高中数学选修2-1命题及其关系课件
高二数学人教A版选修2-1课件:1.1.2 四种命题的相互关系(共24张)

第一章 常用逻辑用语1.1 命题及其关系1.1.2 四种命题的相互关系栏目链接1.掌握四种命题之间的关系以及真假性之间的关系.2.会利用命题的等价性解决简单问题.栏目链接栏目链接1.四种命题之间的关系:逆命题,若q则p否命题,若﹁p则﹁q 逆否命题,若﹁q则﹁p栏目链接2.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有________真假性;(2)两个命题为互逆命题或互否命题,它们的真假性________. 例:命题“若 x =y ,则sin x =sin y ”是真命题;它的逆否命题:“______________________”也是真命题;否命题“_______________________”是假命题,逆命题“______________________”也是假命题.相同的 没有关系若sin x ≠sin y ,则x ≠y 若x ≠y ,则sin x ≠sin y 若sin x =sin y ,则x =y栏目链接1.下列说法,不正确的是( )B栏目链接2.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( )A.若f (x )是偶函数,则f (-x )是偶函数B.若f (x )不是奇函数,则f (-x )不是奇函数C.若f (-x )是奇函数,则f (x )是奇函数D.若f (-x )不是奇函数,则f (x )不是奇函数B B栏目链接3.有下列四个命题:(1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2<y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“等边三角形有两边相等”的逆命题.其中真命题的个数是( )A.0个 B.1个 C.2个 D.3个栏目链接解析:(1)是真命题.其逆命题为“若x,y互为相反数,则x+y=0”,是真命题,因为原命题的否命题与其逆命题有相同的真假性,所以其否命题是真命题.(2)是假命题.原命题(如取 x=1,y=0)是假命题,所以其逆否命题是假命题.(3)是假命题.该命题否命题为“若x>3,则x2-x-6≤0”,显然是假命题.(4)是假命题. 该命题的逆命题是“有两边相等的三角形是等边三角形”,显然是假命题.答案:B 栏目链接栏目链接题型一四种命题真假的判断例1写出下列命题的逆命题、否命题和逆否命题,并判断命题的真假.(1)若x+y≠3,则x≠1或 y≠2;(2)若m·n<0,则方程mx2-x+n=0有实根;(3)若ab=0,则a=0或b=0.分析:此类问题的一般解题步骤:①写出命题的条件、结论;②写出四种命题;③判断命题的真假.栏目链接解析:(1)逆命题:若x≠1或y≠2,则 x+y≠3;假命题.否命题:若 x+y=3,则 x=1且y=2;假命题.逆否命题:若x=1且 y=2,则x+y=3;真命题.(2)逆命题:若方程mx2-x+n=0有实数根,则m·n<0;假命题.否命题:若m·n≥0,则方程mx2-x+n=0没有实数根;假命题.栏目链接逆否命题:若方程mx2-x+n=0没有实数根,则m·n≥0;真命题.(3)逆命题:若a=0或b=0,则ab=0;真命题.否命题:若ab≠0,则a≠0且b≠0;真命题.逆否命题:若a≠0且b≠0,则ab≠0;真命题.点评:要判断四种命题的真假,首先要熟练掌握四种命题的相互关系,以及它们的真假性之间的关系;其次利用相关知识判断真假时,一定要熟练掌握有关知识.栏目链接变 式迁 移栏目链接题型二 等价命题的应用例2证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.分析:本题若要直接证明,比较困难,可以考虑证明它的逆否命题.证明:原命题的逆否命题是“已知函数 f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.栏目链接若 a+b<0,则a<-b,b<-a,又因为函数f(x)是(-∞,+∞)上的增函数,所以f(a)<f(-b),f(b)<f(-a),所以 f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题是真命题,所以原命题是真命题.