函数的平均变化率和瞬时变化率教学教案
《平均变化率》教案及教案说明

《平均变化率》教案及教案说明一、教学目标1. 让学生理解平均变化率的定义及其几何意义。
2. 培养学生运用导数概念理解实际问题中的变化率。
3. 训练学生运用极限思想分析问题,提高解决问题的能力。
二、教学内容1. 平均变化率的定义:引入变化率的概念,解释平均变化率的含义。
2. 平均变化率的计算:讲解如何计算函数在某一区间的平均变化率。
3. 平均变化率与导数的关系:阐述导数的几何意义,引导学生理解导数与平均变化率之间的联系。
三、教学重点与难点1. 教学重点:平均变化率的定义及其计算方法。
2. 教学难点:导数与平均变化率之间的关系。
四、教学方法与手段1. 教学方法:采用问题驱动法、案例分析法、讨论法等,引导学生主动探究、合作学习。
2. 教学手段:利用多媒体课件、板书、图形等辅助教学。
五、教学过程1. 导入新课:通过生活中的实例,引导学生关注变化率的概念。
2. 讲解平均变化率:给出平均变化率的定义,解释其几何意义。
3. 演示计算平均变化率:利用多媒体课件,展示计算过程。
4. 分析导数与平均变化率的关系:引导学生理解导数与平均变化率的联系。
5. 巩固练习:布置相关练习题,让学生巩固所学知识。
7. 布置作业:设计课后作业,巩固所学知识。
教案说明:本教案以学生为主体,注重培养学生的动手操作能力、思考能力和合作精神。
在教学过程中,教师应关注学生的学习情况,及时解答学生的疑问,引导学生运用所学知识解决实际问题。
通过案例分析、讨论等形式,激发学生的学习兴趣,提高课堂参与度。
在教学内容上,重点讲解平均变化率的定义和计算方法,引导学生理解导数与平均变化率之间的关系。
在教学手段上,充分利用多媒体课件和板书,直观展示概念和计算过程,有助于学生更好地理解和掌握知识。
六、教学拓展1. 引导学生思考实际生活中的其他例子,运用平均变化率解释。
2. 探讨平均变化率在物理学、经济学等领域的应用。
七、课堂互动1. 提问环节:在学习过程中,鼓励学生提问,解答学生疑问。
《平均变化率》教案及教案说明

《平均变化率》教案及教案说明教案说明:本教案旨在帮助学生理解平均变化率的概念,掌握平均变化率的计算方法,并能应用于实际问题中。
通过本教案的学习,学生将能够:1. 理解平均变化率的定义和意义;2. 掌握平均变化率的计算公式;3. 应用平均变化率解决实际问题。
教案内容:一、导入1. 引导学生回顾函数的定义,强调函数的输入输出关系;2. 引入“变化率”的概念,引导学生思考函数在某一点处的变化率是什么;3. 提问:如何描述函数在某一段区间内的变化情况?二、平均变化率的定义1. 给出平均变化率的定义:函数在区间[a, b]上的平均变化率定义为(f(b) f(a)) /(b a);2. 解释平均变化率的含义:平均变化率表示函数在区间[a, b]上的平均变化速度;3. 强调平均变化率是对函数变化情况的宏观描述。
三、平均变化率的计算1. 引导学生思考如何计算函数在某一段区间上的平均变化率;2. 给出计算公式:函数在区间[a, b]上的平均变化率= (f(b) f(a)) / (b a);3. 举例说明如何计算具体函数的平均变化率。
四、应用1. 引导学生思考平均变化率在实际问题中的应用;2. 举例说明如何利用平均变化率解决实际问题,如物体运动的速度变化、物价变化的分析等;3. 引导学生尝试自己解决一个实际问题,如计算某商品价格在一段时间内的平均变化率。
五、总结与评价1. 总结本节课的重点内容:平均变化率的定义、计算方法和实际应用;2. 强调平均变化率的概念在实际问题中的重要性;3. 鼓励学生课后思考更多与平均变化率相关的问题,拓展思维。
教学评价:本教案通过导入、讲解、应用和总结等环节,引导学生逐步理解平均变化率的概念,掌握计算方法,并应用于实际问题中。
在教学过程中,教师应关注学生的理解情况,及时解答学生的疑问,并通过举例和练习等方式巩固学生的知识。
通过本教案的实施,学生将能够掌握平均变化率的基本概念和应用方法。
六、案例分析1. 提出案例:分析某商品价格在一段时间内的变化情况;2. 引导学生运用平均变化率的概念和计算公式进行分析;3. 演示如何根据商品价格的变化数据计算平均变化率;4. 解释平均变化率在分析商品价格变化中的作用。
导数——平均变化率与瞬时变化率

