函数的平均变化率
变化率简介

变化率简介变化率是学习导数的前提,它在描述各种变化规律的过程中起着非常重要的作用,速度和加速度就是两个典型例子.新教材人教A 版中,对于变化率主要从以下两个方面介绍:1、平均变化率;2、瞬时变化率.一、平均变化率函数()y f x =在区间00[,]x x x +∆或(00[,]x x x +∆)上的平均变化率是商yx∆∆,其中x ∆是自变量x 在0x 处的改变量,可正可负,但不能为0,y ∆是函数值相应的改变量,即00()()y f x x f x ∆=+∆-(y ∆为正、负、零均可)所以00()()f x x f x y x x+∆-∆=∆∆,下面通过举例来进一步加深对概念的理解。
例1、求332-=x y 在0x 到x x ∆+0之间的平均变化率.解:当自变量从0x 到x x ∆+0之间变化时,函数的平均变化率为:x f∆∆=∆-∆+=x x f x x f )()(00xx x x ∆---∆+=]33[]3)(3[2020 x x xx x x ∆+=∆∆+∆⋅=36)(3602评注:此类题目只需要紧扣定义式,注意运算过程就可以了. 评注:⑴函数平均变化率的求法可分两步:①求y ∆;②求yx∆∆.⑵不论0x 、x ∆中的哪一个变化,都会引起函数平均变化率的变化。
拓展:函数()y f x =的平均变化率的几何意义为其图象上割线的斜率。
即:函数()y f x =的图象为曲线C ,曲线C 上有一点00(,)P x y 及邻近一点00(,)Q x x y y +∆+∆,则割线PQ 的斜率0000y y y yk x x x x+∆-∆==+∆-∆。
利用平均变化率的几何意义,可解决一些实际问题,举例如下:例2、某电视机厂有甲、乙两条生产流水线,产量S (单位:台)与时间t (单位:天)的关系如图所示,问:(1)0t 天内,甲、乙两条生产线的平均日产量哪个大?(2)在接近0t 天时,甲、乙两条生产线谁的日产量大?0,)x y y ∆+∆解析:(1) 0t 天内,甲、乙两条生产线的平均日产量,即函数1()S f t =与2()S f t =在0[0,]t 内的平均变化率,其都为直线OA 的斜率,所以0t 天内,甲、乙两条生产线的平均日产量相同。
第三章 3.1.1函数的平均变化率

①求:当x1=4,x2=5时,函数增量 y和平均变化率ΔyΔx; ②求:当x1=4,x2=4.1时,函数增量 y和平均变化率ΔyΔx. (2)求函数y=f(x)=x2在x=1,2,3附近的平均变化率,取 x都为13,哪一点附近的平均变化率 最大? 考点 平均变化率的概念 题点 求平均变化率 解 (1)因为f(x)=2x2+3x-5, 所以 y=f(x1+ x)-f(x1) =2(x1+ x)2+3(x1+ x)-5-(2x21+3x1-5) =2[( x)2+2x1 x]+3 x =2( x)2+(4x1+3) x. ΔyΔx=2Δx2+4x1+3ΔxΔx=2 x+4x1+3. ①当x1=4,x2=5时, x=1,
(1)在平均变化率的定义中,自变量x的增量 x>0.( × ) (2)对于函数f(x)在区间[x1,x2]内的平均变化率也可以表示为fx2-fx1x2-x1.( √ ) (3)ΔyΔx=fx0+Δx-fx0Δx是f(x)在区间[x0,x0+ x]( x>0)上的平均变化率,也可以 说是f(x)在x=x0处的变化率.( × )
A.1 B.-1 C.2 D.-2 考点 题点 答案 B 解析 ΔyΔx=1-33-1=-1.
3.在曲线y=f(x)=x2+2的图象上取一点(2,6)及邻近一点(2+ x,6+ y),则ΔyΔx为( )
A. x+1Δx+4
B. x-1Δx-4
C. x+4
D.4+ x-1Δx
考点
题点
答案 C
(2)当 t=0.1时,v=5×0.1+210=210.5(m/s). (3)当 t=0.01时,v=5×0.01+210=210.05(m/s).
