高中数学:命题及其关系、充分条件与必要条件练习
命题及其关系

命题及其关系、充分条件与必要条件专项训练自主梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题一般地,用p和q分别表示原命题的条件和结论,用綈p和綈q分别表示p和q的否定,于是四种命题的形式就是原命题:若p则q(p⇒q);逆命题:若q则p(q⇒p);否命题:若綈p则綈q(綈p⇒綈q);逆否命题:若綈q则綈p(綈q⇒綈p).(2)四种命题间的关系(3)四种命题的真假性①两个命题互为逆否命题,它们有相同的真假性.②两个命题为逆命题或否命题,它们的真假性没有关系.3.充分条件与必要条件若p⇒q,则p叫做q的充分条件;若q⇒p,则p叫做q的必要条件;如果p⇔q,则p 叫做q的充要条件.自我检测1.(2010·湖南)下列命题中的假命题是()A.∃x∈R,lg x=0 B.∃x∈R,tan x=1C.∀x∈R,x3>0 D.∀x∈R,2x>0答案 C解析对于C选项,当x=0时,03=0,因此∀x∈R,x3>0是假命题.2.(2010·陕西)“a>0”是“|a|>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析a>0⇒|a|>0,|a|>0 a>0,∴“a>0”是“|a|>0”的充分不必要条件.3.(2009·浙江)“x>0”是“x≠0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析对于“x>0”⇒“x≠0”,反之不一定成立,因此“x>0”是“x≠0”的充分而不必要条件.4.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的()A.逆否命题B.逆命题C.否命题D.原命题答案 C解析由四种命题逆否关系知,s是p的逆命题t的否命题.5.(2011·宜昌模拟)与命题“若a∈M,则b∉M”等价的命题是()A.若a∉M,则b∉MB.若b∉M,则a∈MC.若a∉M,则b∈MD.若b∈M,则a∉M答案 D解析因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.探究点一四种命题及其相互关系例1写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)弦的垂直平分线经过圆心,并平分弦所对的弧.解题导引给出一个命题,判断其逆命题、否命题、逆否命题等的真假时,如果直接判断命题本身的真假比较困难,则可以通过判断它的等价命题的真假来确定.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.真命题.否命题:若一个数不是实数,则它的平方不是非负数.真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.(2)逆命题:若两个三角形全等,则这两个三角形等底等高.真命题.否命题:若两个三角形不等底或不等高,则这两个三角形不全等.真命题.逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.假命题.(3)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线.真命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧.真命题.逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线.真命题.变式迁移1有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中真命题的序号为________.答案①③解析①的逆命题是“若x,y互为相反数,则x+y=0”,真;②的否命题是“不全等的三角形的面积不相等”,假;③若q≤1,则Δ=4-4q≥0,所以x2+2x+q=0有实根,其逆否命题与原命题是等价命题,真;④的逆命题是“三个内角相等的三角形是不等边三角形”,假.探究点二充要条件的判断例2给出下列命题,试分别指出p是q的什么条件.(1)p:x-2=0;q:(x-2)(x-3)=0.(2)p:两个三角形相似;q:两个三角形全等.(3)p :m <-2;q :方程x 2-x -m =0无实根.(4)p :一个四边形是矩形;q :四边形的对角线相等.解 (1)∵x -2=0⇒(x -2)(x -3)=0;而(x -2)(x -3)=0x -2=0.∴p 是q 的充分不必要条件.(2)∵两个三角形相似两个三角形全等;但两个三角形全等⇒两个三角形相似.∴p 是q 的必要不充分条件.(3)∵m <-2⇒方程x 2-x -m =0无实根;方程x 2-x -m =0无实根m <-2.∴p 是q 的充分不必要条件.(4)∵矩形的对角线相等,∴p ⇒q ;而对角线相等的四边形不一定是矩形,∴q p .∴p 是q 的充分不必要条件.变式迁移2 (2011·邯郸月考)下列各小题中,p 是q 的充要条件的是( )①p :m <-2或m >6;q :y =x 2+mx +m +3有两个不同的零点;②p :f (-x )f (x )=1;q :y =f (x )是偶函数; ③p :cos α=cos β;q :tan α=tan β;④p :A ∩B =A ;q :∁U B ⊆∁U A .A .①②B .②③C .③④D .①④答案 D解析 ①q :y =x 2+mx +m +3有两个不同的零点⇔q :Δ=m 2-4(m +3)>0⇔q :m <-2或m >6⇔p ;②当f (x )=0时,由q p ;③若α,β=k π+π2,k ∈Z 时,显然cos α=cos β,但tan α≠tan β;④p :A ∩B =A ⇔p :A ⊆B ⇔q :∁U A ⊇∁U B .故①④符合题意.探究点三 充要条件的证明例3 设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.解题导引 有关充要条件的证明问题,要分清哪个是条件,哪个是结论,由“条件”⇒“结论”是证明命题的充分性,由“结论”⇒“条件”是证明命题的必要性.证明要分两个环节:一是充分性;二是必要性.证明 (1)必要性:设方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根x 0,则x 20+2ax 0+b 2=0,x 20+2cx 0-b 2=0,两式相减可得x 0=b 2c -a,将此式代入x 20+2ax 0+b 2=0, 可得b 2+c 2=a 2,故∠A =90°,(2)充分性:∵∠A =90°,∴b 2+c 2=a 2,b 2=a 2-c 2.①将①代入方程x 2+2ax +b 2=0,可得x 2+2ax +a 2-c 2=0,即(x +a -c )(x +a +c )=0.将①代入方程x 2+2cx -b 2=0,可得x 2+2cx +c 2-a 2=0,即(x +c -a )(x +c +a )=0.故两方程有公共根x =-(a +c ).所以方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.变式迁移3 已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.证明 (1)必要性:∵a +b =1,∴a +b -1=0.∴a 3+b 3+ab -a 2-b 2=(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=(a +b -1)(a 2-ab +b 2)=0.(2)充分性:∵a 3+b 3+ab -a 2-b 2=0,即(a +b -1)(a 2-ab +b 2)=0.又ab ≠0,∴a ≠0且b ≠0.∵a 2-ab +b 2=(a -b 2)2+34b 2>0. ∴a +b -1=0,即a +b =1.综上可知,当ab ≠0时,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.转化与化归思想的应用 例 (12分)已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,且m ∈Z .求两方程的根都是整数的充要条件.【答题模板】解 ∵mx 2-4x +4=0是一元二次方程,∴m ≠0. [2分] 另一方程为x 2-4mx +4m 2-4m -5=0,两方程都要有实根,∴⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0, 解得m ∈[-54,1]. [6分] ∵两根为整数,故和与积也为整数, ∴⎩⎪⎨⎪⎧ 4m ∈Z 4m ∈Z 4m 2-4m -5∈Z ,∴m 为4的约数, [8分]∴m =-1或1,当m =-1时,第一个方程x 2+4x -4=0的根为非整数,而当m =1时,两方程均为整数根,∴两方程的根均为整数的充要条件是m =1. [12分]【突破思维障碍】本题涉及到参数问题,先用转化思想将生疏复杂的问题化归为简单、熟悉的问题解决,两方程有实根易想Δ≥0.求出m 的范围,要使两方程根都为整数可转化为它们的两根之和与两根之积都是整数.【易错点剖析】易忽略一元二次方程这个条件隐含着m ≠0,不易把方程的根都是整数转化为两根之和与两根之积都是整数.1.研究命题及其关系时,要分清命题的题设和结论,把命题写成“如果……,那么……”的形式,当一个命题有大前提时,必须保留大前提,只有互为逆否的命题才有相同的真假性.2.在解决充分条件、必要条件等问题时,要给出p 与q 是否可以相互推出的两次判断,同时还要弄清是p 对q 而言,还是q 对p 而言.还要分清否命题与命题的否定的区别.3.本节体现了转化与化归的数学思想.(满分:75分)一、选择题(每小题5分,共25分)1.(2010·天津模拟)给出以下四个命题:①若ab ≤0,则a ≤0或b ≤0;②若a >b ,则am 2>bm 2;③在△ABC 中,若sin A =sin B ,则A =B ;④在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是( )A .①B .②C .③D .