高中数学同步学案 函数的平均变化率
函数的平均变化率

高二数学A 学案 函数的平均变化率编号:9 编制:纪登彪 审核:姜希青 时间:2012-2-17一、学习目标1、通过实例分析,理解函数平均变化率的意义;2、会求函数()f x 在0x 到0x x +∆之间的平均变化率。
二、基础知识1、函数平均变化率的定义:已知函数()01,,y f x x x =是其定义域内不同的两点,令x ∆= ,()()1010y y y f x f x ∆=-=-=,则当 时,商 称作函数()y f x =在区间[]00,x x x +∆(或[]00,x x x +∆)的平均变化率。
2、思考:若函数在[]12,x x 内的平均变化率为0,能否说明函数()y f x =没有发生变化?3、函数的平均变化率可以表现出函数的变化趋势,自变量的改变量x ∆取值越小,越能准确体现函数的变化规律。
三、典型例题例1、已知函数()31f x x =+,计算()f x 在-3到-1之间和在1到1x +∆之间的平均变化率。
【变式训练】:求()221y f x x ==+在0x 到0x x +∆之间的平均变化率,并求当011,2x x =∆=时平均变化率的值。
例2、已知一物体的运动方程为()223s t t x =++,求物体在1t =到1t t =+∆这段时间内的平均速度。
变式训练:一质点作直线运动,其位移s 与时间t 的关系为()21s t t =+,该质点在2到()20t t +∆∆>之间的平均速度不大于5,求t ∆的取值范围。
四、当堂训练1、已知函数2y x=,当x 由2变为1.5时,函数的改变量y ∆= 2、在平均变化率的定义中,自变量的改变量x ∆为( )A。
0x ∆> B、0x ∆< C、0x ∆= D、0x ∆≠2、一半径为r 的圆面,当半径增大r ∆时,面积S 的增量是多少?平均变化率为多少?。
1.1.1函数的平均变化率

学案1.1 .1 函数的平均变化率编者:刘志英2009.2.18【课标点击】(一)学习目标(1)掌握平均变化率的概念;能通过计算平均变化率了解曲线的陡峭程度,能理解平均变化率的实际意义;(2)能熟练计算函数在某区间上平均变化率.(二)教学重点,难点(1)掌握平均变化率的概念并能熟练地计算.【课前准备】(一)问题导引问题一:如图,某市2004年4月20号最高气温为33.4C,而此前的两天,4月19号和4月18号最高气温分别为24.4C和18.6C,短短两天时间气温“陡增”14.8C,人们无不感叹:“天气热得太快了”.问题二:(1)将该市2004年3月18号最高气温为3.5C与4月18号最高气温18.6C进行比较,两者的温差为15.1C,甚至超过了14.8C,人们却不发出上述感叹,为什么?(2)从图象上观察,,B C 之间的曲线较,A B 之间的曲线谁更“陡峭”?问题答案: 用比值33.418.6()3432C B C By y x x ----来近似地量化,B C 之间的曲线的陡峭程度,并称该比值为气温在区间[32,34]上的平均变化率.即气温在区间[1,32]上的平均变化率为18.6 3.515.10.532131-=≈-. 即气温在区间[32,34]上的平均变化率为33.418.614.87.434322-==-. 虽然,B C 与,A B 之间温差几乎相同,但平均变化率却相差很大.【学习探究】(一)自学课本第3、4页知识点梳理:1, 自变量的改变量2, 函数值的该变量3, 函数的平均变化率(二)思考与讨论函数()f x 在区间12[,]x x 上的平均变化率表示为:2121()()f x f x x x --. 可以吗? 在图形上的表现为:平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”。
(三).典例示范例1.某婴儿从出生到第12个月的体重变化如图,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.解:从出生到第3个月,婴儿体重的平均变化 率为:6.5 3.51(/)30kg -=-月. 从第6个月到第12个月,婴儿体重的平均变化 率为:118.60.4(/)126kg -=-月. 例2. 如图水经过缸吸管从容器甲中流向容器乙,t s 后容器甲中水的体积0.1()5t V t e-=(单位3)cm 计算第一个10s 内V 的平均变化率.解:区间[0.10]上,体积V 的平均变化率为:3(10)(0) 1.83950.3161(/)10010V V cm s --≈=--. 负号表示容器甲中的水在减少.例3.已知2()f x x =,分别计算()f x 在下列区间上的平均变化率:(1)[1,3]; (2)[1,2]; (3)[1,1.1] ; (4)[1,1.001].解:(1)()f x 在[1,3]上的平均变化率为:22(3)(1)3143131f f --==--; (2)()f x 在[1,2]上的平均变化率为:22(2)(1)2132121f f --==--; (3)()f x 在[1,1.1]上的平均变化率为:22(1.1)(1) 1.11 2.11.11 1.11f f --==--; (4)()f x 在[1,1.001]上的平均变化率为:22(1.001)(1) 1.0011 2.0011.0011 1.0011f f --==--. 例4.已知函数()21f x x =+,()2g x x =-,分别计算()f x ,()g x 在区间[31]--,[0,5]上的平均变化率.解:()f x 在区间[31]--上的平均变化率为:(1)(3)2(1)(3)f f ---=---. ()f x 在区间[0,5]上的平均变化率为:(5)(0)250f f -=-. ()g x 在区间[31]--上的平均变化率为:(1)(3)2(1)(3)g g ---=----. ()g x 在区间[0,5]上的平均变化率为:(5)(0)250g g -=--. (四)变式拓展1、一次函数y kx b =+在区间[,]m n 上的平均变化率有什么特点?(等于它的斜率).2.函数()f x 在区间[,]m n 上的平均变化率与曲线上两点(,())m f m ,(,())n f n 间的斜率有何关系?3.练习:书5P 练习A 1,2,题(五)归纳总结:(六)当堂检测 书P 5练习A3题【巩固提高】A 组:书P 5练习B1、2题B 组:1.已知曲线212y x =上两点的横坐标是0x 和0x x +∆,求过AB 两点的直线斜率;2.一物体按规律210s t t =+作变速直线运动,求该物体从2秒末到6秒末这段时间内的平 均速度;。