1.一物体的运动方程是s=3+2t,则在[2,2.1]这段时间内的平均速度是( ) A.0.4 B.2 C.0.3 D.0.2 考点 平均变化率的概念 题点 求平均变化率 答案 B 解析 s2.1-s22.1-2=3+2×2.1-3+2×20.1=2. 2.如图,函数y=f(x)在1到3之间的平均变化率为( )
函数的平均变化率(上课用)省名师优质课赛课获奖课件市赛课一等奖课件

变题.求函数g(x)=-2x在区间[-3,-1]上 旳 平均变化率。
2
一次函数y=kx+b在区间[m,n]上旳 平均变化率有什么特点?
定值k
练习:求函数 旳平均变化率
y
1 x
在
x0
到
x0x0 x) f (x0 ) x0 x x0
1
x
x
(x0 x)x0
2、y x两点P(1,1)和Q(1 x,1 y) 作割线,求出当x 0.1时割线的斜率
注意各小段旳 y 是不尽相同旳。但不
x
论是哪一小段山坡,高度旳平均变化都能
够用起点、终点旳纵坐标之差与横坐标之 差旳比值 y f (xk1) f (xk ) 来度量。 由此我们引出x 函数平xk均1 变xk化率旳概念。
平均变化率旳概念:
一般地,已知函数y=f(x),x0,x1是其定义域内 不同旳两点,记△x=x1-x0,
8.6 6.5
解.从出生到第3个月,婴儿体重旳 平均变化率为 6.5 3.5 1(kg /月)
30
从第6个月到第12个月该婴儿体 重旳平均变化率为
3.5
3
6
9 12 T(月)
11 8.6 2.4 0.4(kg /月) 12 6 6
反思:两个不同旳平均变化率旳实际意义是什么?
例4.国家环保局在规定排污达标日期前,对甲、乙两企业 进行检查,其连续监测结果如图所示 (其中W甲(t),W乙(t)分别表示甲、乙两企业的排污量)
问题1:哪个企业旳治污效果好某些? 甲
问题2:在区间[t0,t1]上,哪一种企业旳排污平均
变化率大某些?
乙
W
AW(甲(1,t2)0)
B(1,12)
原则
函数的平均变化率课件

目录 Contents
• 函数平均变化率的概念 • 函数平均变化率的应用 • 函数平均变化率的性质 • 函数平均变化率的实例分析 • 总结与思考
01
函数平均变化率的概念
平均变化率的定义
01
平均变化率是指在一定区间内函 数值的改变量与自变量改变量的 比值,通常表示为函数在区间两 端点处的函数值的差的商。
函数平均变化率的重要性
理解函数单调性的基础
数学分析的基础
平均变化率是判断函数单调性的重要 依据,通过研究平均变化率,可以深 入理解函数的单调性。
平均变化率是微积分学中的基本概念 ,对于后续学习微积分、导数等数学 知识具有重要意义。
指导实际应用
在工程、经济、生物等领域中,平均 变化率的概念有着广泛的应用,如预 测模型、成本分析等。
。
幂函数的平均变化率
幂函数形式
$y = x^n$
平均变化率公式
$frac{Delta y}{Delta x} = nx^{n-1}$
实例分析
对于函数$y = x^3$,当$Delta x = 1$时,$Delta y = 3x^2$ ,所以平均变化率为$nx^{n-1} = 3x^2$。
05
总结与思考
02
它反映了函数在区间内整体变化 的趋势和速度,是函数在区间内 的一种平均性质。
平均变化率的意义
平均变化率可以用于分析函数的单调 性、凹凸性以及极值点等性质,是研 究函数的重要工具之一。
通过计算平均变化率,可以了解函数 在区间内的整体变化趋势,从而对函 数的性质进行初步判断。
平均变化率的计算方法
01
02
03
04
计算平均变化率需要找到函数 在区间两端点处的函数值,然 后相减得到函数值的改变量。
函数的平均变化率教案

§1.1 导 数1.1.1 函数的平均变化率【学习要求】1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的一些实际问题.【学法指导】从山坡的平缓与陡峭程度理解函数的平均变化率,也可以从图象上数形结合看平均变化率的几何意义.填一填:知识要点、记下疑难点1.函数的平均变化率:已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx = x 1-x 0 ,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0) ,则当Δx ≠0时,商f x 0+Δx -f x 0Δx=_Δy Δx ___叫做函数y =f (x )在x 0到x 0+Δx 之间的 平均变化率 .2.函数y =f (x )的平均变化率的几何意义:Δy Δx=_____f (x 2)-f (x 1)x 2-x 1_____ 表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的 斜率 .研一研:问题探究、课堂更高效[问题情境]在爬山过程中,我们都有这样的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁.怎样用数学反映山坡的平缓与陡峭程度呢?下面我们用函数变化的观点来研究这个问题.探究点一 函数的平均变化率问题1 如何用数学反映曲线的“陡峭”程度?答 如图,表示A 、B 之间的曲线和B 、C之间的曲线的陡峭程度,可以近似地用直线的斜率来量化.如用比值y C -y B x C -x B近似量化B 、C 这一段曲线的陡峭程度,并称该比值是曲线在[x B ,x C ]上的平均变化率. 问题2 什么是平均变化率,平均变化率有何作用?