④答案 C解析 对命题①,其原命题和逆否命题为真,但逆命题和否命题为假;对命题②,其原命题和逆否命题为假,但逆命题和否命题为真;对命题③,其原命题、逆命题、否命题、逆否命题全部为真;对命题④,其原命题、逆命题、否命题、逆否命题全部为假.2.(2010·浙江)设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 ∵0<x <π2,∴0<sin x <1. ∴x sin x <1⇒x sin 2x <1,而x sin 2x <1x sin x <1.故 选B.3.(2009·北京)“α=π6+2k π(k ∈Z )”是“cos 2α=12”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由α=π6+2k π(k ∈Z )可得到cos 2α=12. 由cos 2α=12得2α=2k π±π3(k ∈Z ). ∴α=k π±π6(k ∈Z ). 所以cos 2α=12不一定得到α=π6+2k π(k ∈Z ). 4.(2011·威海模拟)关于命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题,下列结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真答案 D解析 本题考查四种命题之间的关系及真假判断.对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题,但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上.因此否命题也是假命题.5.(2011·枣庄模拟)集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 A ={x |-4≤x ≤4},若A ⊆B ,则a >4,a >4a >5,但a >5⇒a >4.故选B.二、填空题(每小题4分,共12分)6.“x 1>0且x 2>0”是“x 1+x 2>0且x 1x 2>0”的________条件.答案 充要7.(2011·惠州模拟)已知p :(x -1)(y -2)=0,q :(x -1)2+(y -2)2=0,则p 是q 的 ____________条件.答案 必要不充分解析 由(x -1)(y -2)=0得x =1或y =2,由(x -1)2+(y -2)2 =0得x =1且y =2,所以由q 能推出p ,由p 推不出q, 所以填必要不充分条件.8.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.答案 [3,8)解析 因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又因为p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是3≤m <8.三、解答题(共38分)9.(12分)(2011·许昌月考)分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)若q <1,则方程x 2+2x +q =0有实根;(2)若ab =0,则a =0或b =0;(3)若x 2+y 2=0,则x 、y 全为零.解 (1)逆命题:若方程x 2+2x +q =0有实根,则q <1,为假命题.否命题:若q ≥1,则方程x 2+2x +q =0无实根,为假命题.逆否命题:若方程x 2+2x +q =0无实根,则q ≥1,为真命题.(4分)(2)逆命题:若a =0或b =0,则ab =0,为真命题.否命题:若ab ≠0,则a ≠0且b ≠0,为真命题.逆否命题:若a ≠0且b ≠0,则ab ≠0,为真命题.(8分)(3)逆命题:若x 、y 全为零,则x 2+y 2=0,为真命题.否命题:若x 2+y 2≠0,则x 、y 不全为零,为真命题.逆否命题:若x 、y 不全为零,则x 2+y 2≠0,为真命题.(12分)10.(12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a <0;q :实数x 满足x 2-x -6≤0,或x 2+2x -8>0,且綈p 是綈q 的必要不充分条件,求a 的取值范围.解 设A ={x |p }={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0},(2分)B ={x |q }={x |x 2-x -6≤0或x 2+2x -8>0}={x |x 2-x -6≤0}∪{x |x 2+2x -8>0} ={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.(4分)∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈p 綈q .则{x |綈q }Ø{x |綈p },(6分)而{x |綈q }=∁R B ={x |-4≤x <-2},{x |綈p }=∁R A ={x |x ≤3a 或x ≥a ,a <0},∴{x |-4≤x <-2}Ø{x |x ≤3a 或x ≥a ,a <0},(10分)则⎩⎪⎨⎪⎧ 3a ≥-2,a <0或⎩⎪⎨⎪⎧a ≤-4,a <0.(11分) 综上,可得-23≤a <0或x ≤-4.(12分)11.(14分)已知数列{a n }的前n 项和S n =p n +q (p ≠0,且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.证明 充分性:当q =-1时,a 1=S 1=p +q =p -1.(2分)当n ≥2时,a n =S n -S n -1=p n -1(p -1).当n =1时也成立.(4分)于是a n +1a n =p n (p -1)p n -1(p -1)=p (n ∈N *), 即数列{a n }为等比数列.(6分)必要性:当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1).∵p ≠0,p ≠1,∴a n +1a n =p n (p -1)p n 1(p -1)=p .(10分) ∵{a n }为等比数列,∴a 2a 1=a n +1a n =p ,即p (p -1)p +q=p , 即p -1=p +q .∴q =-1.(13分)综上所述,q =-1是数列{a n }为等比数列的充要条件.(14分)。
2021年高考数学考点02命题及其关系充分条件与必要条件必刷题文含解析

考点02 命题及其关系、充分条件与必要条件1.给出如下四个命题:①若“p且q”为假命题,则p、q均为假命题;②命题“若,则”的否命题为“若,则”;③命题“”的否定是“”;④“”是“”的充分必要条件. 其中正确的命题个数是()A. 4 B. 3 C. 2 D. 1【答案】C2.下列说法正确的是A.”的否定是B.命题“设,若,则或是一个假命题C.“m=1”是“函数为幂函数”的充分不必要条件D.向量,则在方向上的投影为5【答案】C【解析】“,”的否定是“,”,A错误;B中的命题的逆否命题为:若,,则为真命题,B错误;为幂函数时,,可判断C正确;在方向上的投影为,D错误,故选C.3.下列说法错误的是()A.若,则;B.若,,则“”为假命题.C.命题“若,则”的否命题是:“若,则”;D.“”是“”的充分不必要条件;【答案】D4.下列四个命题中,正确的命题是( )A.“若为的极值点,则”的逆命题为真命题;B.“平面向量,的夹角是钝角”的充分必要条件是·;C.若命题,则;D.命题“,使得”的否定是:“,均有”.【答案】D5.下列说法错误..的是()A.命题“若,则”的逆否命题为:“若,则”B.“”是“”的充分不必要条件C.若为假命题,则、均为假命题.D.若命题:“,使得”,则:“,均有”【答案】C【解析】A,命题命题“若,则”的逆否命题为:“若,则”,命题正确;B,当时,成立,当时,有或,所以原命题正确;C,当为假命题时,有与至少一个是假命题,所以原命题为假命题;D,命题:“,使得”,则:“,均有”,命题正确;故选C.6.已知p:,q:,且是的充分不必要条件,则a的取值X围是()A. B. C. D.【答案】D7.下列命题中的假命题是( )A.且,都有B.,直线恒过定点C.,函数都不是偶函数D.,使是幂函数,且在上单调递减【答案】C【解析】逐一考查所给命题的真假:当时,,当且仅当时等号成立,则且,都有,题中的命题为真命题;很明显,直线恒过定点,题中的命题为真命题;当时,函数为偶函数,题中的命题为假命题;当时,是幂函数,且在上单调递减,题中的命题为真命题;本题选择C选项.8.在下列四个命题中,其中真命题是( )①“若,则”的逆命题;②“若,则”的否命题;③“若,则方程有实根”的逆否命题;④“等边三角形的三个内角均为”的逆命题.A.①② B.①②③④ C.②③④ D.①③④【答案】B9.下列说法正确的是A.“x+x-2>0”是“x>1”的充分不必要条件B.若“am<bm,则a<b”的逆否命题为直命题C.命题“x∈R,使得2x-1<0”的否定是“x∈R,均有2x-1>0”D.命题“若x=,则tanx=1”的逆命题为真命题【答案】B10.下列有关命题的说法正确的是( )A.命题“若,则”的否命题为:“若,则”B.“” 是“”的必要不充分条件C.命题“若,则”的逆否命题为真命题D.命题“使得”的否定是:“均有”【答案】C【解析】命题“若,则”的否命题为:“若,则”,所以该选项错误;“” 是“”的充分不必要条件,所以该选项错误;命题“若,则”的逆否命题为真命题,因为原命题是真命题,所以该选项正确;命题“使得”的否定是:“均有”,所以该选项错误.故答案为:C11.下列说法正确的是( )A.若,则的否命题是若,则B.命题“,”为真命题的一个充分不必要条件是C.,使成立D.若,则【答案】D12.给出下列四个结论:①命题“”的否定是“”;②“若,则”的否命题是“若,则”;③是真命题,是假命题,则命题中一真一假;④若,则是的充分不必要条件,其中正确结论的个数为()A. B. C. D.【答案】C【解析】根据含有一个量词的否定形式可判断①正确;由否命题定义可知②正确;根据复合命题真假判断可知③正确;若,则,而可得,所以p是q的必要不充分条件,所以④错误综上,有3个命题正确所以选C.13.