导数——平均变化率与瞬时变化率本讲教育信息】⼀. 教学内容:导数——平均变化率与瞬时变化率⼆. 本周教学⽬标:1、了解导数概念的⼴阔背景,体会导数的思想及其内涵.2、通过函数图象直观理解导数的⼏何意义.三. 本周知识要点:(⼀)平均变化率1、情境:观察某市某天的⽓温变化图2、⼀般地,函数f(x)在区间[x1,x2]上的平均变化率平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.(⼆)瞬时变化率——导数1、曲线的切线如图,设曲线c是函数的图象,点是曲线 c 上⼀点作割线PQ,当点Q 沿着曲线c⽆限地趋近于点P,割线PQ⽆限地趋近于某⼀极限位置PT我们就把极限位置上的直线PT,叫做曲线c在点P 处的切线割线PQ的斜率为,即当时,⽆限趋近于点P的斜率.2、瞬时速度与瞬时加速度1)瞬时速度定义:运动物体经过某⼀时刻(某⼀位置)的速度,叫做瞬时速度.2)确定物体在某⼀点A处的瞬时速度的⽅法:要确定物体在某⼀点A处的瞬时速度,从A点起取⼀⼩段位移AA1,求出物体在这段位移上的平均速度,这个平均速度可以近似地表⽰物体经过A点的瞬时速度.当位移⾜够⼩时,物体在这段时间内的运动可认为是匀速的,所得的平均速度就等于物体经过A点的瞬时速度.我们现在已经了解了⼀些关于瞬时速度的知识,现在已经知道物体做直线运动时,它的运动规律⽤函数表⽰为s=s(t),也叫做物体的运动⽅程或位移公式,现在有两个时刻t0,t0+Δt,现在问从t0到t0+Δt这段时间内,物体的位移、平均速度各是:位移为Δs=s(t0+Δt)-s(t0)(Δt称时间增量)平均速度根据对瞬时速度的直观描述,当位移⾜够⼩,现在位移由时间t来表⽰,也就是说时间⾜够短时,平均速度就等于瞬时速度.现在是从t0到t0+Δt,这段时间是Δt. 时间Δt⾜够短,就是Δt⽆限趋近于0.当Δt→0时,位移的平均变化率⽆限趋近于⼀个常数,那么称这个常数为物体在t= t0的瞬时速度同样,计算运动物体速度的平均变化率,当Δt→0时,平均速度⽆限趋近于⼀个常数,那么这个常数为在t= t0时的瞬时加速度.3、导数3、导数设函数在(a,b)上有定义,.若⽆限趋近于0时,⽐值⽆限趋近于⼀个常数A,则称f(x)在x=处可导,并称该常数A为函数在处的导数,记作.⼏何意义是曲线上点()处的切线的斜率.导函数(导数):如果函数在开区间内的每点处都有导数,此时对于每⼀个,都对应着⼀个确定的导数,从⽽构成了⼀个新的函数,称这个函数为函数在开区间内的导函数,简称导数,也可记作.【典型例题】例1、⽔经过虹吸管从容器甲中流向容器⼄,t s后容器甲中⽔的体积(单位:),计算第⼀个10s内V的平均变化率.解:在区间[0,10]上,体积V的平均变化率为即第⼀个10s内容器甲中⽔的体积的平均变化率为.例2、已知函数,,分别计算在区间[-3,-1],[0,5]上函数及的平均变化率.解:函数在[-3,-1]上的平均变化率为在[-3,-1]上的平均变化率为函数在[0,5]上的平均变化率为在[0,5]上的平均变化率为例3、已知函数,分别计算函数在区间[1,3],[1,2],[1,1.1],[1,1.001]上的平均变化率.解:函数在区间[1,3]上的平均变化率为函数在[1,2]上的平均变化率为函数在[1,1.1]上的平均变化率为函数在[1,1.001]上的平均变化率为例4、物体⾃由落体的运动⽅程s=s(t)=gt2,其中位移单位m,时间单位s,g=9.8 m/s2. 求t=3这⼀时段的速度.解:取⼀⼩段时间[3,3+Δt],位置改变量Δs=g(3+Δt)2-g·32=(6+Δt)Δt,平均速度g(6+Δt)当Δt⽆限趋于0时,⽆限趋于3g=29.4 m/s.例5、已知质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s),(1)当t=2,Δt=0.01时,求.(1)当t=2,Δt=0.01时,求.(2)当t=2,Δt=0.001时,求.(3)求质点M在t=2时的瞬时速度.分析:Δs即位移的改变量,Δt即时间的改变量,即平均速度,当Δt越⼩,求出的越接近某时刻的速度.解:∵=4t+2Δt∴(1)当t=2,Δt=0.01时,=4×2+2×0.01=8.02 cm/s.(2)当t=2,Δt=0.001时,=4×2+2×0.001=8.002 cm/s.(3) Δt0,(4t+2Δt)=4t=4×2=8 cm/s例6、曲线的⽅程为y=x2+1,那么求此曲线在点P(1,2)处的切线的斜率,以及切线的⽅程.解:设Q(1+,2+),则割线PQ的斜率为:斜率为2∴切线的斜率为2.切线的⽅程为y-2=2(x-1),即y=2x.【模拟试题】1、若函数f(x)=2x2+1,图象上P(1,3)及邻近点Q(1+Δx,3+Δy),则=()A. 4B. 4ΔxC. 4+2ΔxD. 2Δx2、⼀直线运动的物体,从时间到时,物体的位移为,那么时,为()A. 