答 如果问题中的函数关系用y =f (x )表示,那么问题中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.解 从出生到第3个月,婴儿体重平均变化率为6.5-3.53-0=1(千克/月). 从第6个月到第12个月,婴儿体重平均变化率为11-8.612-6=2.46=0.4(千克/月). 问题3 平均变化率有什么几何意义?答 设A (x 1,f (x 1)),B (x 2,f (x 2))是曲线y =f (x )上任意不同的两点,函数y =f (x )的平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1=f (x 1+Δx )-f (x 1)Δx 为割线AB 的斜率.x 1,x 2是定义域内不同的两点,因此Δx ≠0,但Δx 可正也可负;Δy =f (x 2)-f (x 1)是相应Δx =x 2-x 1的改变量,Δy 的值可正可负,也可为零.因此,平均变化率可正可负,也可为零.跟踪训练1如图是函数y =f (x )的图象,则:(1)函数f (x )在区间[-1,1]上的平均变化率为________;(2)函数f (x )在区间[0,2]上的平均变化率为________.解析 (1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12. 2)由函数f (x )的图象知,f (x )=⎩⎨⎧ x +32,-1≤x ≤1x +1,1<x ≤3.所以函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34. 答案 (1)12 (2)34探究点二 求函数的平均变化率例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率:(1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001].解 (1)函数f (x )在[1,3]上的平均变化率为f 3-f 13-1=32-122=4; (2)函数f (x )在[1,2]上的平均变化率为f 2-f 12-1=22-121=3; 3)函数f (x )在[1,1.1]上的平均变化率为f 1.1-f 11.1-1=1.12-120.1=2.1; (4)函数f (x )在[1,1.001]上的平均变化率为f 1.001-f 11.001-1=1.0012-120.001=2.001. 小结 函数的平均变化率可以表现出函数的变化趋势,自变量的改变量Δx 取值越小,越能准确体现函数的变化情况. 跟踪训练2 分别求函数f (x )=1-3x 在自变量x 从0变到1和从m 变到n (m ≠n )时的平均变化率.解 自变量x 从0变到1时,函数f (x )的平均变化率为1-3×1-1-01-0=-3, 自变量x 从m 变到n 时,函数f (x )的平均变化率为1-3n -1-3m n -m=-3. 问题 一次函数y =kx +b (k ≠0)在区间[m ,n ]上的平均变化率有什么特点?答 根据函数平均变化率的几何意义,一次函数图象上任意两点连线的斜率是定值k ,即一次函数的平均变化率是定值. 探究点三 平均变化率的应用例3 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?解 由图象可知s 1(t 0)=s 2(t 0),s 1(0)>s 2(0),则s 1t 0-s 10t 0<s 2t 0-s 20t 0, 所以在从0到t 0这段时间内乙的平均速度大.小结 平均变化率的绝对值反映函数在给定区间上变化的快慢,平均变化率的绝对值越大,函数在区间上的变化越快;平均变化率的绝对值越小,函数在区间上的变化越慢.跟踪训练3 甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲、乙两人的经营成果?解 甲赚钱的平均速度为105×12=1060=16(万元/月),乙赚钱的平均速度为25(万元/月). 所以乙的经营成果比甲的好.1.函数f (x )=5-3x 2在区间[1,2]上的平均变化率为__-9 ________.解析 函数f (x )=5-3x 2在区间[1,2]上的平均变化率为f 2-f 12-1=5-3×22-5-31=-9. 2.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度为__2______.3. 甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是___乙_____.解析 在t 0处,虽然W 1(t 0)=W 2(t 0),但是,在t 0-Δt 处,W 1(t 0-Δt )<W 2(t 0-Δt ),即⎪⎪⎪⎪⎪⎪W 1t 0-W 1t 0-Δt Δt <⎪⎪⎪⎪⎪⎪W 2t 0-W 2t 0-Δt Δt , 所以,在相同时间Δt 内,甲厂比乙厂的平均治污率小.所以乙厂治污效果较好.课堂小结:1.函数的平均变化率可以表示函数值在某个范围内变化的快慢;平均变化率的几何意义是曲线割线的斜率,在实际问题中表示事物变化的快慢.2.求函数f (x )的平均变化率的步骤:(1)求函数值的增量Δy =f (x 2)-f (x 1);(2)计算平均变化率Δy Δx =f x 2-f x 1x 2-x 1.。
函数的平均变化率课件

实际问题中如何应用函数的平均变化率?