“”是“”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】B14.若是或的充分不必要条件,则a的取值X围是( ) A. B. C. D.【答案】A【解析】∵“x>a”是“x>1或x<﹣3”的充分不必要条件,如图所示,∴a≥1,故选:A.【点睛】本题考查了充分条件问题,易错点为端点处的等号.15.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A16.已知“”是“”的充分不必要条件,则的取值X围是()A. B. C. D.【答案】D【解析】由题意“”是“”的充分不必要条件,则由可知,要使得成立,则.选.17.已知是等比数列,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】C【解析】是等比数列,,,,“”能推出“”则,,“”是“”的充要条件故选18.设不同直线l1:2x-my-1=0,l2:(m-1)x-y+1=0.则“m=2”是“l1∥l2”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】C19.“”是“”成立的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【答案】A【解析】当时,,即充分性成立;当时,或,即必要性不成立;综上可得:“”是“”成立的充分不必要条件.本题选择A选项.20.下列说法中正确的是A.“”是“”的充要条件B.函数的图象向右平移个单位得到的函数图象关于轴对称C.命题“在中,若”的逆否命题为真命题D.若数列的前项和为,则数列是等比数列【答案】B21.下列命题中,,为复数,则正确命题的个数是①若,则;②若,,,且,则;③的充要条件是.A. B. C. D.【答案】A【解析】①若,则,是错误的,如;②若,,,且,则,是错误的,因为两个虚数不能比较大小;的充要条件是,是错误的,因为当x+yi=1+i时,x可为I,y可以为-i. 故答案为:A.22.设a,b都是不等于l的正数,则“a>b>l”是“log a3<log b3”的( )条件A.充分必要 B.充分不必要 C.必要不充分 D.既不充分也不必要【答案】B23.已知命题:,.(Ⅰ)若为真命题,某某数的取值X围;(Ⅱ)若有命题:,,当为真命题且为假命题时,某某数的取值X围. 【答案】(Ⅰ).(Ⅱ)或24.已知命题p:,ax2+ax+1>0,命题q:|2a-1|<3.(1)若命题p是真命题,某某数a的取值X围。
考点02 命题及其关系、充分条件和必要条件(解析版)

考点02 命题及其关系、充分条件和必要条件【考纲要求】理解必要条件、充分条件与充要条件的意义. 【命题规律】考查充分条件与必要条件的题型一般以选择题或填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,难度一般不大. 【典型高考试题变式】(一)充分条件与必要条件的判定例1.(2021全国甲卷理7)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【解析】由题,当数列为2,4,8,---时,满足0q >,但是{}n S 不是递增数列,∴甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,∴甲是乙的必要条件,故选B .【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.【变式1】【2018年北京卷文】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 【答案】B 【解析】 分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.【名师点睛】充分条件、必要条件的判断方法:①定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.②等价法:利用p ⇒q 与⌝q ⇒⌝p ,q ⇒p 与⌝p ⇒⌝q ,p ⇔q与⌝q ⇔⌝p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.③集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 【变式2】【变式1中的条件与结论换位】设a,b,c,d 是非零实数,则“a,b,c,d 成等比数列”是“ad=bc ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】A【解析】由a,b,c,d 成等比数列可得ad=bc ,当时,a,b,c,d 不是等比数列,所以“a,b,c,d成等比数列”是“ad=bc ”的充分而不必要条件,故选A.例2.(2021年高考天津卷2)已知a ∈R ,则“6>a ”是“362>a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【分析】由充分条件、必要条件的定义判断即可得解.【解析】由题意,若6a >,则236a >,故充分性成立;若236a >,则6a >或6a <-,推不出6a >,必要性不成立;∴“6a >”是“236a >”的充分不必要条件,故选A . 【名师点睛】充分条件与必要条件的两个特征:①对称性:若p 是q 的充分条件,则q 是p 的必要条件,即“p ⇒q ”⇔“q ⇐p ”.②传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”). 【变式1】【改变例题的条件】设,则“24x >”是“”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件 【答案】C【解析】由242x x >⇔>或2x <-,所以“24x >”是“||2x >”的充分必要条件,故选C. (二)充分条件与必要条件的运用例3.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件,故α∥β的充要条件是α内有两条相交直线与β平行,故选B .【变式1】【改变例题中的问法】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】//m β不能推出//αβ,而//αβ,//m β⇒,∴“//m β”是“//αβ”的必要不充分条件,故选B . 例4.【2011全国卷】下面四个条件中,使a b >成立的充分而不必要的条件是( ) A .1a b >+ B .1a b >- C .22a b > D .33a b > 【答案】A【解析】由1a b >+,得a b >;反之不成立,故选A.【名师点津】命题p 是q 的必要不充分条件⇔p q ⇒且q p ⇒;命题p 的必要不充分条件是q ⇔q p ⇒且p q ⇒. 这两种说法有区别,不能混淆.【变式1】【改变例题中的问法】下面四个条件中,使a b >成立的必要而不充分的条件是( ) A .1a b >+ B .1a b >- C .22a b > D .33a b > 【答案】B【解析】由a b >,可得1a b >-;反之不成立,故选B.【变式2】【改变例题中的条件、问法】下面四个条件中,使33a b >成立的充要的条件是( ) A .1a b >+ B .a b <C .22a b >D .a b > 【答案】C【解析】由a b >,可得33a b >;反之也成立,故选C. (三)新定义问题例5.【2011湖北卷】若实数a ,b 满足0,0,0a b ab ≥≥=且,则称a 与b 互补,记()22,a b a b a b ϕ=+-,那么(),0a b ϕ=是a 与b 互补的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件 【答案】C【名师点津】紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.【变式1】【2010年普通高等学校招生全国统一考试湖北卷10】记实数1x ,2x ,……n x 中的最大数为max {}12,,......n x x x ,最小数为min {}12,,......n x x x 。
高三数学(基础+难点)《第2讲 命题及其关系、充分条件与必要条件课时训练卷 理 新人教A版

[第2讲 命题及其关系、充分条件与必要条件](时间:35分钟 分值:80分)基础热身1.有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题. ②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题. 其中真命题为( ) A .①② B .②③ C .④ D .①②③2.已知命题p :若x >0,y >0,则xy >0,则p 的否命题是( ) A .若x >0,y >0,则xy ≤0 B .若x ≤0,y ≤0,则xy ≤0C .若x ,y 至少有一个不大于0,则xy <0D .若x ,y 至少有一个小于或等于0,则xy ≤03.设命题p :sin αtan α=cos α,命题q :sin α=cos α,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.[2013·唐山模拟] 设a ,b ∈R ,则“a >1且0<b <1”是“a -b >0且a b>1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要的条件能力提升5.[2013·商丘模拟] 直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同交点的一个充分不必要条件是( )A .-3<m <1B .-4<m <2C .0<m <1D .m <16.[2013·山东卷] 设a >0且a ≠1,则“函数f (x )=a x在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知a,b,c都是实数,则命题“若a>b,则ac2>bc2”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A.4 B.2 C.1 D.08.