的函数。

2. 非线性常微分方程:非线性常微分方程是指方程中未知函数及其导数之间的关系是非线性的微分方程。

常见形式为dy/dx = f(x, y),其中f(x, y)是已知的非线性函数。

3. 齐次线性常微分方程:齐次线性常微分方程是指方程中没有常数项的线性常微分方程。

常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = 0。

高中数学中的常微分方程知识点

高中数学中的常微分方程知识点

高中数学中的常微分方程知识点一、引言常微分方程是数学中的一个重要分支,它在自然科学、社会科学和工程技术等领域有着广泛的应用。

高中数学中的常微分方程知识点主要包括一阶微分方程、二阶微分方程和常微分方程的解法等内容。

二、一阶微分方程1. 概念一阶微分方程是指形如dy/dx + P(x)y = Q(x)的方程,其中P(x)和Q(x)是关于自变量x的已知函数。

2. 解法(1)分离变量法:将方程中的y和x分离,化为y = f(x)的形式,然后对两边进行积分。

(2)积分因子法:找出一个函数μ(x),使得原方程两边乘以μ(x)后,可以化为dy/dx + μP(x)y = μQ(x)的形式,然后利用积分因子公式求解。

(3)变量替换法:选择一个合适的变量替换,将原方程化为简单的一阶微分方程,然后求解。

3. 例子求解方程dy/dx + 2y = e^x。

(1)分离变量法:dy/y = e^x dx∫ dy = ∫ e^x dxy = e^x + C其中C是积分常数。

(2)积分因子法:μ(x) = e^(-∫ 2dx) = e^(-2x)μ(dy/dx + 2y) = μQ(x)e^(-2x)dy/dx + 2e^(-2x)y = e(-2x)e x(-dy/dx + 2y)e^(2x) = 1-dy/dx + 2y = e^(-2x)利用积分因子公式求解,得到:y * e^(2x) = -∫ e^(-2x) dx + Cy = (-1/2)e^(-2x) + C/e^(2x)三、二阶微分方程1. 概念二阶微分方程是指形如d²y/dx² + P(x)dy/dx + Q(x)y = R(x)的方程,其中P(x)、Q(x)和R(x)是关于自变量x的已知函数。

2. 解法(1)常数变易法:假设y = e^(αx),代入原方程,得到关于α的二次方程,求解得到α的值,进而求出y的解。

(2)待定系数法:假设y = e^(αx)的系数为待定系数,代入原方程,得到关于待定系数的方程,求解得到待定系数的值,进而求出y的解。

高等数学11单元第八章常微分方程

高等数学11单元第八章常微分方程

授课11单元教案第一节微分方程的基本概念教学过程一、引入新课初等数学中就有各种各样的方程:线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。

这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后求取方程的解。

方程的定义:含有未知数的的等式。

它表达了未知量所必须满足的某种条件。

根据对未知量所施行的数学运算的不同,我们可以将方程分成许多不同的类型来研究。

引例1二、新授课1、微分方程的定义:含有未知函数的导数或微分的方程,称为微分方程如果未知函数是一元函数的微分方程称为常微分方程式;如果未知函数是多元函数的微分方程式称为偏微分方程。

例如,22;d yx y x dx=+=dx 和是常微分方程dyzxy x∂=∂是偏微分方程. 微分方程中未知函数的最高阶导数的阶数,称为微分方程式的阶。

一阶微分方程的一般形式为 (,,)0F x y y '= 例如:2354()0y x y x '+-=,2()20dy dyx y x dx dx-+=都是一阶微分方程。

二阶微分方程的一般形式为 (,,,)0F x y y y '''= 例如:222sin 0d y dyyx dx dx-+=,2223()(2)y k y '''=+都是二阶微分方程。

类似可写出n 阶微分方程的一般形式 ()(,,,,)0n F x y y y y '''=。

其中F 是n +2个变量的函数。

这里必须指出,在方程()(,,,,)0n F x y y y y '''=中,()n y 必须出现,而,,,x y y '(1),n y y -''等变量可以不出现。