高中数学人教B版选修2—2第一章1.1.1《函数的平均变化率》优秀教案

1.1.1 《函数的平均变化率》教案教学目的:理解函数的平均变化率,为进一步学习导数的概念做好准备.重点难点:数学符号语言的理解.学科素养:用所学探索未知,通过数学定义的教学,体会数学研究的手段方法.一、引入与新课:【提出问题】问题1:春游爬山的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁。
怎样用数学反映山坡的平缓与陡峭程度?【抽象概括】假设图一是一座山的剖面示意图,并建立如图所示平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示.自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.我们先假定一小段山路是直的(曲化直)。
设点A 的坐标为(x 0,y 0),点B 的坐标为(x 1,y 1)(如图二).问题2:若旅游者从点A 爬到点B ,且这段山路是平直的,自变量x 和函数值y 的改变量分别是多少? 提示:自变量x 的改变量为x 1-x 0,记作Δx =x 1-x 0,函数值y 的改变量为y 1-y 0,记作Δy =y 1-y 0. 问题3:根据Δx 与Δy 的大小能否判断山坡陡峭程度?提示:图三可知,Δy 相同,Δx 不同,山坡AB 与BC 陡峭程度不同;图四可知,Δy 不同,Δx 相同,山坡AB 与BC 陡峭程度也不同。
所以根据Δx 与Δy 的大小不能判断山坡陡峭程度图一 图二图三图四问题4:观察图三和图四,可以用怎样的数量刻画弯曲山路的陡峭程度呢?提示:观察图三和图四可知,两边山坡的倾斜的角度可以刻画山路的陡峭程度。
联想到直线的倾斜角的定义,可知1010tan y y y k x x xθ-∆===-∆可近似地刻画. 【解决问题】显然,“线段”所在直线的斜率的绝对值越大,山坡越陡.这就是说,竖直位移与水平位移之比Δy Δx的绝对值越大,山坡越陡,反之,山坡越缓.现在摆在我们面前的问题是:山路是弯曲的,怎样用数量刻画弯曲山路的陡峭程度?一个很自然的想法是将弯曲山路分成许多小段(分割),每一小段山坡可视为平直的。
函数的平均变化率教案

函数的平均变化率教案一、教学目标1. 让学生理解函数的平均变化率的定义及其几何意义。
2. 培养学生利用导数求函数的平均变化率的能力。
3. 引导学生运用函数的平均变化率解决实际问题。
二、教学内容1. 函数的平均变化率的定义2. 函数的平均变化率的计算3. 函数的平均变化率的应用三、教学重点与难点1. 教学重点:函数的平均变化率的定义及其计算方法。
2. 教学难点:函数的平均变化率在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解函数的平均变化率的定义、计算方法及其应用。
2. 利用几何图形和实例,帮助学生形象理解函数的平均变化率。
3. 开展小组讨论,引导学生运用函数的平均变化率解决实际问题。
五、教学过程1. 导入:通过举例,如物体在直线运动中的速度变化,引入函数的平均变化率的概念。
2. 新课讲解:讲解函数的平均变化率的定义,引导学生理解函数的平均变化率的几何意义。
讲解如何利用导数求函数的平均变化率,并通过示例进行演示。
3. 案例分析:给出几个实际问题,让学生运用函数的平均变化率进行解决,巩固所学知识。
4. 课堂练习:布置一些有关函数的平均变化率的练习题,让学生独立完成,检测学习效果。
提出一些拓展问题,激发学生的学习兴趣。
六、课后作业1. 复习本节课的内容,重点掌握函数的平均变化率的定义及其计算方法。
2. 完成课后练习题,巩固所学知识。
3. 思考并解答拓展问题,提高运用能力。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生完成的课后作业,评估学生对函数的平均变化率的理解和应用能力。
3. 小组讨论:评估学生在小组讨论中的表现,包括合作态度、问题解决能力等。
八、教学反思在课后对教学情况进行反思,分析学生的学习效果,针对存在的问题调整教学方法和要求,以提高教学质量。
九、教学资源1. PPT课件:制作精美的PPT课件,辅助讲解函数的平均变化率的概念和计算方法。
函数的平均变化率教案

§1.1 导 数1.1.1 函数的平均变化率【学习要求】1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的一些实际问题.【学法指导】从山坡的平缓与陡峭程度理解函数的平均变化率,也可以从图象上数形结合看平均变化率的几何意义.填一填:知识要点、记下疑难点1.函数的平均变化率:已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx = x 1-x 0 ,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0) ,则当Δx ≠0时,商f x 0+Δx -f x 0Δx=_Δy Δx ___叫做函数y =f (x )在x 0到x 0+Δx 之间的 平均变化率 .2.函数y =f (x )的平均变化率的几何意义:Δy Δx=_____f (x 2)-f (x 1)x 2-x 1_____ 表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的 斜率 .