[2013·石家庄模拟] 已知向量a=(1,2),b=(2,3),则λ<-4是向量m=λa +b与向量n=(3,-1)夹角为钝角的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要的条件9.[2013·东北三省四市联考] 等比数列{a n}的首项为a,公比为q,其前n项和为S n,则数列{S n}为递增数列的充分必要条件是________.10.设p:xx-2<0,q:0<x<m,若p是q成立的充分不必要条件,则m的取值范围是________.11.若“∀x∈R,ax2+2ax+1>0”为真命题,则实数a的取值范围是________.12.(13分)已知关于x的方程x2+(2k-1)x+k2=0,求使方程有两个大于1的实数根的充要条件.难点突破13.(12分)已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,至少有一个方程有实数根,求实数a的取值范围.课时作业(二)【基础热身】 1.D [解析] ①的逆命题为:“若x ,y 互为倒数,则xy =1”是真命题;②的否命题为:“面积不相等的三角形不是全等三角形”是真命题;命题③是真命题,所以它的逆否命题也是真命题.命题④是假命题,所以它的逆否命题也是假命题.2.D [解析] 否命题应在否定条件的同时否定结论,而原命题中的条件是“且”的关系,所以条件的否定形式是“x ≤0或y ≤0”.3.B [解析] 命题p 成立时sin 2α=cos 2α,得sin α=±cos α,由此可得p 是q 的必要不充分条件.4.A [解析] 显然a >b >0,故a >1且0<b <1⇒a -b >0且a b >1;反之,a -b >0且a b>1⇒a >b 且a -b b >0⇒a >b 且b >0,推不出a >1且0<b <1.故“a >1且0<b <1”是“a -b >0且ab>1”的充分不必要条件. 【能力提升】5.C [解析] 圆心坐标为(1,0),半径为2,直线x -y +m =0与圆有两个不同交点的充要条件是|1+m |2<2,即-3<m <1,充分不必要条件的m 的范围是这个范围的真子集,故只能是选项C 中的范围.6.A [解析] 因为函数f (x )=a x 在R 上是减函数,所以0<a <1,由函数g (x )=(2-a )x 3在R 上是增函数可得2-a >0,即a <2.所以若0<a <1,则a <2,而若a <2推不出0<a <1.所以“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件.7.B [解析] 原命题是一个假命题,因为当c =0时,不等式的两边同乘上一个0得到的是一个等式;原命题的逆命题是一个真命题,因为当ac 2>bc 2时,一定有c 2≠0,所以必有c 2>0,两端同除一个正数,不等式方向不变,即若ac 2>bc 2,则a >b 成立.根据命题的等价关系,四个命题中有2个真命题.8.A [解析] m =(λ+2,2λ+3),m ,n 的夹角为钝角的充要条件是m ·n <0且m ≠μn (μ<0).m ·n <0,即3(λ+2)-(2λ+3)<0,即λ<-3;若m =μn ,则λ+2=3μ,2λ+3=-μ,解得μ=17,故m =μn (μ<0)不可能,所以,m ,n 的夹角为钝角的充要条件是λ<-3,λ<-4是m ,n 的夹角为钝角的充分不必要条件.9.a >0且q >0 [解析] 由S n +1>S n 得,当q =1时,S n +1-S n =a >0;当q ≠1时,S n +1-S n =aq n>0,即a >0,1≠q >0.综合可得数列{S n }为递增数列的充分必要条件是a >0且q >0.10.(2,+∞) [解析] 命题p 成立时,0<x <2,命题p 是q 成立的充分不必要条件,说明(0,2)是(0,m )的真子集,故m >2,即m 的取值范围是(2,+∞).11.[0,1) [解析] 问题等价于对任意实数x ,不等式ax 2+2ax +1>0恒成立.当a =0时,显然成立;当a ≠0时,只能是a >0且Δ=4a 2-4a <0,即0<a <1.故a 的取值范围是[0,1).12.解:令f (x )=x 2+(2k -1)x +k 2,方程有两个大于1的实数根⇔⎩⎪⎨⎪⎧Δ=(2k -1)2-4k 2≥0,-2k -12>1,f (1)>0,即k <-2.所以使方程x 2+(2k -1)x +k 2=0有两个大于1的实数根的充要条件为k <-2.【难点突破】13.解:假设三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0都没有实数根,则⎩⎪⎨⎪⎧Δ1=(4a )2-4(-4a +3)<0,Δ2=(a -1)2-4a 2<0,Δ3=(2a )2-4(-2a )<0,即⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0,得-32<a <-1,∴根据题意知a ≤-32或a ≥-1.。
命题及其关系、充分条件与必要条件专题梳理及经典练习及答案详解

课时作业A组——基础对点练1.(2017·高考天津卷)设x∈R,则“2-x≥0”是“|x-1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件1、解析:由|x-1|≤1,得0≤x≤2,∵0≤x≤2⇒x≤2,x≤20≤x≤2,故“2-x≥0”是“|x-1|≤1”的必要而不充分条件,故选B.2.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数2、解析:由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.答案:C3.已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是()A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题3、解析:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案:D4.“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4、解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件,故选A.答案:A5.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是() A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤05、解析:由原命题和逆否命题的关系可知D正确.答案:D6.(2018·惠州市调研)设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件6、解析:设f(x)=x2,y=|f(x)|是偶函数,但是不能推出y=f(x)的图象关于原点对称.反之,若y=f(x)的图象关于原点对称,则y=f(x)是奇函数,这时y=|f(x)|是偶函数,故选C.答案:C7.(2018·南昌十校模拟)命题“已知a,b,c为实数,若abc=0,则a,b,c中至少有一个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为() A.0 B.1C.2 D.37、解析:原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.答案:D8.(2018·石家庄模拟)已知向量a=(1,m),b=(m,1),则“m=1”是“a∥b”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8、解析:向量a=(1,m),b=(m,1),若a∥b,则m2=1,即m=±1,故“m=1”是“a∥b”的充分不必要条件,选A.答案:A9.(2018·武汉市模拟)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是+a2n<0”的()“对任意的正整数n,a2n-1A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9、解析:a1>0,a2n-1+a2n=a1q2n-2(1+q)<0⇒1+q<0⇒q<-1⇒q<0,而a1>0,q<0,取q=-1,此时a2n-1+a2n=a1q2n-2(1+q)>0.故“q<0”是“对任2意的正整数n,a2n-1+a2n<0”的必要不充分条件.答案:B10.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“a⊥b”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10、解析:因为α⊥β,b⊥m,所以b⊥α,又直线a在平面α内,所以a⊥b;但直线a,m不一定相交,所以“a⊥b”是“α⊥β”的必要不充分条件,故选B. 答案:B11.(2018·南昌市模拟)a2+b2=1是a sin θ+b cos θ≤1恒成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11、解析:因为a sin θ+b cos θ=a2+b2sin(θ+φ)≤a2+b2,所以由a2+b2=1可推得a sin θ+b cos θ≤1恒成立.反之,取a=2,b=0,θ=30°,满足a sin θ+b cos θ≤1,但不满足a2+b2=1,即由a sin θ+b cos θ≤1推不出a2+b2=1,故a2+b2=1是a sin θ+b cos θ≤1恒成立的充分不必要条件.故选A.答案:A12.(2018·洛阳统考)已知集合A={1,m2+1},B={2,4},则“m=3”是“A∩B ={4}”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12、解析:若A∩B={4},则m2+1=4,∴m=±3,而当m=3时,m2+1=4,∴“m =3”是“A ∩B ={4}”的充分不必要条件. 答案:A13.