铁路客运量预测方法
铁路客流预测研究

铁路客流预测研究随着人们出行需求的不断增加,铁路客流量逐年攀升,如何准确地预测铁路客流量并根据预测结果制定有效的调度方案,成为当前铁路运营管理的重点之一。
针对这一问题,本文将从预测模型、数据采集、预测评估与结果分析四个方面进行系统介绍和探讨。
一、预测模型在铁路客流预测中,研究预测模型是十分重要的。
当前常见的预测模型主要包括时间序列模型、回归模型、神经网络模型等。
时间序列模型是通过分析样本历史时间序列数据的特征,然后用这些特征作为预测因子,建立数学模型预测未来客流量,其中较为常见的有指数平滑法、ARIMA模型等。
而回归模型则是根据客流量与其它相关变量的关系建立的回归方程,例如系统广告宣传量、周末度假等;神经网络模型则是通过神经元间的相互联系,运用大量的样本学习以确定模型的结构和权值,从而实现客流量的预测。
在预测模型的选择中,需要根据具体情况综合考虑客流量的特征,如季节性、周期性等,从而选择最为适宜的模型进行客流预测,以提高预测的准确性。
二、数据采集铁路客流预测的准确性,离不开数据采集的质量和实时性。
当前,铁路客流预测数据主要来源于针对客流信息的监测系统,包括乘客车票数据、客运站人流数据、线上预订数据及其它监测设施数据。
其中,乘客车票数据是最为重要的数据来源之一。
通过对车票销售系统的数据采集,对每个车站的实时客流量进行预测,可以为客流量调度提供重要参考依据。
客运站人流数据则是通过监测设施对乘客进出站的实时人数进行计算。
线上预订数据则是指通过铁路官网、APP等在线订票平台获得的预订数据。
通过对各类数据进行有效分类整合、分析加工和存储管理,可及时、准确、全面地掌握铁路客流变化情况,从而为营运安排和预测提供有力的保障条件。
三、预测评估铁路客流预测的准确性与实用性,取决于对预测模型进行有效评估的质量。
常见的预测评估方法包括简单误差、平均绝对误差、均方根误差等。
其中,简单误差方法采用简单的多次对比方法,来比较实际预测值与模型预测值之间的差异,并评估模型的预测准确性;平均绝对误差是指各预测值的误差绝对值之和平均得到的误差;均方根误差是指各预测值误差平方和与样本数量之比。
铁路客货运量预测方法

铁路客货运量预测技术一般可分为三类:定性分析预测技术、定量分析预测技术以及两者相结合的综合预测技术。
定性分析预测技术,通常指那些凭经验判断的预测,一般是在缺少且难以获得进行定量分析所必需的资料的情况下采用,它侧重于研究与推断预测对象未来发展的趋势和性质,其预测质量,主要取决于参与人员的专业知识和经验。
定量分析预测技术,是指以已经掌握的历史资料作为基础,建立适当的数学模型,对未来的运量做出测算的技术。
其特点是有明显的数量概念,侧重于研究测算对象的发展程度(包括数量、时间、相关因素的比值,发展过程等)。
(四阶段法:出行发生、出行分布、出行方式划分、出行分配)
定量预测或定性预测,各有其长处和一定的局限性,实际应用中往往需要把定量预测和定性预测方法相结合,即定量预测在定性分析的基础上进行,而定性预测也采用一定的定量分析方法,以提高预测结果的准确性。
因此,综合预测技术是客货运量预测经常采用的方法。
铁路客流预测方法研究