研一研:问题探究、课堂更高效[问题情境]在爬山过程中,我们都有这样的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁.怎样用数学反映山坡的平缓与陡峭程度呢?下面我们用函数变化的观点来研究这个问题.探究点一 函数的平均变化率问题1 如何用数学反映曲线的“陡峭”程度?答 如图,表示A 、B 之间的曲线和B 、C之间的曲线的陡峭程度,可以近似地用直线的斜率来量化.如用比值y C -y B x C -x B近似量化B 、C 这一段曲线的陡峭程度,并称该比值是曲线在[x B ,x C ]上的平均变化率. 问题2 什么是平均变化率,平均变化率有何作用?答 如果问题中的函数关系用y =f (x )表示,那么问题中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.解 从出生到第3个月,婴儿体重平均变化率为6.5-3.53-0=1(千克/月). 从第6个月到第12个月,婴儿体重平均变化率为11-8.612-6=2.46=0.4(千克/月). 问题3 平均变化率有什么几何意义?答 设A (x 1,f (x 1)),B (x 2,f (x 2))是曲线y =f (x )上任意不同的两点,函数y =f (x )的平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1=f (x 1+Δx )-f (x 1)Δx 为割线AB 的斜率.x 1,x 2是定义域内不同的两点,因此Δx ≠0,但Δx 可正也可负;Δy =f (x 2)-f (x 1)是相应Δx =x 2-x 1的改变量,Δy 的值可正可负,也可为零.因此,平均变化率可正可负,也可为零.跟踪训练1如图是函数y =f (x )的图象,则:(1)函数f (x )在区间[-1,1]上的平均变化率为________;(2)函数f (x )在区间[0,2]上的平均变化率为________.解析 (1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12. 2)由函数f (x )的图象知,f (x )=⎩⎨⎧ x +32,-1≤x ≤1x +1,1<x ≤3.所以函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34. 答案 (1)12 (2)34探究点二 求函数的平均变化率例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率:(1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001].解 (1)函数f (x )在[1,3]上的平均变化率为f 3-f 13-1=32-122=4; (2)函数f (x )在[1,2]上的平均变化率为f 2-f 12-1=22-121=3; 3)函数f (x )在[1,1.1]上的平均变化率为f 1.1-f 11.1-1=1.12-120.1=2.1; (4)函数f (x )在[1,1.001]上的平均变化率为f 1.001-f 11.001-1=1.0012-120.001=2.001. 小结 函数的平均变化率可以表现出函数的变化趋势,自变量的改变量Δx 取值越小,越能准确体现函数的变化情况. 跟踪训练2 分别求函数f (x )=1-3x 在自变量x 从0变到1和从m 变到n (m ≠n )时的平均变化率.解 自变量x 从0变到1时,函数f (x )的平均变化率为1-3×1-1-01-0=-3, 自变量x 从m 变到n 时,函数f (x )的平均变化率为1-3n -1-3m n -m=-3. 问题 一次函数y =kx +b (k ≠0)在区间[m ,n ]上的平均变化率有什么特点?答 根据函数平均变化率的几何意义,一次函数图象上任意两点连线的斜率是定值k ,即一次函数的平均变化率是定值. 探究点三 平均变化率的应用例3 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?解 由图象可知s 1(t 0)=s 2(t 0),s 1(0)>s 2(0),则s 1t 0-s 10t 0<s 2t 0-s 20t 0, 所以在从0到t 0这段时间内乙的平均速度大.小结 平均变化率的绝对值反映函数在给定区间上变化的快慢,平均变化率的绝对值越大,函数在区间上的变化越快;平均变化率的绝对值越小,函数在区间上的变化越慢.跟踪训练3 甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲、乙两人的经营成果?解 甲赚钱的平均速度为105×12=1060=16(万元/月),乙赚钱的平均速度为25(万元/月). 所以乙的经营成果比甲的好.1.函数f (x )=5-3x 2在区间[1,2]上的平均变化率为__-9 ________.解析 函数f (x )=5-3x 2在区间[1,2]上的平均变化率为f 2-f 12-1=5-3×22-5-31=-9. 2.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度为__2______.3. 甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是___乙_____.解析 在t 0处,虽然W 1(t 0)=W 2(t 0),但是,在t 0-Δt 处,W 1(t 0-Δt )<W 2(t 0-Δt ),即⎪⎪⎪⎪⎪⎪W 1t 0-W 1t 0-Δt Δt <⎪⎪⎪⎪⎪⎪W 2t 0-W 2t 0-Δt Δt , 所以,在相同时间Δt 内,甲厂比乙厂的平均治污率小.所以乙厂治污效果较好.课堂小结:1.函数的平均变化率可以表示函数值在某个范围内变化的快慢;平均变化率的几何意义是曲线割线的斜率,在实际问题中表示事物变化的快慢.2.求函数f (x )的平均变化率的步骤:(1)求函数值的增量Δy =f (x 2)-f (x 1);(2)计算平均变化率Δy Δx =f x 2-f x 1x 2-x 1.。