点评:原命题和它的逆否命题有相同的真假性,即互为逆否命题的命题具有等价性,所以我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.栏目链接变 式训 练2.判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.栏目链接方法二 原命题的逆否命题为“若方程x2+2x-3m=0无实数根,则m≤0”.方程x2+2x-3m=0无实数根,所以Δ=4+12m<0.所以m<-≤0.所以“若方程x2+2x-3m=0无实数根,则m≤0”为真命题.栏目链接题型三 命题的否定与否命题例3 写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若xy=0,则x=0或y=0;(3)若一个数是质数,则这个数是奇数.解析:(1)命题的否定:若x、y都是奇数,则x+y 不是偶数,为假命题.栏目链接原命题的否命题:若x、y不都是奇数,则x+y不是偶数,是假命题.(2)命题的否定:若xy=0,则x≠0且y≠0,为假命题.原命题的否命题:若xy≠0,则x≠0且y≠0,是真命题.(3)命题的否定:若一个数是质数,则这个数不是奇数,是假命题.栏目链接原命题的否命题:若一个数不是质数,则这个数不是奇数,为假命题.点评:命题的否定是:不否定条件只否定结论;命题的否命题是:既否定条件又否定结论.两者容易混淆,要注意区别.栏目链接变 式训 练3.命题“若a=-1,则a2=1”的逆否命题是__________________.若a2≠1,则a≠-1栏目链接。
新版人教A版高中数学选修2-1精品课件:1.1.1命题

3.选A.根据指数函数的单调性,知显然A正确,即A是真
命题;B中,由x2=1,得x=±1,所以B是假命题;C中,例如
sin sin 2 , 但所以C2是 , 假命题;D中,当x=-1,y=1
3
3 33
时,结论不成立,所以D是假命题.
【内化·悟】 判断命题真假的依据有哪些? 提示:判断命题真假的依据主要是数学中的定义、定理、 公理、公式以及客观事实.
【解析】①可以判断真假,是陈述句,是命题;②可以判 断真假,是陈述句,是命题;③不是命题,因为无法判断 其真假;④不是命题,因为无法判断其真假,其真假与x 的取值范围有关;⑤不是命题,因为它是疑问句;⑥不是 命题,因为它是祈使句;⑦可以判断真假,是陈述句,是 命题. 答案:①②⑦
类型二 命题真假的判断
【思维·引】 1.先求使方程无实根的a的取值范围,再看哪个值适合 即可. 2.应用数学中的定义、定理、公理、公式等,分析四个 命题,看哪一个命题的判断是假的.
3.应用数学中的定义、定理、公理、公式等,分析四个 命题,看哪一个命题的判断是真的.
【解析】1.选C.方程无实根,应满足Δ=a2-4<0,即 -2<a<2,故a=0时适合条件. 2.选C. 因为1= 1 3 =24,所以 ∉N. 3
【习练·破】 “红豆生南国,春来发几枝?愿君多采撷,此物最相思.” 这是唐代诗人王维的《相思》,在这四句诗中,可作为 命题的是 ( ) A.红豆生南国 B.春来发几枝 C.愿君多采撷 D.此物最相思
【解析】选A.A为可判断真假的陈述句,所以是命题;而 B为疑问句,C为祈使句,D为感叹句,所以均不是命题.
3.命题“垂直于同一条直线的两个平面平行”的条件
是( )
A.两个平面
人教A版高二数学选修2-1 1.1.2四种命题1.1.3四种命题的相互关系 课件

下 列 四 个 命 题 中 , 命 题 (1) 与 命 题 (2)(3)(4) 的 条 件 和 结 论 之 间 分 别 有 什 么 关 系?
(1)若f(x)是正弦函数,则f(x)是周期函数; (2)若f(x)是周期函数,则f(x)是正弦函数; (3)若f(x)不是正弦函数,则f(x)不是周期 函数; (4)若f(x)不是周期函数,则f(x)不是正弦 函数.
真
• 逆否命题:当c>0时,若ac≤bc ,则a≤b. 真
命题之间的真假性
原命题 逆命题 否命题 逆否命题
真真真 真 真假假 真 假真真 假 假假假 假
原命题为真,其 逆命题不一定为 真.