从时间到时,物体的平均速度;B. 在时刻时该物体的瞬时速度;C. 当时间为时物体的速度;D. 从时间到时物体的平均速度3、已知曲线y=2x2上⼀点A(1,2),求(1)点A处的切线的斜率.(2)点A处的切线⽅程.4、求曲线y=x2+1在点P(-2,5)处的切线⽅程.5、求y=2x2+4x在点x=3处的导数.6、⼀球沿⼀斜⾯⾃由滚下,其运动⽅程是s=s(t)=t2(位移单位:m,时间单位:s),求⼩球在t=5时的瞬时速度7、质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s),求质点M在t=2时的瞬时速度.【试题答案】1、B2、B3、解:(1)时,k=∴点A处的切线的斜率为4.(2)点A处的切线⽅程是y-2=4(x-1)即y=4x-24、解:时,k=∴切线⽅程是y-5=-4(x+2),即y=-4x-3.5、解:Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3)=2(Δx)2+16Δx,=2Δx+16∴时,y′|x=3=166、解:时,瞬时速度v=(10+Δt)=10 m/s.∴瞬时速度v=2t=2×5=10 m/s.7、解:时,瞬时速度v==(8+2Δt)=8cm/s。
《3.1.1函数的平均变化率》教学案1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 《3.1.1函数的平均变化率》教学案1 《《3. .1. .1 函数的平均变化率》教学案教学目标:1、知识目标:通过生活实例使学生理解函数增量、函数的平均变化率的概念;掌握求简单函数平均变化率的方法,会求函数的平均变化率;理解函数的平均变化率的含义,引出函数的瞬时变化率概念,简单应用为下一节导数概念的学习打好基础. 2、能力目标:使学生在研究过程中熟悉数学研究的途径:背景数学表示应用,培养学生独立思考,解决问题的能力和在生活中建立数学模型,用数学理论解释生活问题、应用数学的能力. 3、情感目标:使学生通过学习,了解简单的情景蕴涵建立模型解决问题的一般思想方法,鼓励学生主动探究、不惧困难,勇于挑战自我的思想品质.并养成学生探究总结型的学习习惯. 教学重点:函数自变量的增量、函数值的增量的理解教学难点:函数平均变化率的理解. 教学过程:一、引入:1、情境设置:(图片)巍峨的珠穆朗玛峰、攀登珠峰的队员两幅陡峭程度不同的图片 2、问题:当陡峭程度不同时,登山队员的感受是不一样的,如何用数学来1 / 5反映山势的陡峭程度,给我们的登山运动员一些有益的技术参考呢?3、引入:让我们用函数变化的观点来研讨这个问题. 二、例举分析:(一)登山问题例:如图,是一座山的剖面示意图:A是登山者的出发点,H是山顶,登山路线用y=f(x)表示 HD1 D Fy 问题:当自变量x表示登山者的水平位置,函数值y表示登山者所在高度时,陡峭程度应怎样表示?分析:1、选取平直山路AB放大研究若 ) , ( ), , (1 1 0 0y x B y xA 自变量x的改变量:0 1x x x = 函数值y的改变量:0 1y y y = 直线AB的斜率:xyx xy yk==0 10 1 说明:当登山者移动的水平距离变化量一定( x 为定值)时,垂直距离变化量( y )越大,则这段山路越陡峭; 2、选取弯曲山路CD放大研究方法:可将其分成若干小段进行分析:如CD 1 的陡峭程度可用直线CD 1 的斜率表示.(图略) 结论:函数值变化量( y )与自变量变化量 ) ( x 的比值xy反映了山坡的陡峭程度.各段的xy不同反映了山坡的陡峭程度不同,也就是登山高度在这段山路上的平均变化量不同.当xy越大,说明山坡高度的平均变化量越大,所以山坡就越陡;当xy越小,说明山坡高度的平---------------------------------------------------------------最新资料推荐------------------------------------------------------均变化量小,所以山坡就越缓.所以,k kk kx xx f x fxy=++11) ( ) (高度的平均变化成为度量山的陡峭程度的量,叫做函数f(x)的平均变化率. 三、函数的平均变化率与应用. 1、定义:已知函数 ) ( x f y = 在点0x x = 及其附近有定义,令0x x x = ;B ) , (1 1y x A( ) ,0 0y x 0x0y1x1yO y x ) ( ) ( ) ( ) (0 0 0 0x f x x f x f x f y y y + = = = .