例如()()n y f x =也是n 阶微分方程。

例1 .指出下列方程中哪些是微分方程,并说明它们的阶数:122222222(1) 0; (2) 2;(3) sin 0; (4) 3;(5) '''3; (6) ;(7) '''(')0. t dy y dx y y x d yxdy y xdx y e dt yy y x dy dx x y xy y -==++=+=+==+-=2、微分方程的解能够满足微分方程的函数都称为微分方程的解 求微分方程的解的过程,称为解微分方程例如,函数3x 16是微分方程22d y x dx =的解。

高中数学常微分方程知识点总结

高中数学常微分方程知识点总结

高中数学常微分方程知识点总结微分方程是数学中的一个重要分支,它描述了变量之间的关系以及它们的变化率。

在高中数学课程中,学生们需要学习常微分方程的知识,并且利用这些知识解决实际问题。

本文将对高中数学中常微分方程的主要知识点进行总结。

一、常微分方程的基本概念常微分方程是包含未知函数的泛函方程,其一般形式为:dy/dx = f(x, y)。

其中,y是未知函数,f(x, y) 是已知的函数。

常微分方程的解是能够满足该方程的函数。

二、常微分方程的分类常微分方程可分为一阶常微分方程和高阶常微分方程。

1.一阶常微分方程一阶常微分方程是指未知函数的导数最高次数为一的微分方程,其一般形式为:dy/dx = f(x, y)。

一阶常微分方程的解可以通过分离变量、齐次方程、一阶线性方程等方法求解。

2.高阶常微分方程高阶常微分方程是指未知函数的导数最高次数大于一的微分方程。

高阶常微分方程的求解可以通过转换为一阶方程组、特解叠加法、特征方程等方法求解。

三、常微分方程的解法1.分离变量法对于一阶常微分方程,若可以将未知函数y和自变量x分离,则可以将方程化简为两个变量的乘积形式,从而可以通过分离变量的方式求解出y的表达式。

2.齐次方程法对于一阶常微分方程,若可以将未知函数y和自变量x在方程中通过同一个变量替换成比值的形式,则可以将方程化简为一个纯含有未知函数y的方程,从而可以通过变量代换解出y的表达式。

3.线性方程法对于一阶常微分方程,若可以将方程化简为形如dy/dx + P(x)y =Q(x)的线性方程,则可以通过积分因子或待定系数法等方法求解出未知函数y的表达式。