原命题为真,其 否命题不一定为 真.
原命题为真,其 逆否命题一定为 真.
互为逆否命题的 两个命题同真同 假.
• 例2 已知命题“若x2+y2=0,则x=y=0”. 写出它的逆命题、否命题、逆否命题, 并判断它们的真假. 解:原命题及其逆命题、否命题、 逆否命题均为真命题.
逆否命题:
若一个数的平方不是正数,则它不是负数.
(2)正方形的四条边相等.
• 原命题可以写成:若一个四边形是正方形, 则它的四条边相等.
逆命题:
若一个四边形的四条边相等,则它是正方形;
否命题:
若一个四边形不是正方形,则它的四条边不相等;
逆否命题:
若一个四边形的四条边不相等,则它不是正方形.
• 例2 写出命题“若xy=0,则x=0或y =0” 的逆命题、否命题、逆否命题.
它的逆否命题: 两直线不平行,同位角不相等.
1.请举出一些逆否命题的例子,并判断 原命题与逆否命题的真假.
2.如果原命题是真命题,那么它的逆否 命题一定是真命题吗?
人教A版高中数学选修2-1《1.1.1命题》课件

1.1.1 命 题
学习目标
1.理解命题的概念. 2.会判断命题的真假. 3.了解命题的构成形式,能将命题改写为“若p,则q”的形式.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 命题的概念
思考1
在初中,我们已经学习了命题的定义,它的内容是什么? 答案 对事情做出正确或不正确的判断的句子叫做命题.
反思与感悟
一个命题要么为真命题,要么为假命题,且必居其一.欲判断一个命题为 真命题,需进行论证,而要判断一个命题为假命题,只需举出一个反例 即可.
跟踪训练2 下列命题中假命题的个数为 答案 解析
①多边形的外角和与边数有关;
②如果数量积a·b=0,那么向量a=0或b=0;
③二次方程a2x2+2x-1=0有两个不相等的实根;
反思与感悟
把命题改写成“若p,则q”的形式,关键是找到命题的条件“p”和结 论“q”,在有些命题的叙述中,条件、结论不是那么分明,但我们可 以把它们改写成条件和结论分明的形式,这要求我们能够分清命题的条 件和结论分别是什么.
跟踪训练3 将下列命题改写成“若p,则q”的形式,并判断其真假. (1)正n边形(n≥3)的n个内角全相等; 解答 若一个多边形是正n边形,则这个正n边形的n个内角全相等.是真命题. (2)负数的立方是负数; 解答 若一个数是负数,则这个数的立方是负数.是真命题. (3)已知x,y为正整数,当y=x-5时,y=-3,x=2. 解答 已知x,y为正整数,若y=x-5,则y=-3,x=2.是假命题.
思考2
完成下列题目: (1) 命题 “等 角 的补 角 相等 ” :题 设 是 _等__角__的__补__角__ ,结论是 _相__等__. (2)命题“实数的平方是非负数”可以改为“如果_一__个__数__是__实__数__, 那么_它__的__平__方__是__非__负__数__”.
人教A版高中数学选修2-1:1.1命题及其关系课件

例2 指出下列命题中的条件p和结论q:
1) 若整数a能被2整除,则a是偶数; 2) 菱形的对角线互相垂直且平分。
解:1) 条件p:整数a能被2整除, 结论q:整数a 是偶数。
2) 写成若p,则q 的情势:若四边形是菱形, 则它的对角线互相垂直且平分。 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。
即 原命题:若p,则q 逆命题:若q,则p
例如,命题“同位角相等,两直线平行”的逆命题是“两 直线平行,同位角相等”。
视察命题(1)与命题(3)的条件和结论之间 分别有什么关系?
1.
3.
若若f(fx(x)不)是是正正弦弦函函数数,p,则则f(fx(x)是)不周是期周函期数函;数q .