则当 0 x 时,比值xyxx f x x f= + ) ( ) (0 0叫做函数 ) ( x f y = 在0x 到x x +0之间的平均变化率. 2、例题解析例1.求2x y = 在0x 到x x +0之间的平均变化率. 解:当自变量从0x 变到 x x +0时,函数的平均变化率为x xxx x xxxf x x f + = += +02020 0 02) ( ) ( ) (.当 x 取定值,0x 取不同数值时,该函数的平均变化率也不一样.可以由图看出变化. 例2.求xy1= 在0x 到 x x +0之间的平均变化率. 解:当自变量从0x 变到 x x +0时,函数的平均变化率为0 00 0 0 0) (11 1) ( ) (x x x xx x xxx f x x f + = += + 变式:某市2004年4月20日最高气温为33.4℃,而此前的两天,4月19日和4月18日最高气温分别为24.4℃和18.6℃,短短两天时间,气温陡增14.8℃,闷热中的人们无不感叹:天气热得太快了!但是,如果我们将该市2004年3月18日最高气温3.5℃与4月18日最高气温18.6℃进行比较,我们发现两者温差为15.1℃,甚至超过了14.8℃.而人们却不会发出上述感叹.这3 / 5是什么原因呢?原来前者变化得太快,而后者变化得缓慢. 问题:当自变量t表示由3月18日开始计算的天数,T表示气温,记函数 ) (t g T = 表示温度随时间变化的函数,那么气温变化的快慢情况应当怎样表示?分析:如图:1、选择该市2004年3月18日最高气温3.5℃与4月18日最高气温18.6℃进行比较, C T t01 . 15 5 . 3 6 . 18 , 30 = = = ,由此可知 5033 . 0 tT; 2、选择该市2004年4月18日最高气温18.6 0 C与4月20日33.4 0 C进行比较 C T t08 . 14 6 . 18 4 .33 , 2 = = = ,由此可知 4 . 7 tT 结论:函数值的平均变化率tT反映了温度变化的剧烈程度. 各段的tT不同反映了温度变化的剧烈程度不同,也就是气温在这段时间内的平均变化量不同.当tT越大,说明气温的平均变化量越大,所以升温就越快;当tT越小,说明气温的平均变化量小,所以升温就越缓. 四、课堂练习:甲乙二人跑步路程与时间关系以及百米赛跑路程和时间的关系分别如图 (1)(2)所示,试问:(1)甲乙二人哪一个跑得快? (2)甲乙二人百米赛跑,快到终点时,谁跑得比较快甲乙路程 y 甲乙100m 2030 342102030A(1,3.5) B(32, 18.6) 0C(34, 33.4) T(℃) t(天)2 10 五、课堂小结:---------------------------------------------------------------最新资料推荐------------------------------------------------------ (1) (2)5 / 5。
《平均变化率与瞬时变化率》示范公开课教案【高中数学北师大】

第二章导数及其应用2.1 平均变化率与瞬时变化率1. 从实例分析中理解平均变化率和瞬时变化率的意义,会求简单函数在某一区间的平均变化率和在某一点处的瞬时变化率;2. 领会从平均变化率到瞬时变化率的逼近过程,使学生体会、理解平均变化率与瞬时变化率的联系.重点:函数在某一点处的瞬时变化率.难点:从平均变化率到瞬时变化率的逼近.一、新课导入问题1:某病人吃完退烧药,他的体温变化如图:比较时间x从0 min到20 min和从20 min到30 min体温的变化情况,哪段时间体温变化较快?如何刻画体温变化的快慢?答案:①根据图象可以看出在这两段时间下降的体温一样多;②这两段时间的长度不一样,因此在20 min到30 min这段时间内,体温变化较快.我们可以用单位时间内的变化情况来刻画快慢;如,在0 min到20 min这段时间内,单位时间体温变化为:38.5−3920−0=−0.520=−0.025(℃/min),在20 min到30 min这段时间内,单位时间体温变化为:38−38.530−20=−0.510=−0.05(℃/min),单位时间里,20 min到30 min这段时间内提问变化量大,这段时间内的体温变化就快.二、新知探究平均变化率:对一般的函数y=f(x)来说,当自变量x从x1变为x2时,函数值从f(x1)变为 f(x2),它在◆教学目标◆教学过程◆教学重难点◆区间[x1,x2]的平均变化率=f(x2)−f(x1)x2−x1.