铁路客流预测方法研究引言铁路客流预测是铁路运输行业的重要问题,对于提高铁路运营效率、优化资源配置、辅助决策等方面具有重要意义。
随着科技的进步和大数据时代的到来,预测方法的不断改进和创新成为解决铁路客流预测问题的关键。
本文将围绕“铁路客流预测方法研究”展开,探讨适用于铁路客流预测的方法,以及如何提高预测的准确性和效率。
研究现状传统的铁路客流预测方法主要包括时间序列分析、回归分析、神经网络等。
这些方法在不同程度上取得了较好的预测效果,但仍然存在局限性。
如时间序列分析对于客流数据的趋势和周期性变化有较好的拟合效果,但无法处理非线性关系;回归分析可以处理多种因素对客流的影响,但需要预先确定自变量和因变量之间的关系。
近年来,随着深度学习技术的发展,许多研究者将深度神经网络应用于铁路客流预测。
深度神经网络具有强大的自适应能力和拟合能力,可以处理复杂的非线性关系,提高了预测的准确性。
方法探究1、传统方法时间序列分析和回归分析是传统铁路客流预测的常用方法。
时间序列分析可以通过对历史数据的趋势和周期性变化进行分析,建立预测模型。
回归分析则可以通过对多种影响因素进行分析,建立因变量和自变量之间的关系模型。
这些方法在实际应用中都取得了一定的效果,但也存在局限性,如无法处理非线性关系、需要预先确定影响因素等。
2、深度学习深度学习是近年来发展迅速的一种机器学习方法,具有强大的自适应能力和拟合能力。
在铁路客流预测方面,深度神经网络可以处理复杂的非线性关系,提高预测的准确性。
卷积神经网络(CNN)和循环神经网络(RNN)是深度学习中常用的两种模型。
其中,CNN适合处理静态图像和数据,而RNN适合处理序列数据和时间序列数据。
在铁路客流预测中,可以将CNN和RNN结合起来,形成一种混合神经网络模型,以提高预测的准确性和稳定性。
实验结果分析为了验证所提出方法的优越性,我们进行了实验对比分析。
实验数据来源于某铁路局的客流数据,包括时间序列数据和多种影响因素数据。
铁路客流预测模型及算法研究

铁路客流预测模型及算法研究一、前言在铁路客运高峰期,客流量高峰往往给铁路运输部门带来很大的压力。
因此,针对客运高峰期的客流量预测成为许多铁路局面临的共同问题。
本文将对铁路客流预测模型及算法进行研究。
二、客流预测模型1. 常用模型目前,在客流预测方面,主要采用了传统的时间序列分析和机器学习等方法。
时间序列分析是指预测模型以一个事件历史的时间序列为基础,通过观察历史事件中该事件的变化情况,来推断未来的变化趋势和水平的一种方法。
时间序列分析的方法通常包括分析趋势、季节性和周期性等因素,以得出未来的变化规律。
机器学习方法包括了各种复杂的统计模型和算法,如决策树、神经网络和支持向量机等。
这些模型和算法可以快速解决非线性问题,不仅有效提高了预测精度,而且对数据中的信息进行了更好的提取。
2. 模型的应用时间序列分析可基于过去的载客数据来预测接下来的某段时间内的载客量,而机器学习方法则可将更多的因素考虑在内。
由于预测结果具有时效性,因此针对预测应用场景的不同,适当调整预测模型和算法可以有效提高预测精度。
在日常预测中,机器学习算法的调整是与信息在处理中建立起点进行的。
为了使用监督学习算法预测铁路客流量,需要先提取多种数据特征,如时间和温度等。
监督学习算法需要通过训练来识别和预测与其他特征相关的客流量。
在实际应用过程中,更常用的是机器学习算法,比如支持向量机、决策树、神经网络和随机森林等。
三、算法研究1. 传统算法传统的时间序列分析方法,如指数平滑和ARIMA模型,在铁路客流预测中有着广泛的应用。
其中,指数平滑法是一种基于权重平滑的时间序列预测方法。
该方法会根据历史数据的数据点计算出加权平均值,从而预测未来的趋势。
ARIMA模型通常用于表征自回归模型的时间序列。
2. 机器学习算法与传统的算法相比,机器学习算法在铁路客流预测中的应用更加广泛。
机器学习算法的优点在于它们能够自动处理特征选择和非线性问题,从而可以更好地利用庞大的数据集设计出更精确的预测模型。
铁路客运量预测方法