┐p
┐q
为书写简便,常把条件p的否定和结论q的否定分别记作
原结论 反设词 原结论
反设词
是
不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有n个 至多有(n-1)个
小于 大于或等于 至多有n个 至少有(n+1)个
对所有x, 存在某x, 对任何x,
成立 不成立
不成立
存在某x, 成立
结论2:(1)“或”的否定为“且”, (2)“且”的否定为“或”, (3)“都”的否定为“不都”。(4)“一定是”的否定为“一定
“┐p” “┐q”
互否命题 原命题 (原命题的)否命题
原命题:若p,则q 否命题:若┐p,则┐q
例如,命题“同位角相等,两直线平行”的否命题是“同 位角不相等,两直线不平行”。
视察命题(1)与命题(4)的条件和结论之间 分别有什么关系?
人教A版高中数学高二选修2-1课件四种命题四种命题间的相互

新知导学
答疑解惑
当堂检测
名师点拨 四种命题之间共有互逆、互否、互为逆否三种关系:(1) 互逆关系:原命题与逆命题;否命题与逆否命题;(2)互否关系:原命题 与否命题;逆命题与逆否命题;(3)互为逆否关系(等价关系):原命题 与逆否命题;逆命题与否命题.
123
学习目标
新知导学
答疑解惑
当堂检测
做一做2】 给出以下命题:
学习目标
新知导学
答疑解惑
当堂检测
123
1.四种命题 (1)逆命题 对于两个命题,如果一个命题的条件和结论分别为另一个命题的
结论和条件,那么我们把这样的两个命题叫做互逆命题,其中一个 叫做原命题,另一个叫做原命题的逆命题.如果原命题为“若p,则q”, 则其逆命题为“若q,则p”.
(2)否命题 对于两个命题,如果一个命题的条件和结论分别为另一个命题的 条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命 题,其中一个叫做原命题,另一个叫做原命题的否命题.如果原命题 为“若p,则q”,那么其否命题为“若¬p,则¬q”.
学习目标
新知导学
答疑解惑
当堂检测
123
(3)逆否命题 对于两个命题,如果一个命题的条件和结论分别为另一个命题的 结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆 否命题,其中一个叫做原命题,另一个叫做原命题的逆否命题.如果 原命题为“若p,则q”,那么其逆否命题为“若¬q,则¬p”. 名师点拨 1.四种命题中的任何一个都可以作为原命题,即命题的 四种形式中,原命题是不确定的. 2.“互为逆否命题”与“逆否命题”是不同的,互为逆否命题指的是 两个命题之间的关系,具有双向性,而逆否命题指的是一个命题,具 有单向性.
“等边三角形有两边相等”的逆命题.其中真命题的个数是( )
人教A版高二数学选修21命题及其关系

原命题:若x2+y2=0,则xy=0
真
逆命题: 若xy =0,则x2+y2 =0
假
否命题: 若x2+y2≠0,则xy≠0
假
逆否命题: 若xy ≠0,则x2+y2 ≠0
真
原命题:若x∈A∪B,则x∈ UA∪ U B 逆命题: x∈ UA∪ UB ,x∈A∪B 。
假 假
图示
否命题: xA∪B,x UA∪ UB。
原命题:若a>b,则ac2>bc2
假
逆否命题:若ac2≤bc2,则a≤b 假
假 原命题:若四边形对角线相等,则四边形是平行四边形。 假 逆否命题:若四边形不是平行四边形,则四边形对角线不相等。
人教A版高二数学选修21命题及其关系
人教A版高二数学选修21命题及其关系
结论3
原命题和逆否命 题总是同真同假。
真
逆否命题: 当c>0时,若ac≤bc,则a≤b
真
例2:在下列横线上,填写”互逆””互否””互为逆否”
(1)命题:”若q则┐p”与命题”若┐q则p” (2)命题:”若┐p则q”与命题”若q则┐p” (3)命题:”若┐q则p”与命题”若┐p则q”
互否 互逆 互为逆否
人教A版高二数学选修21命题及其关系
人教A版高二数学选修21命题及其关系
结论1
原命题的真假和 逆命题的真假没有关 系。
人教A版高二数学选修21命题及其关系
人教A版高二数学选修21命题及其关系
二.四种命题的关系
2.互否命题的真假关系
判断下列否命题的真假,并总结规律。
原命题:若a>b,则a+c>b+c 真 否命题:若a≤b,则a+c≤b+c 真 真 原命题:若四边形是正方形,则四边形两对角线垂直。 假 否命题:若四边形不是正方形,则四边形两对角线不垂直。
《命题及其关系》课件(16张PPT)(苏教版选修2-1)

数学理论:原命题与逆命题的知识
即在两个命题中,如果第一个命题的条 件(或题设)是第二个命题的结论,且 第一个命题的结论是第二个命题的条件, 那么这两个命题叫做互逆命题;如果把 其中一个命题叫做原命题,那么另一个 叫做原命题的逆命题.