通常我们把自变量的变化x2−x1称作自变量x的改变量,记作Δx,函数值的变化f(x2)−f(x1)称作函数值y的改变量,记作Δy.这样,函数的平均变化率就可以表示为函数值的改变量与自变量的改变量之比,即Δy Δx =f(x2)−f(x1)x2−x1用它来刻画函数值在区间[x1,x2]上变化的快慢.问题2:函数平均变化率有怎样的几何意义?答案:函数的平均变化率的几何意义是函数图象上过P(x1,f(x1)), Q (x2,f(x2))两点的直线的斜率(如图),即k PQ=ΔyΔx =f(x2)−f(x1)x2−x1.设计意图:通过学生熟悉的生活体验,提炼出数学模型,归纳出函数平均变化率的概念,让学生体会“数学来源于生活”,感知如何探讨问题的本质,学会用数学语言和数学观点分析问题.如果一块岩石突然松动,从峭壁顶上垂直下落,请估算岩石在时刻t=5s时的速度.问题3:用数学语言表达岩石下落过程中的平均速度答案:下落的岩石是自由落体,由物理学知识可得ℎ=12gt2,其中ℎ是下落高度,t是时间.于是,取一小段时间由t1到t2,可得这一小段时间内的平均速度ΔℎΔt =ℎ(t2)−ℎ(t1)t2−t1.追问:你能计算某一时刻的速度吗?答案:我们可以用平均速度逼近某一时刻的速度.若想求t1时刻的速度,当Δt=t2−t1很小时,t1时刻的速度就可以用[t1,t2]内的平均速度来表示,取t1=5,再取越来越小的Δt,观察一下对应的平均速度的情况,列表如下t2/s t1/s时间t的改变量(Δt=t2−5)/s高度的改变量(Δℎ=12g(t22−52)/m平均速度(ΔℎΔt)/(m/s)4.95−0.1−0.485148.51 4.995−0.01−0.4895148.95 4.9995−0.001−0.048995148.9951速度.从以上的计算可以看出,当时间趋t2于t0=5 s时,平均速度趋于49m/s.瞬时变化率:对于一般的函数y=f(x),在自变量x从x0变到x1的过程中,若设Δx=x1−x0,Δy=f(x1)−f(x0),则该函数的平均变化率为ΔyΔx =f(x1)−f(x0)x1−x=f(x+Δx)−f(x)Δx,如果当Δx趋于0时,平均变化率趋于某个值,那么这个值就是f(x)在点x0的瞬时变化率.瞬时变化率刻画的是函数在某一点处变化的快慢.问题4:平均变化率与瞬时变化率有什么关系?答案:区别:平均变化率刻画函数值在区间[x1,x2]上变化的快慢,瞬时变化率刻画函数值在x0点处变化的快慢;联系:当Δx趋于0时,平均变化率ΔyΔx趋于一个常数,这个常数即为函数在x0处的瞬时变化率,它是一个固定值.(2)“Δx趋于0”的含义Δx趋于0的距离要多近有多近,即|Δx−0|可以小于给定的任意小的正数,且始终Δx≠0.三、应用举例例1 已知函数f(x)=2x2+3x−5,且Δx=1时,求函数增量Δy和平均变化率ΔyΔx.解因为f(x)=2x2+3x−5,所以Δy=f(x1+Δx)−f(x1)=2(x1+Δx)2+3(x1+Δx)−5−(2x12+3x1−5)=2[(Δx)2+2x1Δx]+3Δx=2(Δx)2+(4x1+3)Δx.所以当x1=4,Δx=1时,Δy=2×12+(4×4+3)×1=21,则ΔyΔx =211=21总结:求函数平均变化率的三个步骤:第一步,求自变量的增量Δx=x2−x1;第二步,求函数值的增量Δy=f(x2)−f(x1);第三步,求平均变化率ΔyΔx.例2. 某物体的运动路程s(单位:m)与时间t(单位:s)的关系可用函数s(t)=t2+t+1表示,求物体在t=1s时的瞬时速度.解ΔsΔt =s(1+Δt)−s(1)Δt=(1+Δt)2+(1+Δt)+1−(12+1+1)Δt=3+Δt,当Δt趋于0时,ΔsΔt趋于3,即物体在t=1s时的瞬时速度为3 m/s.探究:若例题中的条件不变,试求物体的初速度.解求物体的初速度,即求物体在t=1s时的瞬时速度.∵ΔsΔt =s(0+Δt)−s(0)Δt=(0+Δt)2+(0+Δt)+1−1Δt=1+Δt,当Δt趋于0时,ΔsΔt趋于1,即物体在t=1s时的瞬时速度为1 m/s.探究:若例题中的条件不变,试问物体在哪一时刻的瞬时速度为9m/s.解设物体在t0时的瞬时速度为9m/s.又ΔsΔt =s(t0+Δt)−s(t0)Δt=(2t0+1)+Δt,当Δt趋于0时,ΔsΔt趋于2t0+1,则2t0+1=9,所以t0=4.则物体在4s时的瞬时速度为9m/s.