运动学
速度和加速度的变化率都是平均 变化率,可以通过这些平均变化 率来了解运动学中的物理现象。
商业领域
可以通过函数的平均变化率来评 价某一产品或公司的增长速度。
时间管理
可以通过函数的平均变化率来了 解时间利用效率的变化。
平均变化率的图像解释
相邻两点之间的斜率
在图像上,平均变化率可以表示为相邻两条线段的 斜率。
函数的平均变化率的应用举例
1
应用一
在积分计算中,常用平均变化率来近似求解曲线下的面积。
2
应用二
在微分方程的求解中,平均变化率可以用于简单的数值方法计算。
3
应用三
在统计学中,业务活动的整体变化趋势可以通过平均变化率来进行分析。
函数的平均变化率在物理学中的应用
万有引力
质点在单位时间内运动的平均速 度可以用万有引力的平均变化率 来计算。
1 步骤一
首先,要知道函数在哪里发生了断裂,也就 是函数不连续的地方。
2 步骤二
判断函数在不连续点与相邻区间之间的平均 变化率是否存在。
3 步骤三
如果这一区间存在平均变化率,那么新的区 间一定就是函数的定义域。
4 步骤四
如果不存在平均变化率,则需要进一步的讨 论和推导。
如何根据函数的平均变化率推断函数 的值域?
1 步骤一
求出函数的导数。
2 步骤二
根据导数的正负来判断函数的值域。
3 步骤三
如果导数大于零,则函数单调递增;如果导数小于零,则函数单调递减;否则,需要进 一步研究函数。
函数的平均变化率的重要性
平均变化率是微积分的基础概念之一,不仅在学术研究中广泛应用,而且在 日常生活中也具有重要的意义。通过平均变化率可以揭示出事物在不同时间 段内的变化趋势,从而帮助我们做出更好的决策。
函数平均变化率

函数平均变化率函数平均变化率是数学中的一个重要概念,用来描述函数在一定区间内的平均变化速度。
在实际应用中,平均变化率可以帮助我们理解和分析函数的变化趋势,从而做出合理的决策。
我们来看一下函数平均变化率的定义。
给定一个函数f(x),在区间[a,b]上的平均变化率可以用以下公式表示:平均变化率 = (f(b) - f(a)) / (b - a)其中,f(b)表示函数在点b处的取值,f(a)表示函数在点a处的取值,b和a分别是区间的上限和下限。
这个公式的含义是,函数在区间[a,b]上的平均变化率等于函数在点b和点a处的取值之差除以区间的长度。
平均变化率可以帮助我们理解函数在某个区间内的变化趋势。
如果平均变化率为正,表示函数在该区间内递增;如果平均变化率为负,表示函数在该区间内递减;如果平均变化率为零,表示函数在该区间内保持不变。
举个例子来说明。
假设我们有一个函数f(x)表示某个商品的价格随时间的变化情况。
我们可以选择一个时间段,比如一周,来计算该时间段内商品价格的平均变化率。
如果平均变化率为正,说明商品价格在这一周内上涨;如果平均变化率为负,说明商品价格在这一周内下跌;如果平均变化率为零,说明商品价格在这一周内保持不变。
平均变化率的应用不仅仅局限于函数的变化趋势分析,还可以用来解决实际问题。
比如,我们可以利用平均变化率来计算速度、密度、增长率等。
在物理学中,速度的平均变化率等于位移的变化量除以时间的变化量;在经济学中,增长率的平均变化率等于GDP的变化量除以时间的变化量。
除了平均变化率,还有一个相关概念叫做瞬时变化率。
瞬时变化率是平均变化率的极限情况,即取区间长度趋于0的情况。
瞬时变化率可以用微分来表示,是微积分中的重要概念之一。
瞬时变化率描述了函数在某一点的变化速度,比如速度、加速度等。
总结一下,函数平均变化率是描述函数在一定区间内的平均变化速度的概念。
它可以帮助我们理解函数的变化趋势,解决实际问题。
高中数学变化率问题、导数精选题目(附答案)