高中数学人教B版选修2-2学案:1.1.1 函数的平均变化率

1.1.1函数的平均变化率明目标、知重点1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的一些实际问题.1.函数的平均变化率已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商f (x 0+Δx )-f (x 0)Δx =ΔyΔx 叫做函数y =f (x )在x 0到x 0+Δx (或[x 0+Δx ,x 0])之间的平均变化率. 2.函数y =f (x )的平均变化率的几何意义Δy Δx =f (x 2)-f (x 1)x 2-x 1表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的斜率.[情境导学]某市2013年5月30日最高气温是33.4℃,而此前的两天5月29日和5月28日最高气温分别是24.4℃和18.6℃,短短两天时间,气温“陡增”14.8℃,闷热中的人们无不感叹:“天气热得太快了!”但是,如果我们将该市2013年4月28日最高气温3.5℃和5月28日最高气温18.6℃进行比较,可以发现二者温差为15.1℃,甚至超过了14.8℃,而人们却不会发出上述感慨,这是什么原因呢?显然原因是前者变化得“太快”,而后者变化得“缓慢”,那么在数学中怎样来刻画变量变化得快与慢呢? 探究点一函数的平均变化率思考1如何用数学反映曲线的“陡峭”程度?答如图,表示A 、B 之间的曲线和B 、C 之间的曲线的陡峭程度,可以近似地用直线的斜率来量化.如用比值y C -y Bx C -x B 近似量化B 、C 这一段曲线的陡峭程度,并称该比值是曲线在[x B ,x C ]上的平均变化率.思考2什么是平均变化率,平均变化率有何作用?答如果问题中的函数关系用y =f (x )表示,那么问题中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.思考3平均变化率有什么几何意义?答设A (x 1,f (x 1)),B (x 2,f (x 2))是曲线y =f (x )上任意不同的两点,函数y =f (x )的平均变化率ΔyΔx =f (x 2)-f (x 1)x 2-x 1=f (x 1+Δx )-f (x 1)Δx 为割线AB 的斜率.x 1,x 2是定义域内不同的两点,因此Δx ≠0,但Δx 可正也可负;Δy =f (x 2)-f (x 1)是相应Δx =x 2-x 1的改变量,Δy 的值可正可负,也可为零.因此,平均变化率可正可负,也可为零. 例1某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.解从出生到第3个月,婴儿体重平均变化率为 6.5-3.53-0=1(千克/月). 从第6个月到第12个月,婴儿体重平均变化率为11-8.612-6=2.46=0.4(千克/月). 反思与感悟求平均变化率的主要步骤: (1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.跟踪训练1如图是函数y =f (x )的图象,则:(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 答案(1)12(2)34解析(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1x +1,1<x ≤3.所以函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.探究点二求函数的平均变化率例2已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001]. 解(1)函数f (x )在[1,3]上的平均变化率为 f (3)-f (1)3-1=32-122=4;(2)函数f (x )在[1,2]上的平均变化率为 f (2)-f (1)2-1=22-121=3;(3)函数f (x )在[1,1.1]上的平均变化率为 f (1.1)-f (1)1.1-1=1.12-120.1=2.1;(4)函数f (x )在[1,1.001]上的平均变化率为f (1.001)-f (1)1.001-1=1.0012-120.001=2.001.反思与感悟函数的平均变化率可以表现出函数的变化趋势,自变量的改变量Δx 取值越小,越能准确体现函数的变化情况.跟踪训练2求函数y =x 2在x =1,2,3附近的平均变化率,判断哪一点附近平均变化率最大?解在x =1附近的平均变化率为k 1=f (1+Δx )-f (1)Δx =(1+Δx )2-1Δx =2+Δx ;在x =2附近的平均变化率为k 2=f (2+Δx )-f (2)Δx =(2+Δx )2-22Δx =4+Δx ;在x =3附近的平均变化率为k 3=f (3+Δx )-f (3)Δx =(3+Δx )2-32Δx =6+Δx ;对任意Δx 有,k 1<k 2<k 3,∴在x =3附近的平均变化率最大.思考一次函数y =kx +b (k ≠0)在区间[m ,n ]上的平均变化率有什么特点?答根据函数平均变化率的几何意义,一次函数图象上任意两点连线的斜率是定值k ,即一次函数的平均变化率是定值. 探究点三平均变化率的应用例3甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?解由图象可知s 1(t 0)=s 2(t 0),s 1(0)>s 2(0), 则s 1(t 0)-s 1(0)t 0<s 2(t 0)-s 2(0)t 0,所以在从0到t 0这段时间内乙的平均速度大.