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的__________条件.13、解析:由正弦定理,得a sin A =bsin B ,故a ≤b ⇔sin A ≤sin B . 答案:充要 14.“x >1”是“”的__________条件.14、解析:由,得x +2>1,解得x >-1,所以“x >1”是“”的充分不必要条件.答案:充分不必要15.命题“若x >1,则x >0”的否命题是__________. 15、答案:若x ≤1,则x ≤016.如果“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为__________. 16、解析:由x 2>1,得x <-1,或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1. 答案:-1B 组——能力提升练1.(2018·湖南十校联考)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件1、解析:若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .故选B. 答案:B2.已知函数f (x )=3ln(x +x 2+1)+a (7x +7-x ),x ∈R ,则“a =0”是“函数f (x )为奇函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2、解析:由题意知f (x )的定义域为R ,易知y =ln(x +x 2+1)为奇函数,y =7x+7-x 为偶函数.当a =0时,f (x )=3ln(x +x 2+1)为奇函数,充分性成立;当f (x )为奇函数时,则a =0,必要性成立.因此“a =0”是“函数f (x )为奇函数”的充要条件.故选C. 答案:C3.l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充要条件D .p 既不是q 的充分条件,也不是q 的必要条件3、解析:两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件,故选A. 答案:A4.“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4、、解析:x 1>3,x 2>3⇒x 1+x 2>6,x 1x 2>9;反之不成立,例如x 1=12,x 2=20.故选A.答案:A5.若a,b为正实数,且a≠1,b≠1,则“a>b>1”是“log a 2<log b 2”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5、解析:当a>b>1时,log a 2-log b 2=ln 2ln a-ln 2ln b=ln 2(ln b-ln a)ln a·ln b<0,所以log a2<log b 2.反之,取a=12,b=2,log a 2<log b 2成立,但是a>b>1不成立.故“a>b>1”是“log a 2<log b 2”的充分不必要条件,选A.答案:A6.已知数列{a n}的前n项和为S n,则“a3>0”是“数列{S n}为递增数列”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6、解析:当a1=1,a2=-1,a3=1,a4=-1,…时,{S n}不是递增数列,反之,若{S n}是递增数列,则S n+1>S n,即a n+1>0,所以a3>0,所以“a3>0”是“{S n}是递增数列”的必要不充分条件,故选B.答案:B7.“a≤-2”是“函数f(x)=|x-a|在[-1,+∞)上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7、解析:结合图象可知函数f(x)=|x-a|在[a,+∞)上单调递增,易知当a≤-2时,函数f(x)=|x-a|在[-1,+∞)上单调递增,但反之不一定成立,故选A.答案:A8.设a,b是向量,则“|a|=|b|”是“|a+b|=|a-b|”的()A.充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8、解析:结合平面向量的几何意义进行判断.若|a |=|b |成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b |=|a -b |不一定成立,从而不是充分条件;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a |=|b |不一定成立,从而不是必要条件.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件. 答案:D9.(2016·高考四川卷)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎨⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件9、解析:取x =y =0满足条件p ,但不满足条件q ,反之,对于任意的x ,y 满足条件q ,显然必满足条件p ,所以p 是q 的必要不充分条件,选A. 答案:A10.(2018·广州测试)已知命题p :∃x >0,e x -ax <1成立,q :函数f (x )=-(a -1)x 在R 上是减函数,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10、解析:作出y=e x与y=ax+1的图象,如图.当a=1时,e x≥x+1恒成立,故当a≤1时,e x-ax<1不恒成立;当a>1时,可知存在x∈(0,x0),使得e x -ax<1成立,故p成立,即p:a>1,由函数f(x)=-(a-1)x是减函数,可得a -1>1,得a>2,即q:a>2,故p推不出q,q可以推出p,p是q的必要不充分条件,选B.答案:B11.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△OAB的面积为12”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件11、解析:若k=1,则直线l:y=x+1与圆相交于(0,1),(-1,0)两点,所以△OAB的面积S△OAB=12×1×1=12,所以“k=1”⇒“△OAB的面积为12”;若△OAB的面积为12,则k=±1,所以“△OAB的面积为12”⇒/ “k=1”,所以“k=1”是“△OAB的面积为12”的充分而不必要条件,故选A.答案:A12.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的序号是__________.12、解析:①中“a=b”可得ac=bc,但c=0时逆命题不成立,所以不是充要条件,②正确,③中a>b时a2>b2不一定成立,所以③错误,④中“a<5”得不到“a<3”,但“a<3”可得出“a<5”,“a<5”是“a<3”的必要条件,正确.答案:②④13.已知m∈R,“函数y=2x+m-1有零点”是“函数y=log m x在(0,+∞)上为减函数”的__________条件.13、解析:若函数y=2x+m-1有零点,则m<1;若函数y=log m x在(0,+∞)上为减函数,则0<m<1.答案:必要不充分14.(2018·江西九校联考)下列判断错误的是__________.①若p∧q为假命题,则p,q至少有一个为假命题②命题“∀x∈R,x3-x2-1≤0”的否定是“∃x0∈R,x30-x20-1>0”③“若a∥c且b∥c,则a∥b”是真命题④“若am2<bm2,则a<b”的否命题是假命题14、解析:选项①、②中的命题显然正确;选项④中命题的否命题为:若am2≥bm2,则a≥b,显然当m=0时,命题是假命题,所以选项④正确;对于选项③中的命题,当c=0时,命题是假命题,故填③.答案:③15.下列四个结论中正确的个数是__________.①“x2+x-2>0”是“x>1”的充分不必要条件;②命题:“∀x∈R,sin x≤1”的否定是“∃x0∈R,sin x0>1”;③“若x=π4,则tan x=1”的逆命题为真命题;④若f(x)是R上的奇函数,则f(log32)+f(log23)=0.15、解析:对于①,由x 2+x -2>0,解得x <-2或x >1,故“x 2+x -2>0”是“x >1”的必要不充分条件,故①错误;对于②,命题:“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”,故②正确;对于③,“若x =π4,则tan x =1”的逆命题为“若tan x =1,则x =π4”,其为假命题,故③错误;对于④,若f (x )是R 上的奇函数,则f (-x )+f (x )=0,∵log 32=1log 23≠-log 32, ∴log 32与log 23不互为相反数,故④错误.答案:1。
【高考总动员】高考数学大一轮复习 第1章 第2节 命题及其关系、充分条件与必要条件课时提升练 文 新