高中数学变化率问题、导数精选题目(附答案)(1)函数的平均变化率对于函数y=f(x),给定自变量的两个值x1和x2,当自变量x从x1变为x2时,函数值从f(x1)变为f(x2),我们把式子f(x2)-f(x1)x2-x1称为函数y=f(x)从x1到x2的平均变化率.习惯上用Δx表示x2-x1,即Δx=x2-x1,可把Δx看作是相对于x1的一个“增量”,可用x1+Δx代替x2;类似地,Δy=f(x2)-f(x1).于是,平均变化率可表示为Δy Δx.(2)瞬时速度①物体在某一时刻的速度称为瞬时速度.②若物体运动的路程与时间的关系式是S=f(t),当Δt趋近于0时,函数f(t)在t0到t0+Δt之间的平均变化率f(t0+Δt)-f(t0)Δt趋近于常数,我们就把这个常数叫做物体在t0时刻的瞬时速度.(3)导数的定义一般地,函数y=f(x)在x=x0处的瞬时变化率是:lim Δx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(4)导数的几何意义函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx.(5)导函数从求函数f(x)在x=x0处导数的过程可以看到,当x=x0时,f′(x0)是一个确定的数.这样,当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).y=f(x)的导函数有时也记作y′.即f′(x)=y′=lim Δx→0f(x+Δx)-f(x)Δx.1.已知函数f (x )=3x 2+5,求f (x ): (1)从0.1到0.2的平均变化率; (2)在区间[x 0,x 0+Δx ]上的平均变化率.2.已知函数f (x )=x +1x ,分别计算f (x )在自变量x 从1变到2和从3变到5时的平均变化率,并判断在哪个区间上函数值变化得较快.3.若一物体的运动方程为S =⎩⎨⎧29+3(t -3)2,0≤t <3,3t 2+2,t ≥3,(路程单位:m ,时间单位:S ).求:(1)物体在t =3 S 到t =5 S 这段时间内的平均速度; (2)物体在t =1 S 时的瞬时速度.求瞬时速度的步骤(1)求物体运动路程与时间的关系S =S (t );(2)求时间改变量Δt ,位移改变量ΔS =S (t 0+Δt )-S (t 0); (3)求平均速度Δs Δt; (4)求瞬时速度v =lim Δt →0Δs Δt. 4.一质点按规律S (t )=at 2+1做直线运动(位移单位:m ,时间单位:S ),若该质点在t =2 S 时的瞬时速度为8 m/S ,求常数a 的值.[思考] 任何一个函数在定义域中的某点处均有导数吗?函数f (x )=|x |在x =0处是否存在导数?解:不一定,f (x )=|x |在x =0处不存在导数.因为Δy Δx =f (0+Δx )-f (0)Δx =|Δx |Δx =⎩⎨⎧1,Δx >0,-1,Δx <0,所以当Δx →0时,Δy Δx 的极限不存在,从而在x =0处的导数不存在.5.利用导数的定义求函数f (x )=3x 2-2x 在x =1处的导数.求函数y =f (x )在点x 0处的导数的三个步骤简称:一差、二比、三极限.6.利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.7.已知曲线y=x2,(1)求曲线在点P(1,1)处的切线方程;(2)求曲线过点P(3,5)的切线方程.利用导数的几何意义求切线方程的方法(1)若已知点(x0,y0)在已知曲线上,求在点(x0,y0)处的切线方程,先求出函数y=f(x)在点x0处的导数,然后根据直线的点斜式方程,得切线方程y-y0=f′(x0)(x-x0).(2)若点(x0,y0)不在曲线上,求过点(x0,y0)的切线方程,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.8.已知曲线y=2x2-7,求:(1)曲线上哪一点的切线平行于直线4x-y-2=0?(2)曲线过点P(3,9)的切线方程.9.若曲线y=x3-3x2+1在点P处的切线平行于直线y=9x-1,求P点坐标及切线方程.10.已知抛物线y=2x2+1,求(1)抛物线上哪一点的切线平行于直线4x-y-2=0?(2)抛物线上哪一点的切线垂直于直线x+8y-3=0?11.