总结:求函数f(x)在点x=x0处的瞬时变化率的步骤:(1)求Δy=f(x0+Δx)−f(x0);(2)计算ΔyΔx,并化简,直到当Δx=0时有意义为止;(3)将Δx=0代入化简后的即得瞬时变化率.四、课堂练习1.在求解平均变化率时,自变量的变化量Δx应满足( )A. Δx>0B. Δx<0C. Δx≠0D. Δx可为任意实数2.函数f(x)=8x−6在区间[m,n]上的平均变化率为_________.3.一质点运动规律是s=t2+3(s的单位为m,t的单位为s),则在t=1 s时的瞬时速度估计是________m/s.参考答案:1.答案C 解析因平均变化率为ΔyΔx,故Δx≠0.2.答案8解析因平均变化率为f(n)−f(m)n−m=8.3.答案2 解析Δs=s(1+Δt)−s(1)=(1+Δt)2+3−(12+3)=2Δt+(Δt)2∴ΔsΔt =2Δt+(Δt)2Δt=2+Δt,当Δt趋于0时,ΔsΔt趋于2.五、课堂小结1.概念:平均变化率,瞬时变化率.2.平均变化率与瞬时变化率的区别与联系:区别:平均变化率刻画函数值在区间[x1,x2]上变化的快慢,瞬时变化率刻画函数值在x0点处变化的快慢;趋于一个常数,这个常数即为函数在x0处的瞬时变联系:当Δx趋于0时,平均变化率ΔyΔx化率,它是一个固定值.六、布置作业教材第52页练习第2,3,4题.。
函数的平均变化率教案

函数的平均变化率教案教学目标:1. 理解函数的平均变化率的定义和意义;2. 学会计算函数的平均变化率;3. 能够应用函数的平均变化率解决实际问题。
教学内容:第一章:函数的平均变化率的概念1.1 引入函数的平均变化率的概念1.2 解释函数的平均变化率的含义1.3 举例说明函数的平均变化率的应用第二章:函数的平均变化率的计算2.1 引入计算函数的平均变化率的方法2.2 讲解如何计算函数的平均变化率2.3 给出计算函数的平均变化率的例题第三章:函数的平均变化率的性质3.1 引入函数的平均变化率的性质3.2 讲解函数的平均变化率的性质3.3 给出函数的平均变化率的性质的证明第四章:应用函数的平均变化率解决实际问题4.1 引入应用函数的平均变化率解决实际问题的方法4.2 讲解如何应用函数的平均变化率解决实际问题4.3 给出应用函数的平均变化率解决实际问题的例题第五章:巩固练习5.1 给出巩固练习的题目5.2 讲解巩固练习的解法5.3 给出巩固练习的答案教学资源:1. 教学PPT;2. 教材或教案;3. 练习题。
教学评估:1. 课堂参与度;2. 练习题的完成情况;3. 学生对函数的平均变化率的理解程度。
教学步骤:Step 1:引入函数的平均变化率的概念(10分钟)1. 讲解函数的平均变化率的定义;2. 举例说明函数的平均变化率的应用。
Step 2:讲解计算函数的平均变化率的方法(15分钟)1. 讲解如何计算函数的平均变化率;2. 给出计算函数的平均变化率的例题。
Step 3:讲解函数的平均变化率的性质(15分钟)1. 讲解函数的平均变化率的性质;2. 给出函数的平均变化率的性质的证明。
Step 4:应用函数的平均变化率解决实际问题(10分钟)1. 讲解如何应用函数的平均变化率解决实际问题;2. 给出应用函数的平均变化率解决实际问题的例题。
Step 5:巩固练习(15分钟)1. 给出巩固练习的题目;2. 讲解巩固练习的解法;3. 给出巩固练习的答案。
函数的平均变化率教案

函数的平均变化率教案一、教学目标1. 让学生理解函数的平均变化率的定义及其几何意义。
2. 培养学生利用导数求函数的平均变化率的能力。
3. 引导学生运用函数的平均变化率解决实际问题。
二、教学内容1. 函数的平均变化率的定义2. 函数的平均变化率的计算3. 函数的平均变化率的应用三、教学重点与难点1. 教学重点:函数的平均变化率的定义及其计算方法。
2. 教学难点:函数的平均变化率在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解函数的平均变化率的定义、计算方法及其应用。
2. 利用几何图形和实例,帮助学生形象理解函数的平均变化率。
3. 开展小组讨论,引导学生运用函数的平均变化率解决实际问题。
五、教学过程1. 导入:通过举例,如物体在直线运动中的速度变化,引入函数的平均变化率的概念。
2. 新课讲解:讲解函数的平均变化率的定义,引导学生理解函数的平均变化率的几何意义。
讲解如何利用导数求函数的平均变化率,并通过示例进行演示。
3. 案例分析:给出几个实际问题,让学生运用函数的平均变化率进行解决,巩固所学知识。
4. 课堂练习:布置一些有关函数的平均变化率的练习题,让学生独立完成,检测学习效果。