反思与感悟平均变化率的绝对值反映函数在给定区间上变化的快慢,平均变化率的绝对值越大,函数在区间上的变化越快;平均变化率的绝对值越小,函数在区间上的变化越慢. 跟踪训练3甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲、乙两人的经营成果?解甲赚钱的平均速度为105×12=1060=16(万元/月),乙赚钱的平均速度为25(万元/月).因为乙平均每月赚的钱数大于甲平均每月赚的钱数, 所以乙的经营成果比甲的好.1.如果质点M 按规律s =3+t 2运动,则在一小段时间[2,2.1]中相应的平均速度是() A .4 B .4.1 C .0.41 D .3 答案B解析v =(3+2.12)-(3+22)0.1=4.1.2.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度为________. 答案23.已知函数h (x )=-4.9x 2+6.5x +10.(1)计算从x =1到x =1+Δx 的平均变化率,其中Δx 的值为①2;②1;③0.1;④0.01. (2)根据(1)中的计算,当|Δx |越来越小时,函数h (x )在区间[1,1+Δx ]上的平均变化率有怎样的变化趋势?解(1)∵Δy =h (1+Δx )-h (1) =-4.9(Δx )2-3.3Δx , ∴ΔyΔx=-4.9Δx -3.3. ①当Δx =2时,ΔyΔx =-4.9Δx -3.3=-13.1;②当Δx =1时,ΔyΔx =-4.9Δx -3.3=-8.2;③当Δx =0.1时,ΔyΔx =-4.9Δx -3.3=-3.79;④当Δx =0.01时,ΔyΔx=-4.9Δx -3.3=-3.349.(2)当|Δx |越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率逐渐变大,并接近于-3.3. [呈重点、现规律]1.函数的平均变化率可以表示函数值在某个范围内变化的快慢;平均变化率的几何意义是曲线割线的斜率,在实际问题中表示事物变化的快慢. 2.求函数f (x )的平均变化率的主要步骤: (1)先计算函数值的改变量Δy =f (x 2)-f (x 1); (2)再计算自变量的改变量Δx =x 2-x 1; (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.。
人教B版高中数学选修函数的平均变化率学案

§3.1.1变化率问题【学习目标】了解平均变化率的定义。
理解公式并会用公式来计算函数在指定区间上的平均变化率。
【自学点拨】[问题1] 已知函数()x f ,则变化率可用式子_____________,此式称之为函数()x f 从1x 到2x 的___________.习惯上用x ∆表示12x x -,即x ∆=___________,可把x ∆看做是相对于1x 的一个“增量”,可用+1x x ∆代替2x ,类似有=∆)(x f __________________,于是,平均变化率可以表示为_______________________[问题2] 在吹气球问题中,当空气容量V 从0增加到1L 时,气球的平均膨胀率为__________ 当空气容量V 从1L 增加到2L 时,气球的平均膨胀率为__________________ 当空气容量从V 1增加到V 2时,气球的平均膨胀率为_______________[问题3]在高台跳水运动中,,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10. 如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态?在5.00≤≤t 这段时间里,v =_________________在21≤≤t 这段时间里,v =_________________在21t t t ≤≤这段时间里,v =_________________ [问题4]对于公式,应注意:(1)平均变化率公式中,分子是区间两端点间的函数值的差,分母是区间两端点间的_______的差。
(2)平均变化率公式中,分子、分母中同为被减数的是右端点,减数是左端点,一定要同步。
[问题5] 平均变化率=∆∆x f12)()(x x x f x f --表示什么?【课前练习】1、函数()2x x f =在区间[]3,1-上的平均变化率是( ) x 2 AA 、4B 、2C 、41D 、43 2、经过函数22x y -=图象上两点A 、B 的直线的斜率(1,5.1==B A x x )为_______;函数22x y =在区间[1,1.5]上的平均变化率为_________________3、如果质点M 按规律23t s +=运动,则在时间[2,2.1]中相应的平均速度等于______【课后练习】1、 已知函数1)(2+-=x x f ,分别计算()x f 在下列区间上的平均变化率 (1)[1,1.01] (2)[0.9,1] (3)[0.99,1] (4)[1,1.001]2、 已知一次函数)(x f y =在区间[-2,6]上的平均变化率为2,且函数图象过点(0,2),试求此一次函数的表达式。
高中数学 3.1.1函数的平均变化率学案 新人教B版选修22

高中数学 3.1.1函数的平均变化率学案 新人教B 版选修
22
【知识要点】
一 平均变化率定义
二 函数f(x) 从x 0到x 0+△x 之间的平均变化率
函数f(x) 从x 1到x 2之间的平均变化率
是
【典例剖析】
例1:求y=x 2在x 0到x 0+△x 之间的平均变化率
例2:求y=x 2-2x+3在2到
4
9之间的平均变化率
【实战练习】
1:求y=x
1在x 0到x 0+△x 之间的平均变化率(x 0)0
2:求y= x 2在x 0到x 0+△x 之间的平均变化率,并计算当x 0=1,2,3,△x=3
1时平均变化率的值,哪个平均变化率最大、最小?