原命题是:⑴同位角相等,两直线平行; 逆命题就是:⑵两直线平行,同位角相等.
可以判断真假的语句称为命题.
其中判断为真的语句称为真命题,判断为假 的语句称为假命gkx题x精品.课件
命题(1)(4)(5),具有 “若P, 则q” 的形式
也可写成 “如果P,那么q” 的形式
pq
通常,我们把这种形式的命题中的P叫做命 题的条件,q叫做结论.
记做:
gkxx精品课件
指出下列命题中的条件p和结论q: (1)若整数a能被2整除,则a是偶数; (2)若四边形是菱形,则它的对角线互相垂直 且平分.
gkxx精品课件
例1.写出命题“若a=0,则ab=0”的逆命题、 否命题、逆否命题,并判断各命题的真假。
原命题:若a=0,则ab=0是真命题; 逆命题:若ab=0,则a=0是假命题; 否命题:若a ≠ 0,则ab ≠ 0”是假命题; 逆否命题:若ab≠0,则a≠0”是真命题;
原命题为真,它的否命题不一定为真; 原命题为真,它的逆否命题一定为真.
gkxx精品课件
数学理论:否命题与逆否命题的知识
即在两个命题中,一个命题的条件和结 论分别是另一个命题的条件的否定和结 论的否定,这样的两个命题就叫做互否 命题,若把其中一个命题叫做原命题, 则另一个就叫做原命题的否命题.
否命题⑶同位角不相等,两直线不平行; 逆否命题 ⑷两直线不平行,同位角不相等.
gkxx精品课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归纳:下面是一些常见的结论的反 设(即否定形式)
原结论
是
反设词
不是
原结论
反设词
至多有一个 至少有两个
不是
大于 小于
是
不大于 不小于
至少有n个
至多有n个 对所有x成 立 对任何x不 成立
至少有一个 一个也没有
至多有(n1)个 至少有 (n+1)个 存在某x不 成立 存在某x成 立
例题讲解
例4 、命题“已知a、b为实数,如果 关于x的不等式x ax b 0解集非
1.命题,真命题,假命题,原命题, 逆命题,否命题,逆否命题等,都是数学 中逻辑概念,判断一个语句是命题,必须 同时具备两个基本条件:语句是陈述句; 语句可以判断真假.
2.命题有真假之分,逆命题,否命题, 逆否命题具有相互性,任何一个命题都 有逆命题,否命题和逆否命题.
课堂小结
3.“若p,则q”是命题的基本形式, 在本章中,我们只讨论这种形式的命 题. “﹁p”是“非p”的符号表示,其含 义是对p的否定.
概念生成
(1)命题: 一般地,在数学中,我们把 用语言、符号或式子表达的,可 以判断真假的陈述句叫做命题.
(2)真命题、假命题:
判断为真的语句叫做真命题; 判断为假的命题叫做假命题.