一、意义1、设计铁路能力的依据。
客运量是选定铁路主要技术标准的依据,而主要技术标准又决定着运输装备的能力,它不应小于调查或预测的客运量,以满足国家要求的运输任务;2、是评价铁路经济效益的基础。
客运量决定铁路的运营收入、运输成本等经济效益指标。
客运量大,则收入多、成本低;3、是影响线路方案取舍的重要因素。
铁路选线中,出现大量的线路方案比较。
若运量大,则投资大的方案中选,运营支出小。
总之,若调查或预测的客运量偏大,则铁路标准偏高,技术装备能力也偏高,因而投资较大。
但运营后发现实际运量偏小,则会造成铁路能力闲置,投资浪费,由于运营收入少,铁路的经济效益必然降低;若调查或预测的客运量偏小,虽初期投资省,但运营后能力很快就会饱和,从而过早的引起铁路改扩建,追加投资增大,也不经济。
二、影响客运量的因素直通吸引范围:等距离原则划定(“哪边近走哪边”),上下行分别勾画;地方吸引范围:运价最低(运距最低)原则确定(“哪边花钱少走哪边”)。
随着社会经济的不断发展,客运量也在不断增加,因此,只有把握住影响客运量增长的因素,才能更好地预测出客运量的大小。
影响因素主要有:1、国家的政治、经济形势,国民经济的增长速度与发展战略,运价政策和旅客对运费的承受能力,这些因素,在预测远期运量时需加以考虑;2、设计线在路网中的地位和作用,以及邻接铁路的布局和能力,都将影响直通客运量;3、设计线沿线的资源情况,工矿、电力等大型企业的发展规划,农林牧副渔和乡镇企业的发展情况,以及城乡人口、人均收入的增长情况,也将影响地方客运量;4、设计线沿线的公路、水运等交通状况和发展规划,将影响设计线分担客运量的比重;5、突发事件的影响:疾病、自然灾害等。
三、客运量预测方法定性预测方法是主要以预测人员的经验判断为依据而进行的预测。
预测者根据自己掌握的实际情况、实践经验、专业水平,对未来货运发展前景的性质、方向和程度做出判断。
其特点为:需要的数据少,能考虑无法定量的因素,比较简便可行。
高速铁路客运量预测方法选择_图文(精)

65YUNSHUSHICHANG 2007/7高速铁路客运量预测是项目规划和建设的依据, 也是经济效益计算的基础。
目前常用的高速铁路客运量预测方法是四阶段法,其中最主要的方式划分预测又基本采用了Logit 模型。
但由于Logit模型存在的某些特性会在一定程度上影响预测的准确性,因此在应用四阶段法进行预测时,必须分析和掌握这种特性, 以便选择适当的高速铁路客运量预测方法。
目前大部分高速铁路客运量预测所采用的预测方法(包括京沪高速铁路客运量预测主要由以下两部分内容组成:一是以社会经济变量(各交通小区的GDP或人口和阻抗变量(各交通小区间的广义价格作为自变量预测研究区域内特征年度总的旅客 OD 交流量,预测一般采用重力模型;二是用一个涉及多种运输方式的选择模型确定现有运输方式和新的高速铁路的出行份额和出行量,而且所有方式的出行份额加总为 100%。
典型地,用于方式选择的是一个多元的 Logit 模型。
然而,由于 Logit 模型的非相关选择方案独立特性(IIA, 高速铁路的预测运量必须直接与现有方式间的运量份额比值成正比关系,因而使预测结果的准确性降低, 这也是该方法最主要的缺陷。
如果不进行改进, 该方法的模型运行结果就会出现如下情况:当一种现有运输方式本身占有较高的份额时,高速铁路从中得到的转移到运量份额也随之较高。
例如,假设任意两个区域间的出行 50%是由小汽车完成的,则采用该方法预测将会得到 50%的高速铁路运量份额是从小汽车转移过来的。
分析我国现状的客流组成,这一情况实际上是不可能发生的。
为了减少非相关选择方案独立特性所产生的问题,某些预测采用了另外一种方法。
该方法也是首先预测各种运输方式的合计 OD 客流量,然后用一个多层的 Logit 模型(NL来确定高速铁路和其他相关方式的市场份额。
多层 Logit 模型高速铁路客运量预测方法选择□张康敏刘晓青66YUNSHUSHICHANG2007/7通过一种树状结构将选择方案分为若干层次, 其中同一层次的方案类似性较大, 而不同类型的方案则作为不同层次, 这样就解决了模型误差项的独立同分布性,即 IIA 问题。
铁路客流预测的方法