3求函数y=x 在区间[x 0,x 0+△x ] 上的平均变化率
4求函数y=lnx 在区间[1,e ] 上的平均变化率
5试比较正弦函数y=sinx 在0到6π之间和3π到2
π之间的平均变化率,那一个较大?
6对于以下四个函数:
(1)y= x (2)y= x 2 (3)y= x 3 (4)y=x
1 在区间[1,2]上函数的平均变化率最大的是?
7 国家环保局在规定的排污达标的日期前,对甲、乙两家企业进行检查,其连
续检测结果如右图所示. 试问哪个企业治污效果好. (其中W表示治污量)
【思维导图】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 函数的平均变化率学 习 目 标核 心 素 养1.理解斜率的含义及平均变化率的概念.(重点)2.掌握判断函数单调性的充要条件.(重点、难点) 通过利用函数f(x)的平均变化证明f(x)在I 上的单调性,提升数学运算和培养逻辑推理素养.1.直线的斜率(1)定义:给定平面直角坐标系中的任意两点A(x 1,y 1),B(x 2,y 2),当x 1≠x 2时,称y 2-y 1x 2-x 1为直线AB 的斜率;(若记Δx=x 2-x 1,Δy=y 2-y 1,当Δx≠0时,斜率记为ΔyΔx),当x 1=x 2时,称直线AB 的斜率不存在.(2)作用:直线AB 的斜率反映了直线相对于x 轴的倾斜程度. 2.平均变化率与函数单调性若I 是函数y =f(x)的定义域的子集,对任意x 1,x 2∈I 且x 1≠x 2,记y 1=f(x 1),y 2=f(x 2),Δy Δx =y 2-y 1x 2-x 1⎝⎛⎭⎪⎫即Δf Δx =f (x 2)-f (x 1)x 2-x 1,则 (1)y =f(x)在I 上是增函数的充要条件是ΔyΔx >0在I 上恒成立;(2)y =f(x)在I 上是减函数的充要条件是ΔyΔx<0在I 上恒成立.当x 1≠x 2时,称Δf Δx =f (x 2)-f (x 1)x 2-x 1为函数y =f(x)在区间[x 1,x 2](x 1<x 2时)或[x 2,x 1](x 1>x 2时)上的平均变化率.通常称Δx 为自变量的改变量,Δy 为因变量的改变量.3.平均变化率的物理意义(1)把位移s 看成时间t 的函数s =s(t),则平均变化率的物理意义是物体在时间段[t 1,t 2]上的平均速度,即v =s (t 2)-s (t 1)t 2-t 1.(2)把速度v 看成时间t 的函数v =v(t),则平均变化率的物理意义是物体在时间段[t 1,t 2]上的平均加速度,即a =v (t 2)-v (t 1)t 2-t 1.1.已知点A(1,0),B(-1,1),则直线AB 的斜率为( ) A .-12 B.12 C .-2 D .2A [直线AB 的斜率1-0-1-1=-12.]2.如图,函数y =f(x)在[1,3]上的平均变化率为( )A .1B .-1C .2D .-2B [Δy Δx =f (3)-f (1)3-1=1-33-1=-1.]3.一次函数y =-2x +3在R 上是________函数.(填“增”或“减”) 减 [任取x 1,x 2∈R 且x 1≠x 2. ∴y 1=-2x 1+3,y 2=-2x 2+3, ∴Δy Δx =y 1-y 2x 1-x 2=-2<0,故y =-2x +3在R 上是减函数.] 4.已知函数f(x)=2x 2+3x -5,当x 1=4,且Δx=1时,求Δy 的平均变化率Δy Δx .[解] ∵f(x)=2x 2+3x -5,x 1=4,x 2=x 1+Δx ,∴Δy=f(x 2)-f(x 1)=2(x 1+Δx)2+3(x 1+Δx)-5-(2x 21+3x 1-5)=2(Δx)2+(4x 1+3)Δx. 当x 1=4,Δx=1时,Δy=2×12+(4×4+3)×1=21. 则Δy Δx =211=21.平均变化率的计算【例1】 一正方形铁板在0 ℃时边长为10 cm,加热后会膨胀,当温度为t ℃时,边长变为10(1+at)cm,a 为常数.试求铁板面积对温度的平均膨胀率.