课时提升练(二)命题及其关系、充分条件与必要条件一、选择题1.(2023·东北四市联考)以下命题中真命题是( )A.“a>b”是“a2>b2”的充分条件B.“a>b”是“a2>b2”的必要条件C.“a>b”是“ac2>bc2”的必要条件D.“a>b”是“|a|>|b|”的充要条件【解析】C中,当c2=0时,由a>b ac2>bc2;反过来,由ac2>bc2⇒a>b,故“a>b”是“ac2>bc2”的必要条件.【答案】 C2.命题“假设a,b,c成等比数列,那么b2=ac”的逆否命题是( )A.“假设a,b,c成等比数列,那么b2≠ac”B.“假设a,b,c不成等比数列,那么b2≠ac”C.“假设b2=ac,那么a,b,c成等比数列”D.“假设b2≠ac,那么a,b,c不成等比数列”【解析】根据原命题与其逆否命题的关系知,命题“假设a,b,c成等比数列,那么b2=ac”的逆否命题为“假设b2≠ac,那么a,b,c不成等比数列”.【答案】 D3.(2023·长沙模拟)设A,B为两个互不相同的集合,命题p:x∈A∩B,命题q:x∈A 或x∈B,那么┑q是┑p的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件【解析】由题意p⇒q,故┑q⇒┑p;而q p,故┑p┑q,所以┑q是┑p的充分不必要条件.【答案】 B4.有以下四个命题:①“假设x+y=0,那么x,y互为相反数”的逆否命题;②“全等三角形的面积相等”的否命题;③“假设q≤1,那么x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中的真命题为( )A.①②B.②③C.①③D.③④【解析】“假设x+y=0,那么x,y互为相反数”为真命题,那么逆否命题也为真;“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等”,该否命题为假命题;假设q≤1⇒4-4q≥0,即Δ=4-4q≥0,那么x2+2x+q=0有实根,所以原命题为真命题,故其逆否命题也为真;“不等边三角形的三个内角相等”的逆命题为“三个内角相等的三角形是不等边三角形”,该逆命题为假命题.应选C.【答案】 C5.(2023·重庆模拟)假设p是q的必要条件,s是q的充分条件,那么以下推理一定正确的选项是( )A.┑p⇔┑s B.p⇔sC.┑p⇒┑s D.┑s⇒┑p【解析】由题意得q⇒p,且s⇒q,故s⇒p,所以┑p⇒┑s.【答案】 C6.(2023·深圳高级中学高三月考)命题:①假设“p且q”为假命题,那么p,q均为假命题;②命题“假设x≥2且y≥3,那么x+y≥5”的否命题为“假设x<2且y<3,那么x+y<5”;③在△ABC中,“A>45°”是“sin A>22”的充要条件;④命题“∃x0∈R,使得e x0≤0”是真命题.其中正确命题的个数是( )A.3 B.2C.1 D.0【解析】假设“p且q”为假命题,那么p,q至少有一个为假命题,①错;②中命题的否命题为:“假设x<2或y<3,那么x+y<5”,②错;③中当A=150°时,sin A<22,③错;由指数函数的性质,可知∀x∈R,e x>0,故④错.【答案】 D7.(2023·天津高考)设a,b∈R,那么“a>b”是“a|a|>b|b|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解析】当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|,应选C.【答案】 C8.(2023·甘肃诊断)以下选项中,p是q的必要不充分条件的是( ) A.p:x=1,q:x2=xB.p:A∩B=A,q:∁U B⊆∁U AC.p:x>a2+b2,q:x>2abD.p:a+c>b+d,q:a>b且c>d【解析】A中,x=1⇒x2=x,x2=x⇒x=0或x=1 x=1,故p是q的充分不必要条件;B中,由A∩B=A得A⊆B,所以∁U B⊆∁U A.反之,假设∁U B⊆∁U A,那么A⊆B,那么A∩B =A,故p是q的充要条件;C中,因为a2+b2≥2ab,由x>a2+b2得x>2ab.反之不成立,如a=0,b=2,x=1,那么有x>2ab,但x=1<4=a2+b2,故p是q的充分不必要条件;D中,取a=-1,b=1,c=0,d=-3,满足a+c>b+d,但a<b,c>d.反之,由同向不等式可加性得a>b,c>d⇒a+c>b+d,故p是q的必要不充分条件.综上所述,应选D.【答案】 D9.(2023·福建高考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,那么“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【解析】 将直线l 的方程化为一般式得kx -y +1=0,所以圆O :x 2+y 2=1的圆心到该直线的距离d =1k 2+1.又弦长为21-1k 2+1=2|k |k 2+1,所以S △OAB =12·1k 2+1·2|k |k 2+1=|k |k 2+1=12,解得k =±1.因此可知“k =1”是“△OAB 的面积为12”的充分而不必要条件,应选A.【答案】 A10.已知集合A ={x |x >5},集合B ={x |x >a },假设命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,那么实数a 的取值范围是( )A .a <5B .a ≤5C .a >5D .a ≥5【解析】 由题意可知A B ,又A ={x |x >5},B ={x |x >a },如下图,由图可知a <5.【答案】 A11.(2023·上海高考)钱大姐常说“廉价没好货”,她这句话的意思是:“不廉价”是“好货”的( )A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件【解析】 根据等价命题,廉价⇒没好货,等价于,好货⇒不廉价,应选B. 【答案】 B12.(2023·湖北高考)设U 为全集,A ,B 是集合,那么“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件【解析】 假设存在集合C 使得A ⊆C ,B ⊆∁U C ,那么可以推出A ∩B =∅;假设A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件. 【答案】 C 二、填空题13.已知集合A ={1,a },B ={1,2,3},那么“a =3”是“A ⊆B ”的________条件. 【解析】 a =3⇒A ⊆B ,A ⊆B ⇒a =2或3,因此“a =3”是“A ⊆B ”的充分不必要条件. 【答案】 充分不必要14.在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“假设两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,那么a 1b 2-a 2b 1=0”.那么f (p )=________.【解析】 命题p 为真命题,其逆否命题也为真命题;命题p 的逆命题为假命题,其否命题也为假命题.【答案】 215.假设命题“ax 2-2ax -3>0不成立”是真命题,那么实数a 的取值范围是________. 【解析】 由题意得,ax 2-2ax -3≤0,当a =0时,有-3≤0,成立;当a ≠0时,需满足⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,即-3≤a <0,综上知-3≤a ≤0.【答案】 [-3,0]16.已知命题p :⎩⎪⎨⎪⎧x +2≥0,x -10≤0,命题q :1-m ≤x ≤1+m ,m >0,假设q 是p 的必要而不充分条件,那么m 的取值范围为________.【解析】 命题p :-2≤x ≤10,由q 是p 的必要不充分条件知, {x |-2≤x ≤10}{x |1-m ≤x ≤1+m ,m >0},∴⎩⎪⎨⎪⎧m >01-m ≤-21+m >10或⎩⎪⎨⎪⎧m >01-m <-21+m ≥10,∴m ≥9,即m 的取值范围是[9,+∞). 【答案】 [9,+∞)。
高考理科数学真题练习题命题及其关系充分条件与必要条件理含解析

高考数学复习 课时作业2 命题及其关系、充分条件与必要条件一、选择题1.命题“若xy =0,则x =0”的逆否命题是( D ) A .若xy =0,则x ≠0 B.若xy ≠0,则x ≠0 C .若xy ≠0,则y ≠0 D.若x ≠0,则xy ≠0解析:“若xy =0,则x =0”的逆否命题为“若x ≠0,则xy ≠0”.2.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( D )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( D )A .都真B .都假C .否命题真D .逆否命题真解析:对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.4.已知p :-1<x <2,q :log 2x <1,则p 是q 成立的( B ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件解析:由log 2x <1,解得0<x <2,所以-1<x <2是log 2x <1的必要不充分条件,故选B. 5.(2019·郑州质量预测)下列说法正确的是( D ) A .“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1” B .“若am 2<bm 2,则a <b ”的逆命题为真命题 C .存在x 0∈(0,+∞),使3x 0>4 x 0成立 D .“若sin α≠12,则α≠π6”是真命题解析:对于选项A ,“若a >1,则a 2>1”的否命题是“若a ≤1,则a 2≤1”,故选项A 错误;对于选项B ,“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时,am 2=bm 2,所以其逆命题为假命题,故选项B 错误;对于选项C ,由指数函数的图象知,对任意的x ∈(0,+∞),都有4x >3x,故选项C 错误;对于选项D ,“若sin α≠12,则α≠π6”的逆否命题为“若α=π6,则sin α=12”,且其逆否命题为真命题,所以原命题为真命题,故选D.6.一次函数y =-m nx +1n的图象同时经过第一、三、四象限的必要不充分条件是( B )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0解析:因为y =-m nx +1n的图象经过第一、三、四象限,故-m n>0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.7.“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( C ) A .m >14B .0<m <1C .m >0D .m >1解析:不等式x 2-x +m >0在R 上恒成立⇔Δ<0,即1-4m <0,∴m >14,同时要满足“必要不充分”,在选项中只有“m >0”符合.故选C.8.