概念辨析
判断下列语句中哪些是命题?是真命题还 是假命题? 真 (1)空集是任何集合的子集; (2)若整数a是素数,则a是奇数; 假 (3)对数函数是增函数吗? 不是命题 (4)若空间中两条直线不相交,则这两条 假 直线平行. (5) (2)2 2 ; 假 (6)x>15. zxxk 不是命题
课堂小结
4.四种命题中任意两种命题的关系都具 有相互性,其中有两组互逆命题,两组互 否命题,两组互为逆否命题. 5.原命题与逆否命题同真同假,即原命 题与逆否命题等价,这是反证法的理论依 据.
课堂小结
6.原命题与逆命题(否命题)真假不 明,但逆命题与否命题等价,若判断原命 题的否命题的真假有困难,可以换成判断 原命题的逆命题的真假.
高中数学选修 2-1
第一章 常用逻辑用语
在我们日常交往、学习与工作中, 逻辑用语是必不可少的工具,正确使 用逻辑用语是现代社会公民应具备的 基本素质。 本章中,我们将学习命题及四种 命题之间的关系,充分条件、必要条 件,简单的逻辑联结词、全称量词与 存在量词等一些基本知识。
命题及其关系
课题引入
问题探究
(1)若f(x)是正弦函数,则f(x)是周期函数; (2)若f(x)是周期函数,则f(x)是正弦函数.
对于两个命题,如果一个命题的 条件和结论分别是另一个命题的结论 和条件,则称这两个命题叫做互逆命 题.其中一个命题叫做原命题,另一 个叫做原命题的逆命题.
形成结论
原命题:若p,则q 逆命题:若q,则p
下列语句的表述形式有什么特点? 你能判断下列语句的真假吗? (1)若直线 a // b ,则直线 a 和直线 b 无公共点; (2)2+4=7; (3)垂直于同一条直线的两个平面平行; (4)垂直于同一条直线的两个直线平行; 2 (5)若 x 1,则 x 1; (6)两个全等三角形的面积相等; (7)3能被2整除.
知识探究
已知原命题:若x>0,y<0,则x+y>0, 那么其逆命题、否命题和逆否命题分别是 什么?这些命题的真假如何?
原命题:若x>0,y<0,则x+y>0(假) ;
逆命题:若x+y>0,则x>0,y<0(假) ;
否命题:若x≤0,y≥0,则x+y≤0; (假)
逆否命题:若x+y≤0,则x≤0,y≥0. (假)
问题探究
原命题:若p,则q 逆否命题:若q,则p
探究:举出一些互为逆否命题的例子, 并判断原命题与逆否命题的真假. Z、xxk
结论概括
原命题:若p,则q; 逆命题:若q,则p; 否命题:若﹁p,则﹁q; 逆否命题:若﹁q,则﹁p.
例题讲解
例3 写出下列命题的逆命题,否命题和
逆否命题. (1)若f(x)不是周期函数,则f(x)不是 正弦函数; (2)平行四边形的对边相等; (3)菱形的对角线互相垂直平分; (4)同位角相等,两直线平行; (5)若a>b,c>d,则a+c>b+d.
课堂小结
作业:
P8习题1.1A组:2,3,4.
《步步高》第1、2课时
逆命题:若x≥0,则|x|=x; (真) 否命题:若|x|≠x,则x<0; (真) 逆否命题:若x<0,则|x|≠x.(真)
知识探究
原命题:若x2-3x+2=0,则x=2, 那么其逆命题、否命题和逆否命题分别是 什么?这些命题的真假如何? (假) 原命题:若x2-3x+2=0,则x=2;
逆命题:若x=2,则x2-3x+2=0; (真) (真) 否命题:若x2-3x+2≠0,则x≠2; (假) 逆否命题:若x≠2,则x2-3x+2≠0.
形成结论
原命题:若p,则q 否命题:若p,则q
探究:举出一些互否命题的例子,并 判断原命题与否命题的真假.