提出一些拓展问题,激发学生的学习兴趣。
六、课后作业1. 复习本节课的内容,重点掌握函数的平均变化率的定义及其计算方法。
2. 完成课后练习题,巩固所学知识。
3. 思考并解答拓展问题,提高运用能力。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生完成的课后作业,评估学生对函数的平均变化率的理解和应用能力。
3. 小组讨论:评估学生在小组讨论中的表现,包括合作态度、问题解决能力等。
八、教学反思在课后对教学情况进行反思,分析学生的学习效果,针对存在的问题调整教学方法和要求,以提高教学质量。
九、教学资源1. PPT课件:制作精美的PPT课件,辅助讲解函数的平均变化率的概念和计算方法。
《3.1.1函数的平均变化率》教学案3

《3.1.1函数的平均变化率》教学案
教学目标:
1.知识与技能
理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率;
2.过程与方法
通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻画变量变化快慢程度的一种数学模型;
3.情感、态度与价值观
感受数学模型在刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力.
教学重点:
平均变化率的模型建立与对平均变化率的实际意义和数学意义的理解
教学难点:
平均变化率的概念与生活现象中模型的形成过程并对此做出数学解释
教学关键:
将学生头脑中的感性认知,通过多个事例,在不同的情境下,进行相同的计算程序.由此学生抽象建构出函数平均变化率的概念.并突出知识产生过程中蕴含的数学思想方法,特别是数形结合的数学能力和“以直代曲”的转化能力.
教学过程:
的方法,可以用比值
引导学生先分析平直山路OA段的斜率表示
山路的陡峭程度;再进一步研究曲线的如何表
①从图象上看,
图象,那一段更“陡峭”?
②如何量化曲线在
结论:平均变化率反映了函数在某个区间上平均变化的趋势(变化快慢),或说在某个区间上
问题1:那个企业的治污效果好一些?
结论:曲线越“陡峭”
化率的绝对值越大
例3:如图所示,已知函数在区间[-1,1]上的平均变化率
问题:结合图象分析用
曲线段的陡峭程度是否准确?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的平均变化率为
f(x 0 x x ) f(x 0 ) (x 0 x x )2 x 0 2 2 x 0 x
变化区间
自变量改变量x
平均变化率
y x
(1,1.1)
0.1
2.1
(1,1.01)
0.01
2.01
(1,1.001)
x
x
x x
显然,“线段”所在直线的斜率的绝对值越大,山
坡越陡。这就是说,竖直位移与水平位移之比 y
x
对值越大,山坡越陡;反之,山坡越平缓。
的绝
现在摆在我们面前的问题是:山路是弯曲的,怎 样用数量刻画弯曲山路的陡峭程度呢?
一个很自然的想法是将弯曲的山路分成许多小段, 每一小段的山坡可视为平直的。可以近似地刻画。
y 有极限.如果 y 不存在极限,就说函数在
x
x
点 x 0 处不可导,或说无导数. (2)x是自变量x在 x 0 处的改变量,x0,而
y = f(x)在点 x0 处的导数记为
f ( x0 )
即 f(x 0 ) lix m 0 y x lix m 0f(x 0 x x ) f(x 0 )
y 也可记作 x xo
★ 若这个极限
不存在,则称 在点x0 处不可 导。
说明:
(1)函数 f ( x) 在点 x 0 处可导,是指 x0时,
y3
D(x3,y3)
y2
C(xy2y,3y4 2) yy34yy00
y1 y0
A(x0,y0)
xx1x0
B(yx21,y1)y2y0 y1y1y0
O
x0
x1
x
Y
y4
E(x4,y4)
y3
D(x3,y3)
y2
C(x2,y2)
y1
B(x1,y1)
y0
A(x0,y0)
xx1x0
O
x0
x1
x
y1
y2
y3 y4
0.001
2.001
(1,1.0001) …
0.0001 …
2.0001 …
瞬时速度
要精确地描述非匀速直线运动,就要知道物 体在每一时刻运动的快慢程度.如果物体的运动规 律是 s =s(t ),那么物体在时刻t 的瞬时速度v,就是
物体在t 到 t+t 这段时间内,当 t0 时平均速度v
的极限.即
v s t lt i0m s(t tt)s(t)
思考:比值 y 表示的意义是什么?