(2019·洛阳市高三统考)已知圆C :(x -1)2+y 2=r 2(r >0),设p :0<r ≤3,q :圆上至多有两个点到直线x -3y +3=0的距离为1,则p 是q 的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:对于q ,圆(x -1)2+y 2=r 2(r >0)上至多有两个点到直线x -3y +3=0的距离为1,又圆心(1,0)到直线的距离d =|1-3×0+3|2=2,则r <2+1=3,所以0<r <3,又p :0<r ≤3,所以p 是q 的必要不充分条件,故选B.二、填空题9.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角.解析:原命题的条件:在△ABC 中,∠C =90°,结论:∠A ,∠B 都是锐角.否命题是否定条件和结论.即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”.10.(2019·山西太原联考)已知a ,b 都是实数,那么“2a >2b ”是“a 2>b 2”的既不充分也不必要条件.解析:充分性:若2a >2b ,则2a -b >1,∴a -b >0,∴a >b .当a =-1,b =-2时,满足2a >2b,但a 2<b 2,故由2a >2b 不能得出a 2>b 2,因此充分性不成立.必要性:若a 2>b 2,则|a |>|b |.当a =-2,b =1时,满足a 2>b 2,但2-2<21,即2a <2b ,故必要性不成立.综上,“2a >2b ”是“a 2>b 2”的既不充分也不必要条件.11.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是(0,3).解析:令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}.∵p 是q 的充分不必要条件,∴M N ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3.12.下列命题中为真命题的序号是②④. ①若x ≠0,则x +1x≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1; ③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 解析:当x <0时,x +1x≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.13.已知m ,n 为两个非零向量,则“m 与n 共线”是“m ·n =|m ·n |”的( D ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m ·n <0,而|m ·n |>0,故充分性不成立.若m ·n =|m ·n |,则m ·n =|m |·|n |cos 〈m ,n 〉=|m |·|n |·|cos〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m ·n =|m ·n |”的既不充分也不必要条件,故选D.14.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12. 解析:由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)·x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎢⎡⎦⎥⎤12,1[a ,a +1].∴a ≤12,且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12.尖子生小题库——供重点班学生使用,普通班学生慎用15.定义在R 上的可导函数f (x ),其导函数为f ′(x ),则“f ′(x )为偶函数”是“f (x )为奇函数”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵f (x )为奇函数,∴f (-x )=-f (x ).∴[f (-x )]′=[-f (x )]′,∴f ′(-x )·(-x )′=-f ′(x ),∴f ′(-x )=f ′(x ),即f ′(x )为偶函数;反之,若f ′(x )为偶函数,如f ′(x )=3x 2,f (x )=x 3+1满足条件,但f (x )不是奇函数,所以“f ′(x )为偶函数”是“f (x )为奇函数”的必要不充分条件.故选B.16.已知p :实数m 满足m 2+12a 2<7am (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆.若p 是q 的充分不必要条件,则a 的取值范围是⎣⎢⎡⎦⎥⎤13,38. 解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a ,即p :3a <m <4a ,a >0.由方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0,解得1<m <32,即q :1<m <32.因为p 是q的充分不必要条件,所以⎩⎪⎨⎪⎧3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32,解得13≤a ≤38,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤13,38.。
命题及其关系、充分条件与必要条件高考突破2训练

命题及其关系、充分条件与必要条件高考突破2训练(限时45分钟)1.以下命题中:①函数()ln 2f x x x =+-的图像与x 轴有2个交点;②向量,a b 不共线,则关于x 的方程20ax bx +=有唯一实根;③函数y =的图像关于y 轴对称. 真命题是( )A .①③B .②C .③D .②③2.设,a b 是向量,命题“若a b =-,则||||a b =”的逆否命题是( )A .若a b ≠-,则||||a b ≠B .若a b =-,则||||a b ≠C .若||||a b ≠,则a b ≠-D .若||||a b =,则a b =-3.以下四个命题中,真命题的个数是( )①命题“若2320x x -+=,则1x =”的逆否命题为“1x ≠,则2320x x -+≠”; ②若p q ∨为假命题,则,p q 均为假命题;③命题:p 存在x R ∈,使得210x x ++<,则:p ⌝对任意x R ∈,都有210x x ++≥; ④在ABC ∆中,A B <是sin sin A B <的充分不必要条件.A .1B .2C .3D .44.“a c b d +>+”是“a b >且c d >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知集合{}1|28,|112x A x R B x R x m ⎧⎫=∈<<=∈-<<+⎨⎬⎩⎭,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是( )A .[2,)+∞B .(,2]-∞C .(2,)+∞D .(2,2)-6.已知a b <,函数()sin ,()cos f x x g x x ==.命题:()()0p f a f b <,命题:()q g x 在(,)a b 内有最值,则命题p 是命题q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.给定下列命题:①若0k >,则方程220x x k +-=有实数根;②“若a b >,则a c b c +>+”的否命题;③“矩形的对角线相等”的逆命题;④“若0xy =,则,x y 中至少有一个为0"的否命题.其中真命题的序号是 .8.已知对数函数21()log a f x x +=,命题21:()log a p f x x +=是增函数.则p ⌝为真时,a 的取值范围是 .9.已知不等式||1x m -<成立的充分不必要条件是1132x <<,则m 的取值范围是 .10.已知集合{}1|0,|||1x A x B x x b a x -⎧⎫=<=-<⎨⎬+⎩⎭,若“1a =”是“A B ⋂≠∅”的充分条件,则实数b 的取值范围是 .11.设命题2:(43)1p x -≤,命题2:(21)(1)0q x a x a a -+++≤,若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围. 12.已知全集U R =,非空集合2|0(31)x A x x a ⎧⎫-=<⎨⎬-+⎩⎭,22|0x a B x x a ⎧⎫--=<⎨⎬-⎩⎭. (1)当12a =时,求()U B A ⋂; (2)集合:p x A ∈,命题:q x B ∈,若q 是p 的必要条件,求实数a 的取值范围.最有效训练21.D解析对于命题①:错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学:命题及其关系、充分条件与必要条件练习1.命题“若a >b ,则a +c >b +c ”的否命题是( A )A .若a ≤b ,则a +c ≤b +cB .若a +c ≤b +c ,则a ≤bC .若a +c >b +c ,则a >bD .若a >b ,则a +c ≤b +c解析:将条件、结论都否定.命题的否命题是“若a ≤b ,则a +c ≤b +c ”.2.(江西九江十校联考)已知函数f (x )=⎩⎨⎧e x ,x ≥-1,ln (-x ),x <-1,则“x =0”是“f (x )=1”的( B )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 解析:若x =0,则f (0)=e 0=1;若f (x )=1,则e x =1或ln(-x )=1,解得x =0或x =-e.故“x =0”是“f (x )=1”的充分不必要条件.3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( D )A .都真B .都假C .否命题真D .逆否命题真解析:对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题,故选D.4.