4.特解叠加法对于高阶常微分方程,可以通过叠加一般解和特解的方式求解出方程的解。

一般解是该方程的任意解,特解是方程的一个特殊解。

5.特征方程法对于高阶常微分方程,可以通过求解该方程的特征方程得到方程的特解形式。

特征方程是该方程对应的齐次方程的根的特征方程,通过求解特征方程的根可以得到方程的特解形式。

《常微分方程》知识点

《常微分方程》知识点

《常微分方程》知识点常微分方程,又称ODE(Ordinary Differential Equation),是研究未知函数的导数与自变量之间的关系的数学学科。

常微分方程在科学和工程领域中有着广泛的应用,涉及到许多重要的数学原理和方法。

下面将介绍常微分方程的一些重要知识点。

1.基本概念-常微分方程的定义:常微分方程是描述未知函数在其中一区域上的导数与自变量之间的关系的方程。

-方程的阶数:常微分方程中最高阶导数的阶数称为方程的阶数。

-解和解集:满足常微分方程的未知函数称为方程的解,所有满足方程的解的集合称为方程的解集。

2.常微分方程的分类-分离变量法:适用于可以通过变量分离的常微分方程,将所有含有未知函数的项移到方程的一边,其他项移到方程的另一边,然后两边同时积分求解。

-齐次方程:适用于可以化为齐次方程的常微分方程,通过进行变量的代换,将方程转化为一个只含有未知函数的项的齐次方程,然后求解。

-线性齐次方程:适用于可以化为线性齐次方程的常微分方程,通过变量的代换,将方程转化为一个只包含未知函数和其导数的项的线性齐次方程,然后求解。

-非齐次方程:适用于非齐次方程的常微分方程,可以通过对应的齐次方程的解和特解的叠加,得到非齐次方程的解。

-可降阶的方程:这类方程具有特殊的形式,通过进行变量的代换,可以将高阶常微分方程转化为一阶或者低阶的方程,然后求解。

3.常微分方程的解法-解析解:指通过直接计算得到的解析表达式,能够准确地求得方程的解。

-数值解:指通过数值计算的方法,例如欧拉法、龙格-库塔法等,近似求解方程的解。

4.常用的一阶常微分方程- 可分离变量的方程:形如dy/dx = f(x)g(y),通过将变量分离,然后积分求解得到解析解。

- 齐次方程:形如dy/dx = f(y/x),通过进行变量的代换,将方程转化为一个只含有未知函数的项的齐次方程,然后求解。

- 线性方程:形如dy/dx + p(x)y = q(x),通过变量的代换,将方程转化为一个只包含未知函数和其导数的项的线性齐次方程,然后求解。

大二常微分方程知识点

大二常微分方程知识点

大二常微分方程知识点常微分方程是数学中非常重要的一个分支,它研究的是指导自然界中各种现象变化规律的方程。

在大二学习阶段,我们需要掌握一些常微分方程的基本知识点,接下来将逐一介绍。

1. 常微分方程的定义及基本概念常微分方程是指包含一个未知函数及其导数的方程,并且仅涉及一个自变量。

常微分方程的解是未知函数的函数表达式,它满足方程本身以及初值条件。

常微分方程一般可以分为初值问题和边值问题。

初值问题是指在给定某一时刻的初值条件下,求解方程的解;而边值问题是在给定一定边界条件下,求解方程的解。

2. 一阶常微分方程一阶常微分方程是指方程中最高导数的阶数为一的常微分方程。

它可以分为可分离变量的一阶常微分方程、线性一阶常微分方程和齐次线性一阶常微分方程等。

可分离变量的一阶常微分方程可以通过对方程两边进行变量分离,然后进行积分求解。

线性一阶常微分方程可以通过求解其特征方程,得到通解。

如果已知特解,可以通过通解加上特解得到特定解。

齐次线性一阶常微分方程则可以转化为线性一阶常微分方程,并且其特征方程只有一个解。

3. 高阶常微分方程高阶常微分方程是指方程中最高导数的阶数大于一的常微分方程。

它可以分为常系数线性高阶常微分方程和非齐次线性高阶常微分方程等。

常系数线性高阶常微分方程可以通过求解其特征方程,得到通解。

如果已知特解,可以通过通解加上特解得到特定解。

非齐次线性高阶常微分方程则可以转化为常系数线性高阶常微分方程,并且其特征方程有多个解。

4. 常微分方程的解法技巧在解常微分方程时,我们可以借助一些常见的解法技巧,如变量分离法、齐次方程法、常数变易法、欧拉方程等。

变量分离法是指通过将方程中的变量分离,然后进行积分求解。

齐次方程法适用于齐次的高阶常微分方程,在此方法中,我们需要进行代换,将齐次方程转化为一阶常微分方程。

常数变易法适用于非齐次的高阶常微分方程,我们通过猜测特解的形式,并代入方程,再确定常数的值。

欧拉方程是针对常系数线性高阶常微分方程的解法,其中特解形式为 e^rx。

《常微分方程》知识点整理

《常微分方程》知识点整理

《常微分方程》知识点整理
一、定义与特点
常微分方程(ordinary differential equation)是数学中描述物理、
化学、生物等过程的重要工具,它描述物体状态及其变化的模型,可以用
来研究物体的动力、动力学、物理现象等问题。

它可以从几何角度、分析
角度以及物理角度这三个角度来看待,它是一个研究条件下物体状态和变
化的数学方程。

常微分方程有以下几个特点:
1.常微分方程是一类特殊的未知函数问题,它由一个函数及它的一阶
或多阶导数组成。

2.未知函数有可能是多元函数,也可能是单元函数,可以是实函数也
可以是复函数。

3.常微分方程的形式因微分函数种类而各异,有非线性方程、线性方程、常系数方程、变系数方程等类型。

4.常微分方程的解可以是定状态的、非定状态的、稳定的或不稳定的,它可以有解或得不到解。

5.常微分方程具有很深的理论性,可用来求解物理、化学、力学等问题,可以修正原来结论,使现象更加接近实际情况。

二、种类
1.线性常微分方程:线性微分方程是常微分方程中最简单的类型,它
的特点是多重未知函数的阶和系数形式都是定值,而不依赖于其他函数,
它的解可以直接用几何方法求解(比如可以用函数级数的展开形式求解)。