[思路点拨] 由正方形的边长与面积关系列出函数表达式,再求面积的平均变化率. [解] 设温度的增量为Δt ,则铁板面积S 的增量ΔS=102[1+a(t +Δt)]2-102(1+at)2=200(a +a 2t)Δt+100a 2(Δt)2, 所以平均膨胀率ΔS Δt=200(a +a 2t)+100a 2Δt.1.关于平均变化率的问题在生活中随处可见,常见的有求某段时间内的平均速度、平均加速度、平均膨胀率等.找准自变量的改变量和因变量的改变量是解题的关键.2.求平均变化率只需要三个步骤:(1)求出或者设出自变量的改变量;(2)根据自变量的改变量求出函数值的改变量;(3)求出函数值的改变量与自变量的改变量的比值.1.路灯距地面8 m,一个身高为1.6 m 的人以84 m/min 的速度在地面上从路灯在地面上的射影点C 处沿直线匀速离开路灯.(1)求身影的长度y 与人距路灯的距离x 之间的关系式; (2)求人离开路灯10 s 内身影长度y 关于时间t 的平均变化率.[解] (1)如图所示,设此人从C 点运动到B 点的位移为x m,AB 为身影长度,AB 的长度为y m,由于CD∥BE ,则AB AC =BE CD ,即y y +x =1.68,所以y =0.25x.(2)84 m/min =1.4 m/s,则y 关于t 的函数关系式为y =0.25×1.4t=0.35t,所以10 s 内平均变化率Δy Δt =3.510=0.35(m/s), 即此人离开灯10 s 内身影长度y 关于时间t 的平均变化率为0.35 m/s.利用平均变化率证明函数的单调性【例2】 若函数y =f(x)是其定义域的子集I 上的增函数且f(x)>0,求证:g =f (x )在I 上为减函数. [思路点拨] 由y =f(x)在I 上为增函数的充要条件可得Δy Δx >0,再证ΔgΔx <0即可.[证明] 任取x 1,x 2∈I 且x 2>x 1,则Δx=x 2-x 1>0,Δy=f(x 2)-f(x 1), ∵函数y =f(x)是其定义域的子集I 上的增函数, ∴Δy>0,ΔyΔx>0,∴Δg=g(x 2)-g(x 2)=1f (x 2)-1f (x 1)=f (x 1)-f (x 2)f (x 1)f (x 2).又∵f(x)>0,∴f(x 1)f(x 2)>0且f(x 1)-f(x 2)<0,∴Δg<0, ∴Δg Δx <0,故g =1f (x )在I 上为减函数.单调函数的运算性质若函数f (x ),g (x )在区间I 上具有单调性,则:(1)f (x )与f (x )+C (C 为常数)具有相同的单调性. (2)f (x )与a·f (x ),当a >0时具有相同的单调性;当a <0时具有相反的单调性. (3)当f (x )恒为正值或恒为负值时,f (x )与1f (x )具有相反的单调性.(4)在f(x),g(x)的公共单调区间上,有如下结论: f(x) g(x) f(x)+g(x) f(x)-g(x) 增函数 增函数 增函数 不能确定单调性增函数 减函数 不能确定单调性增函数 减函数 减函数 减函数 不能确定单调性减函数 增函数不能确定单调性减函数2.已知函数f(x)=1-3x +2,x∈[3,5],判断函数f(x)的单调性,并证明.[解] 由于y =x +2在[3,5]上是增函数,且恒大于零,因此,由性质知f(x)=1-3x +2为增函数. 证明过程如下:任取x 1,x 2∈[3,5]且x 1<x 2,即Δx=x 2-x 1>0, 则Δy=f(x 2)-f(x 1)=1-3x 2+2-⎝ ⎛⎭⎪⎫1-3x 1+2=3x 1+2-3x 2+2=3(x 2-x 1)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,∴Δy>0,∴ΔyΔx >0,故函数f(x)在[3,5]上是增函数.二次函数的单调性最值问题[探究问题]1.二次函数f(x)=ax 2+bx +c(a>0)的对称轴与区间[m,n]可能存在几种位置关系,试画草图给予说明?提示:2.求二次函数f(x)=ax 2+bx +c 在[m,n]上的最值,应考虑哪些因素? 提示:若求二次函数f(x)在[m,n]上的最值,应考虑其开口方向及对称轴x =-b2a与区间[m,n]的关系. 