(1)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是下图中的()(2)已知函数y=f(x),y=g(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()12.如图,点A(2,1),B(3,0),E(x,0)(x≥0),过点E作OB的垂线l.记△AOB在直线l左侧部分的面积为S,则函数S=f(x)的图象为下图中的()参考答案:1.解:(1)因为f(x)=3x2+5,所以从0.1到0.2的平均变化率为3×0.22+5-3×0.12-50.2-0.1=0.9.(2)f(x0+Δx)-f(x0)=3(x0+Δx)2+5-(3x20+5)=3x20+6x0Δx+3(Δx)2+5-3x20-5=6x0Δx+3(Δx)2.函数f(x)在区间[x0,x0+Δx]上的平均变化率为6x0Δx+3(Δx)2Δx=6x0+3Δx.(1)求函数平均变化率的三个步骤第一步,求自变量的增量Δx=x2-x1.第二步,求函数值的增量Δy=f(x2)-f(x1).第三步,求平均变化率ΔyΔx=f(x2)-f(x1)x2-x1.(2)求平均变化率的一个关注点求点x0附近的平均变化率,可用f(x0+Δx)-f(x0)Δx的形式.2.解:自变量x从1变到2时,函数f(x)的平均变化率为f(2)-f(1) 2-1=2+12-(1+1)1=12;自变量x从3变到5时,函数f(x)的平均变化率为f(5)-f(3)5-3=5+15-⎝⎛⎭⎪⎫3+132=14 15.因为12<14 15,所以函数f(x)=x+1x在自变量x从3变到5时函数值变化得较快.3.[尝试解答](1)因为ΔS=3×52+2-(3×32+2)=48,Δt=2,所以物体在t=3 S到t=5 S这段时间内的平均速度为ΔsΔt=482=24(m/S).(2)因为ΔS=29+3[(1+Δt)-3]2-29-3×(1-3)2=3(Δt)2-12Δt,所以Δs Δt=3(Δt)2-12ΔtΔt=3Δt-12,则物体在t=1 S时的瞬时速度为S′(1)=limΔx→0ΔsΔt=limΔx→0(3Δt-12)=-12(m/S).4.解:因为ΔS=S(2+Δt)-S(2)=a(2+Δt)2+1-a·22-1=4aΔt+a(Δt)2,所以Δs Δt =4a +a Δt ,故在t =2S 时,瞬时速度为S ′(2)=lim Δx →0 Δs Δt=4a (m/S ). 由题意知,4a =8,所以a =2.5.解: Δy =3(1+Δx )2-2(1+Δx )-(3×12-2×1)=3(Δx )2+4Δx , ∵Δy Δx =3(Δx )2+4ΔxΔx =3Δx +4,∴y ′|x =1=lim Δx →0 ΔyΔx =lim Δt →0(3Δx +4)=4. 6.解:由导数的定义知,函数在x =2处的导数f ′(2)=lim Δx →0f (2+Δx )-f (2)Δx,而f (2+Δx )-f (2)=-(2+Δx )2+3(2+Δx )-(-22+3×2)=-(Δx )2-Δx ,于是f ′(2)=lim Δx →0 -(Δx )2-ΔxΔx =li m Δx →0 (-Δx -1)=-1. 7.解: (1)设切点为(x 0,y 0), ∵y ′|x =x 0=lim Δx →0 (x 0+Δx )2-x 20Δx=lim Δx →0 x 20+2x 0·Δx +(Δx )2-x 2Δx=2x 0, ∴y ′|x =1=2.∴曲线在点P (1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.(2)点P (3,5)不在曲线y =x 2上,设切点为(x 0,y 0), 由(1)知,y ′|x =x 0=2x 0, ∴切线方程为y -y 0=2x 0(x -x 0),由P (3,5)在所求直线上得5-y 0=2x 0(3-x 0),① 再由A (x 0,y 0)在曲线y =x 2上得y 0=x 20,② 联立①,②得x 0=1或x 0=5.