x
它表示每一个单位上的函数值的平均增量。
函数图象上也有类似定义,由此我们引 出函数平均变化率的概念。
建构数学
形 曲线陡峭程度
数 平均变化率
变量变化的快慢
函数的平均变化率
已知函数 y f(x) 在点 x x0 及其附近有定义,
令 xxx0 , y y y 0 f ( x ) f ( x 0 ) f ( x 0 x ) f ( x 0 )
函数的瞬时变化率
设函数 y f (x)在 x 0 附近有定义,
当自变量在 x x0 附近改变 x 时,
函数值相应的发生改变 yf(x 0 x )f(x 0)
如果当 x 趋近于0时,
平均变化率 f(x0 x)f(x0)
x
l 趋近于一个常数 ,
则数 l 称为函数 y f (x)在点 x 0 处的瞬时变化率。
如何用数学来 反映山势的平缓 与陡峭程度?
y
H E D
C
B A
O
X0
X1
X2
Xk
Xk+1
y
y1
A(x0,y0)
y0
x
O
x0
B(x1,y1)
y
x1
选取平直山路AB放大研究 :
若 A (x0,y0)B ,(x1,y1)
自变量的改变量 xx1x0
函数值的改变量 yy1y0
x
直线AB的斜率:
ky1y0 y0y1y x1x0 x0x1 x
则当x0 时,比值 f(x0x)f(x0)y
x
x
叫做函数 y f(x) 在 x 0 到x0 x之间的平均变化率
函数平均变化率: f(x0x)f(x0)
x
函数值的改变量与自变量的改变量之比
思考:函数平均变化率的几何意义?
过曲线 y f (x) 上的点 (x0, f (x0)和(x0x,f(x0x)
y
H E D
D1 C B A
O
X0
X1
y
X2
X3
y1
A(x0,y0)
y0
O x0
B(x1,y1)
x1
x
Xk
Xk+1
y y3
x
D1(x3,y3)
y2 C(x2,y2)
O x2
x3
x
直线AB的Байду номын сангаас率:
k
y1 y0
y
x1 x0 x
直线CD1的斜率:k1
y3 y2 x3 x2
y x
Y
y4
E(x4,y4)
导数的概念
设函数 y = f(x) 在点 x=x0 的附近有定义,当自变量 x 在 x0 处
取得增量 △x ( 点 x0 +△x 仍在该定义内)时, 相应地函数 y 取
得增量 △y = f (x0 +△x)- f (x0 ),若△y与△x之比当 △x→0的极
限存在,则称函数 y = f(x)在点 x0 处可导 ,并称这个极限为函数
分析:当 x 取定值, x 0 取不同数值时,
该函数的平均变化率也不一样.
( 2 ) 求函数 y 1 在 x 0 到 x0 x 之间的平均变化率
x
解:当函数
y 1 x
在 x 0 到 x0 x 之间变化的时候
函数的平均变化率为
1 1
y f (x0 x) f (x0) x0 x x0
x
x
x
1 (x0 x)x0
课堂练习:
甲乙二人跑步路程与时间的关系以及百米赛跑路程和时 间的关系分别如图(1)(2)所示,
(1)甲乙二人哪一个跑得快?
(2)甲乙二人百米赛跑,快到终点时,谁跑得比较快? y
路程
乙
100m
甲
o 图1 t
甲 乙
o 图2 t0 t
例3:已知函数 f (x) x2,计算函数在下列区间上的平均变化率。
割线的斜率。
y
Y=f(x)
• 观察函数f(x)的图象
f(X0+△x)
B
直线 AB的 斜率
f(x0) O
f(x0x)f(x0)
A△x x
x0 X0+△x
思考:(1) △x 、△ y的符号是怎样的? (2)该变量应如何对应?
理解:
1、 x2是 x1附近的任 ,即 意 xx一 2x1点 0,
但可正 ; 可负
yf(x2)f(x1)可正可负,也. 可为
2、 对应性:
若
x x 2 x 1 ,则 y f( x 2 ) f( x 1 ).
例1.求函数 y x 2 在 x 0 到 x0 x之间的平均变化率 解:当函数 y x 2 在 x 0 到 x0 x 之间变化的时候
函数的平均变化率为 y x f(x 0 x x ) f(x 0 ) (x 0 x x ) 2 x 0 2 2 x 0 x