问题探究
(1)若f(x)是正弦函数,则f(x)是周期 函数; (4)若f(x)不是周期函数,则f(x)不是 正弦函数;
对于两个命题,如果一个命题的 条件和结论恰好是另一个命题的 结论的否定和条件的否定,则称 这两个命题叫做互为逆否命题.
探究:举出一些互逆命题的例子, 并判断原命题与逆命题的真假.
问题探究
(1)若f(x)是正弦函数,则f(x)是周期函数; (3)若f(x)不是正弦函数,则f(x)不是周期 函数. 对于两个命题,如果一个命题的条件 和结论恰好是另一个命题的条件的否定 和结论的否定,则称这两个命题叫做互 否命题.如果把其中的一个叫做原命题, 那么另一个命题叫做否命题.
概念辨析
判断下列语句中哪些是命题?是真命题还 是假命题? (7) x2-x+1>0 ; (8)等边三角形是等腰三角形
真 真
概念辨析
(2)若整数a是素数,则a是奇数; (4)若空间中两条直线不相交,则 这 两条直线平行. 思考1 这两个命题在表达形式上有什 么共同特点? “若p,则q” 思考2 对具有“若p,则q”形式的命
互
互逆 否 逆 逆 否
若ab=0,则a=0.
为 互否 互 为
互否
若a≠0,则ab≠0.
互逆
若ab≠0,则a≠0.
形成结论
一般地,怎样理解原命题、逆命题、 否命题和逆否命题之间的相互关系?
互逆 原命题:若p则q 互否
否命题:若﹁p则﹁q
逆命题:若q则p
互
为逆
否
否 互否
逆否命题:若﹁q则﹁p
互
为
逆
互逆
问题探究
考察下列四个命题:
(1)若f(x)是正弦函数,则f(x)是周期函数; (2)若f(x)是周期函数,则f(x)是正弦函数; (3)若f(x)不是正弦函数,则f(x)不是周期
函数;
(4)若f(x)不是周期函数,则f(x)不是正弦
函数;
思考:判断上述命题的真假 . 思考 :这四个命题之间有什么联系?
2
空时,则a 4b 0”,写出该命题
2
的逆命题和否命题,并判断真假.
知识探究
探究1:对于下列命题,它们之间的相 互关系如何? (1)若a=0,则ab=0; (2)若ab=0,则a=0; (3)若a≠0,则ab≠0; (4)若ab≠0,则a≠0.
知识探究
若 a = 0 ,则 ab = 0.
结论概括
(1)两个命题互为逆否命题,它们 有相同的真假性;
(2)两个命题为互逆命题或互否命 题,它们的真假性没有关系.
典例讲评
例5 证明:若x2+y2=0,则x=y=0.
典例讲评
例6 原命题:若关于x的方程x2+bx+c =0有实根,则b+c+1=0. 试判断其 否命题的真假,并说明理由.
课堂小结
知识探究
探究2:四种命题的真假性之间是否有 什么规律?
知识探究
下列四个命题中哪些是真命题,哪 些是假命题? (1)若a=0,则ab=0;真
(2)若ab=0,则a=0;假
(3)若a≠0,则ab≠0;假 (4)若ab≠0,则a≠0. 真
知识探究
原命题:若|x|=x,则x≥0,那么其 逆命题、否命题和逆否命题分别是什么? 这些命题的真假如何? 原命题:若|x|=x,则x≥0; (真)
题,在逻辑上,p、q分别是什么地位?
概念形成
“若p,则q” 我们把这种形式的命题中的p叫 做命题的条件,q叫做命题的结论.
例题讲解
例1 指出下列命题中的条件p和结论q: (1)若整数a能被2整除,则a是偶数; (2)若四边形是菱形,则它的对角线 互相垂直且平分.
例题讲解
例2 将下列命题改写成“若p, 则q”的 形式,并判断真假. (1)垂直于同一条直线的两条直线平行; (2)负数的立方是负数; (3)对顶角相等。