【例3】 已知函数f(x)=x 2-ax +1,求f(x)在[0,1]上的最大值. [思路点拨][解] 因为函数f(x)=x 2-ax +1的图像开口向上,其对称轴为x =a 2,当a 2≤12,即a≤1时,f(x)的最大值为f(1)=2-a ; 当a 2>12,即a>1时,f(x)的最大值为f(0)=1.1.在题设条件不变的情况下,求f(x)在[0,1]上的最小值.[解] (1)当a2≤0,即a≤0时,f(x)在[0,1]上单调递增,∴f(x)min =f(0)=1.(2)当a2≥1,即a≥2时,f(x)在[0,1]上单调递减,∴f(x)min =f(1)=2-a.(3)当0<a 2<1,即0<a<2时,f(x)在⎣⎢⎡⎦⎥⎤0,a 2上单调递减,在⎣⎢⎡⎦⎥⎤a 2,1上单调递增,故f(x)min =f ⎝ ⎛⎭⎪⎫a 2=1-a 24.2.在本例条件不变的情况下,若a =1,求f(x)在[t,t +1](t∈R)上的最小值. [解] 当a =1时,f(x)=x 2-x +1,其图像的对称轴为x =12,①当t≥12时,f(x)在其上是增函数,∴f(x)min =f(t)=t 2-t +1;②当t +1≤12,即t≤-12时,f(x)在其上是减函数,∴f(x)min =f(t +1)=⎝ ⎛⎭⎪⎫t +122+34=t 2+t +1;③当t<12<t +1,即-12<t<12时,函数f(x)在⎣⎢⎡⎦⎥⎤t ,12上单调递减,在⎝ ⎛⎦⎥⎤12,t +1上单调递增,所以f(x)min =f ⎝ ⎛⎭⎪⎫12=34.二次函数在闭区间上的最值设f(x)=ax 2+bx +c(a >0),则二次函数f(x)在闭区间[m,n]上的最大值、最小值有如下的分布情况: 对称轴与区间的关系-b2a <m <n, 即-b2a∈(-∞,m)m <-b2a <n,即-b2a∈(m ,n)m <n <-b2a ,即-b2a∈(n ,+∞)图像最值f(x)max =f(n), f(x)min =f(m)f(x)max=max{f(n),f(m)},f(x)min=f ⎝ ⎛⎭⎪⎫-b 2a f(x)max =f(m), f(x)min =f(n)1.平均变化率中Δx ,Δy ,ΔyΔx的理解 (1)函数f(x)应在x 1,x 2处有定义;(2)x 2在x 1附近,即Δx=x 2-x 1≠0,但Δx 可正可负;(3)注意变量的对应,若Δx=x 2-x 1,则Δy=f(x 2)-f(x 1),而不是Δy=f(x 1)-f(x 2);(4)平均变化率可正可负,也可为零.但是,若函数在某区间上的平均变化率为0,并不能说明该函数在此区间上的函数值都相等.2.判断函数y =f(x)在I 上单调性的充要条件(1)y =f(x)在I 上单调递增的充要条件是ΔyΔx >0恒成立;(2)y =f(x)在I 上单调递减的充要条件是ΔyΔx<0恒成立.1.思考辨析(1)一次函数y =ax +b(a≠0)从x 1到x 2的平均变化率为a.( ) (2)函数y =f(x)的平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1的几何意义是过函数y =f(x)图像上两点A(x 1,f(x 1)),B(x 2,f(x 2))所在直线的斜率.( )(3)在[a,b]上,y =ax 2+bx +c(a≠0)任意两点的平均变化率都相等.( ) [答案] (1)√ (2)√ (3)×2.函数f(x)=x 从1到4的平均变化率为( ) A.13 B.12 C .1D .3A [Δy=4-1=1,Δx=4-1=3,则平均变化率为Δy Δx =13.]3.李华在参加一次同学聚会时,他用如图所示的圆口杯喝饮料,李华认为:如果向杯子中倒饮料的速度一定(即单位时间内倒入的饮料量相同),那么杯子中饮料的高度h 是关于时间t 的函数h(t),则函数h(t)的图像可能是( )B [由于圆口杯的形状是“下细上粗”,则开始阶段饮料的高度增加较快,往后高度增加得越来越慢,仅有B 中的图像符合题意.]4.一质点的运动方程为s =8-3t 2,其中s 表示位移(单位:m),t 表示时间(单位:s).求该质点在[1,1+Δt]这段时间内的平均速度.[解] 该质点在[1,1+Δt]这段时间内的平均速度为Δs Δt =8-3(1+Δt )2-8+3×12Δt =(-6-3Δt)(m/s).。