(河南郑州一模)下列说法正确的是( D )A .“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1”B .“若am 2<bm 2,则a <b ”的逆命题为真命题C .存在x 0∈(0,+∞),使3x 0>4x 0成立D .“若sin α≠12,则α≠π6”是真命题解析:对于选项A,“若a >1,则a 2>1”的否命题是“若a ≤1,则a 2≤1”,故选项A 错误;对于选项B,“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时,am 2=bm 2,所以逆命题为假命题,故选项B 错误;对于选项C,由指数函数的图象知,对任意的x ∈(0,+∞),都有4x >3x ,故选项C 错误;对于选项D,“若sin α≠12,则α≠π6”的逆否命题为“若α=π6,则sin α=12”,该逆否命题为真命题,所以原命题为真命题,故选D.5.(江西鹰谭中学月考)设f (x )=x 2-4x (x ∈R ),则f (x )>0的一个必要不充分条件是( C )A .x <0B .x <0或x >4C .|x -1|>1D .|x -2|>3解析:依题意,f (x )>0⇔x 2-4x >0⇔x <0或x >4.又|x -1|>1⇔x -1<-1或x -1>1,即x <0或x >2,而{x |x <0或x >4}{x |x <0或x >2},因此选C.6.(山东日照联考)“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析:当m <0时,由图象的平移变换可知,函数f (x )必有零点;当函数f (x )有零点时,m ≤0,所以“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的充分不必要条件,故选A.7.(安徽两校阶段性测试)设a ∈R ,则“a =4”是“直线l 1:ax +8y -8=0与直线l 2:2x +ay -a =0平行”的( D )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵当a ≠0时,a 2=8a =-8-a⇒直线l 1与直线l 2重合,∴无论a 取何值,直线l 1与直线l 2均不可能平行,当a =4时,l 1与l 2重合.故选D.8.(山西太原模拟)已知a ,b 都是实数,那么“2a >2b ”是“a 2>b 2”的( D )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:充分性:若2a >2b ,则2a -b >1,∴a -b >0,∴a >b .当a =-1,b =-2时,满足2a >2b ,但a 2<b 2,故由2a >2b 不能得出a 2>b 2,因此充分性不成立.必要性:若a 2>b 2,则|a |>|b |.当a =-2,b =1时,满足a 2>b 2,但2-2<21,即2a <2b ,故必要性不成立.综上,“2a >2b ”是“a 2>b 2”的既不充分也不必要条件,故选D.9.(2017·天津卷)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( A ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:∵⎪⎪⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6,sin θ<12⇔θ∈⎝ ⎛⎭⎪⎫2k π-7π6,2k π+π6,k ∈Z ,⎝ ⎛⎭⎪⎫0,π6⎝ ⎛⎭⎪⎫2k π-7π6,2k π+π6,k ∈Z , ∴“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 10.(江西红色七校模拟)在△ABC 中,角A ,B 均为锐角,则“cos A >sin B ”是“△ABC 为钝角三角形”的( C )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为cos A >sin B ,所以cos A >cos ⎝ ⎛⎭⎪⎫π2-B , 因为角A ,B 均为锐角,所以π2-B 为锐角,又因为余弦函数y =cos x 在(0,π)上单调递减,所以A <π2-B ,所以A +B <π2,在△ABC 中,A +B +C =π,所以C >π2,所以△ABC 为钝角三角形;若△ABC 为钝角三角形,角A ,B 均为锐角,则C >π2,所以A +B <π2,所以A <π2-B ,所以cos A >cos ⎝ ⎛⎭⎪⎫π2-B ,即cos A >sin B . 故“cos A >sin B ”是“△ABC 为钝角三角形”的充要条件.11.设向量a =(sin2θ,cos θ),b =(cos θ,1),则“a ∥b ”是“tan θ=12成立”的必要不充分__条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)解析:a ∥b ⇔sin2θ=cos 2θ⇔cos θ=0或2sin θ=cos θ⇔cos θ=0或tan θ=12,所以“a ∥b ”是“tan θ=12成立”的必要不充分条件.12.已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12 . 解析:方法一 命题p 为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >1或x <12. 綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件,∴⎩⎪⎨⎪⎧a +1>1,a ≤12或⎩⎪⎨⎪⎧ a +1≥1,a <12,∴0≤a ≤12. 方法二 命题p :A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12≤x ≤1, 命题q :B ={x |a ≤x ≤a +1}. ∵綈p 是綈q 的必要不充分条件,∴p 是q 的充分不必要条件,即A B ,∴⎩⎪⎨⎪⎧ a +1≥1,a <12或⎩⎪⎨⎪⎧ a +1>1,a ≤12,∴0≤a ≤12.13.已知p :函数f (x )=|x +a |在(-∞,-1)上是单调函数,q :函数g (x )=log a (x +1)(a >0,且a ≠1)在(-1,+∞)上是增函数,则綈p 是q 的( C )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:易知p 成立⇔a ≤1,q 成立⇔a >1,所以綈p 成立⇔a >1,则綈p 是q 的充要条件,故选C.14.(昆明诊断)下列选项中,说法正确的是( D )A .若a >b >0,则ln a <ln bB .向量a =(1,m ),b =(m,2m -1)(m ∈R )垂直的充要条件是m =1C .命题“∀n ∈N *,3n >(n +2)·2n -1”的否定是“∀n ∈N *,3n ≥(n +2)·2n -1” D .已知函数f (x )在区间[a ,b ]上的图象是连续不断的,则命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题解析:∵函数y =ln x (x >0)是增函数,∴若a >b >0,则ln a >ln b ,故A 错误;若a ⊥b ,则m +m (2m -1)=0,解得m =0,故B 错误;命题“∀n ∈N *,3n >(n +2)·2n -1”的否定是“∃n ∈N *,3n ≤(n +2)·2n -1”,故C 错误;命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题“若f (x )在区间(a ,b )内至少有一个零点,则f (a )·f (b )<0”是假命题,如函数f (x )=x 2-2x -3在区间[-2,4]上的图象连续不断,且在区间(-2,4)内有两个零点,但f (-2)·f (4)>0,D 正确.15.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是(2,+∞)__.解析:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.16.(石家庄模拟)已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要不充分条件,则实数m 的取值范围是[9,+∞)__.解析:法一:由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10, ∴綈p 对应的集合为{x |x >10或x <-2},设A ={x |x >10或x <-2}.由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0),∴綈q 对应的集合为{x |x >1+m 或x <1-m ,m >0}, 设B ={x |x >1+m 或x <1-m ,m >0}.∵綈p 是綈q 的必要不充分条件,∴B A ,∴⎩⎨⎧ m >0,1-m <-2,1+m ≥10或⎩⎨⎧ m >0,1-m ≤-2,1+m >10,解得m ≥9,∴实数m 的取值范围为[9,+∞).法二:∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件.即p 是q 的充分不必要条件,由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0).∴q 对应的集合为{x |1-m ≤x ≤1+m ,m >0}, 设M ={x |1-m ≤x ≤1+m ,m >0},又由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10, ∴p 对应的集合为{x |-2≤x ≤10},设N ={x |-2≤x ≤10}.由p 是q 的充分不必要条件知,N M ,∴⎩⎨⎧ m >0,1-m <-2,1+m ≥10或⎩⎨⎧ m >0,1-m ≤-2,1+m >10,解得m ≥9. ∴实数m 的取值范围为[9,+∞).。