2.二次可积常微分方程:这类方程中。

大一常微分方程一知识点总结

大一常微分方程一知识点总结

大一常微分方程一知识点总结本文档旨在总结大一常微分方程一课程中的主要知识点,帮助同学们复和回顾相关内容。

1. 什么是微分方程微分方程是一个含有未知函数及其导数的方程。

它通常用于描述自然现象中包含变化速率的问题,如物理、工程和经济等领域。

2. 常见的常微分方程类型常微分方程可以分为以下几类:- 一阶常微分方程:只涉及一阶导数的方程。

常见的一阶方程包括分离变量方程、线性方程和齐次方程等。

- 二阶常微分方程:涉及二阶导数的方程。

常见的二阶方程包括常系数二阶齐次方程和非齐次方程等。

3. 常微分方程的解法常微分方程的解法主要有以下几种:- 分离变量法:将方程的未知函数与其导数分开,将方程变为两个可积的方程,再进行求解。

- 变量替换法:通过合适的变量替换,将原方程转化为可以更容易求解的形式。

- 齐次方程的解法:通过适当的变量替换,使得方程变为可以分离变量的形式,然后利用分离变量法求解。

- 常系数二阶齐次方程的解法:通过对方程进行特征根分析,得到方程的通解。

- 非齐次方程的解法:通过求解对应的齐次方程的通解和非齐次方程的特解,得到非齐次方程的通解。

4. 常微分方程的应用常微分方程在各个领域都有广泛的应用,包括但不限于以下几个方面:- 物理学:常微分方程可以用于描述物理系统的运动规律,如牛顿运动定律、电路中的电流变化等。

- 工程学:常微分方程可以用于描述工程问题中的变化和变化率,如电路中的电压变化、机械系统的振动等。

- 经济学:常微分方程可以用于描述经济系统中的变化和变化率,如经济增长模型、人口增长模型等。

以上是对大一常微分方程一课程的主要知识点的简要总结,希望能够为同学们的学习提供一些帮助和参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程知识点总结
常微分方程知识点总结
常微分方程知识点你学得怎么样呢?下面是的常微分方程知识
点总结,欢迎大家阅读!
微分方程的概念
方程对于学过中学数学的人来说是比较熟悉的;在初等数学中
就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。

这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。

但是在实际工作中,常常出现一些特点和以上方程完全不同的
问题。

比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。

物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。

也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。

解这类问题的基本思想和初等数学解方程的基本思想很相似,
也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。

但是无论在方程
的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。

在数学上,解这类方程,要用到微分和导数的知识。

因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。

微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。

牛顿在建立微积分
的同时,对简单的微分方程用级数来求解。

后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。

常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。

数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。

牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。

后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。

这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。

微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。

微分方程也就成了最有生命力的数学分支。

常微分方程的内容
如果在一个微分方程中出现的函数只含一个自变量,这个方程就叫做常微分方程,也可以简单地叫做微分方程。

一般地说,n阶微分方程的解含有n个任意常数。

也就是说,微分方程的解中含有任意常数的个数和方程的解数相同,这种解叫做微分方程的通解。

通解构成一个函数族。

如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解。

对于高阶微分方程可以引入新的函数,把它化为多个一阶微分方程组。

常微分方程的特点
常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。

下面就方程解的有关几点简述一下,以了解常微分方程的特点。

求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。

也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。

后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。

当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来。

一个常微分方程是不是有特解呢?如果有,又有几个呢?这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理。

因为如果没有解,而我们要去求解,那是没有意义的;如果有解而又不是唯一的,那又不好确定。

因此,存在和唯一性定理对于微分方程的求解是十分重要的。

大部分的常微分方程求不出十分精确的解,而只能得到近似解。

当然,这个近似解的精确程度是比较高的。

另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。

现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。

这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。

应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。

相关文档
最新文档