从而切点为(1,1)时,切线的斜率为k 1=2x 0=2, 此时切线方程为y -1=2(x -1),即y =2x -1, 当切点为(5,25)时,切线的斜率为k 2=2x 0=10, 此时切线方程为y -25=10(x -5),即y =10x -25.综上所述,过点P (3,5)且与曲线y =x 2相切的直线方程为y =2x -1或y =10x-25.8.解:y′=limΔx→0ΔyΔx=limΔx→0[2(x+Δx)2-7]-(2x2-7)Δx=limΔx→0(4x+2Δx)=4x.(1)设切点为(x0,y0),则4x0=4,x0=1,y0=-5,∴切点坐标为(1,-5).(2)由于点P(3,9)不在曲线上.设所求切线的切点为A(x0,y0),则切线的斜率k=4x0,故所求的切线方程为y-y0=4x0(x-x0).将P(3,9)及y0=2x20-7代入上式,得9-(2x20-7)=4x0(3-x0).解得x0=2或x0=4,所以切点为(2,1)或(4,25).从而所求切线方程为8x-y-15=0或16x-y-39=0.9.解:设P点坐标为(x0,y0),Δy Δx=f(x0+Δx)-f(x0)Δx=(x0+Δx)3-3(x0+Δx)2+1-x30+3x20-1Δx=(Δx)2+3x0Δx-3Δx+3x20-6x0.所以f′(x0)=limΔx→0[(Δx)2+3x0Δx-3Δx+3x20-6x0]=3x20-6x0,于是3x20-6x0=9,解得x0=3或x0=-1,因此,点P的坐标为(3,1)或(-1,-3).又切线斜率为9,所以曲线在点P处的切线方程为y=9(x-3)+1或y=9(x +1)-3,即y=9x-26或y=9x+6.10.解:设点的坐标为(x0,y0),则Δy=2(x0+Δx)2+1-2x20-1=4x0·Δx+2(Δx)2.∴ΔyΔx=4x0+2Δx.当Δx无限趋近于零时,ΔyΔx无限趋近于4x0.即f′(x0)=4x0.(1)∵抛物线的切线平行于直线4x-y-2=0,∴斜率为4,即f′(x0)=4x0=4,得x0=1,该点为(1,3).(2)∵抛物线的切线与直线x+8y-3=0垂直,∴斜率为8,即f′(x0)=4x0=8,得x0=2,该点为(2,9).11.解:(1)由导数的几何意义知导函数递增说明函数切线斜率随x增大而变大,因此应选A.(2)从导函数的图象可知两个函数在x0处斜率相同,可以排除B、C.再者导函数的函数值反映的是原函数的斜率大小,可明显看出y=f(x)的导函数的值在减小,所以原函数的斜率慢慢变小,排除A.12.解析:选D函数的定义域为(0,+∞),当x∈[0,2]时,在单位长度变化量Δx内面积变化量ΔS越来越大,即斜率f′(x)在[0,2]内越来越大,因此,函数S=f(x)的图象是上升的,且图象是下凸的;当x∈(2,3)时,在单位长度变化量Δx内面积变化量ΔS越来越小,即斜率f′(x)在(2,3)内越来越小,因此,函数S=f(x)的图象是上升的,且图象是上凸的;当x∈[3,+∞)时,在单位长度变化量Δx内面积变化量ΔS为0,即斜率f′(x)在[3,+∞)内为常数0,此时,函数图象为平行于x轴的射线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(或[x0+△x,x0])的平均变化率(x0≠0,且
x0+△x≠0).
1 解:函数 y x 的平均变化率为
1 1 f ( x0 x) f ( x0 ) x0 x x0 1 x x ( x0 x) x0
练习题 1.设函数y=f(x),当自变量x由x0改变到 x0+△x时,函数的改变量为( D )
称作函数y=f(x)在区间[x0,x0+△x](或 [x0+△x,x0])的平均变化率。
进一步理解: 1.式子中△x 、△y的值可正、可负,但 的△x值不能为0, △y 的值可以为0; 2.若函数f (x)为常函数时, △y=0; 3. 变式: f ( x2 ) f ( x1 ) f ( x1 x) f ( x1 )
移与水平位移之比
y 的绝对值 现在摆在我们面前的问题是:山路是 弯曲的,怎样用数量刻画弯曲山路的陡峭 程度呢?
一个很自然的想法是将弯曲的山路分 成许多小段,每一小段的山坡可视为平直 的。例如,山坡DE可近似的看作线段DE, 再用对平直山坡AB分析的方法,得到此段 山路的陡峭程度可以用比值近似地刻画。
2 x0 x
思考 由上式可以看出,当x0取定值时,△x 取不同的值,函数的平均变化率不同,当 △x取定值,x0取不同的值时,该函数的平 均变化率也不一样。
例如,x0取正值,并不断增大时,该函 数的平均变化率也不断地增大,曲线变得 越来越陡峭。
1 例2.求函数 y x 在区间[x0,x0+△x]
由此我们引出函数平均变化率的概念。
函数平均变化率的概念: 一般地,已知函数y=f(x),x0,x1是其定 义域内不同的两点,记△x=x1-x0, △y=y1-y0=f(x1)-f(x0)=f(x0+△x)-f(x0).
则当△x≠0时,商
f ( x0 x) f ( x0 ) y x x
第一章 导数及其应用
1.1 导数
1.1.1 函数的平均变化率
学习目标
1、函数的平均变化率的概念
2、会求函数在指定区间的变化率。
导言: 微积分主要与四类问题的处理相关:
一、已知物体运动的路程作为时间的函数, 求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究 函数增减、变化快慢、最大(小)值等问 题最一般、最有效的工具。
A.f(x0+△x)
C.f(x0 ) · △x
B. f(x0)+△x
D.f(x0+△x) -f(x0)
2. 一质点运动的方程为s=1-2t2,则在一 段时间[1,2]内的平均速度为( C )
A.-4
C. -6
B.-8
D. 6
3. 将半径为R的球加热,若球的半径增加
△R,则球的表面积增加△S等于( B ) A. 8RR B. 8RR 4 R
x
5.已知函数f(x)=-x2+x的图象上的一点 A(-1, -2)及临近一点B(-1+△x, - 2+△y), 则 y
x
3-△x
.
课堂总结
函数平均变化率的概念:
一般地,已知函数y=f(x),x0,x1是其定 义域内不同的两点,记△x=x1-x0, △y=y1-y0=f(x1)-f(x0)=f(x0+△x)-f(x0).
则当△x≠0时,商
f ( x0 x) f ( x0 ) y x x
称作函数y=f(x)在区间[x0,x0+△x](或 [x0+△x,x0])的平均变化率。
课后练习
P77 练习A 1、2、3 练习B 1、2
y f ( xk 1 ) f ( xk ) x xk 1 xk
管是哪一小段山坡,高度的平均变化都可
y f ( xk 1 ) f ( xk ) 差的比值 来度量。 x xk 1 xk
y 注意各小段的 是不尽相同的。但不 x
以用起点、终点的纵坐标之差与横坐标之
x2 x1 x
例1.求函数y=x2在区间[x0,x0+△x] (或 [x0+△x,x0])的平均变化率。 解:函数y=x2在区间[x0, x0+△x] (或[x0+△x,x0]) 的平均变化率为
f ( x0 x) f ( x0 ) ( x0 x) x x x
2 2 0
2
2
2 4 R R 4 R C. D.4 R
4. 在曲线y=x2+1的图象上取一点(1, 2)及附 近一点(1+△x ,
y 2+△y),则 x
为( C )
1 1 2 B. x 2 A. x x x
C. x 2
D. 2 x 1
于是此人从点A爬到点B的位移可以用 向量 AB (x, y) 来表示, 假设向量 AB 对x轴的倾斜角为θ,直线 AB的斜率为k,容易看出
y1 y0 y k tan x1 x0 x
显然,“线段”所在直线的斜率的绝
对值越大,山坡越陡。这就是说,竖直位
1、例子引入 : 假设下图是一座山的剖面示意图,并在 上面建立平面直角坐标系。A是出发点,H 是山顶。爬山路线用函数y=f(x)表示。
H
自变量x表示某旅游者的水平位置,函 数值y=f(x)表示此时旅游者所在的高度。 想想看,如何用数量表示此旅游者登山路 线的平缓及陡峭程度呢?
某旅游者从A点爬到B点,假设这段山路 是平直的。设点A的坐标为(x0,y0),点B的 坐标为(x1,y1),自变量x的改变量为x1-x0, 记作△x,函数值的改变量为y1-y0,记作 △y,即△x=x1-x0,△y=y1-y0,