第四步:对模型精度的检验。
(计算原始数列、残差数列,与预测精度等级划分表对比)
第五步:如果检验合格,则可以用模型进行预测。预测值:
基于径向基神经网络的短期客流预测
径向基函数神经网络:具有单隐层的三层前馈网络。第一层为输入层, 由信号源节点构成;第二层为隐藏层,节点数视需要而定;第三层为 输出层,对输入模式作出响应。单个输出神经元的RBF神经网络的拓扑 结构:
抽取数据:
调整日期: 为体现周规律的影响 设置参数: 作用,选择与预测日 将微调后日期的客流 期相隔14天的的售票 利用Matlab创建一个 量y作为最终的测试输 数据(t1,t2,…,t14 ) 精确的RBF神经网络。 入,与该日期相隔1 4 作为训练输出数据, 参数包括输入向量、 天的售票数据(y1, 与预测日期对应的前 目标向量(即输出向量) 从输入层到隐藏层的变换是非线性的,从隐藏层到输出层的变换是线 y2,…,y14)作为训练 一年的同一日期发车 和spread值。 输入 性的。隐藏层采用RBF作为激励函数,Ri=exp(一ll x-Cill/(2 i2 )) 的客流量y作为输入数
铁路客流预测的方法
客流预测——在一定的社会经济发展条件下,科学预测各目标年 限铁路线路的断面流量、站点乘降量、站间OD、平均运距等反应 铁路交通客流需求特征的指标
基于客流性质的铁路客流预测方法
基于灰色理论的铁路客流预测
基于径向基神经网络的短期客流预 测
基于客流性质的铁路客流预测方法 ——四阶段法
• 最短路分配模型 交通分 • 静态多路径概率分配,等
配预测
基于灰色理论的铁路客流预测
灰色系统理论是运用于控制与预测的新型横断学科理论。灰色系统是指介于 白色系统(信息完全已知)和黑色系统(信息完全未知)之间,部分信息已知,部 分信息未知的数据系统。 灰色模型:GM(1,1)反映了—个变量对时间的一阶微分函数,其相应的微分 方程为: 第一步:建立一次累加生成数列。 第二步:利用最小二乘法求参数a,u。 第三步:求解GM(1,1)的模型:
铁路客流预测与优化的方法研究

铁路客流预测与优化的方法研究近年来,随着铁路交通的快速发展和客流量的不断增加,对铁路客流预测与优化的研究需求也日益迫切。
铁路客流预测与优化的方法研究旨在通过合理的客流预测和优化策略,提高铁路运输系统的运行效率和服务质量,满足日益增长的乘客出行需求。
铁路客流预测是指通过分析历史客流数据,利用数学模型和统计方法,对未来一段时间内的客流进行预测。
客流预测的准确性对于铁路运输系统的运营和决策具有重要意义。
在铁路客流预测中,常用的预测方法包括时间序列分析、回归分析、神经网络等。
时间序列分析是一种常见的铁路客流预测方法。
它基于历史客流数据的时间序列特征,通过对时间序列数据进行平滑处理、趋势分析和周期性分析,预测未来一段时间的客流趋势和数量。
时间序列分析方法具有简单易行、准确可靠的优点,但对历史数据的准确性要求较高。
另一种常用的预测方法是回归分析。
回归分析通过建立客流量与相关影响因素(如天气、节假日等)之间的数学模型,预测未来客流量的变化。
回归分析主要通过收集相关影响因素的数据,并建立数学模型,利用模型对客流量的变化进行预测。
回归分析方法具有较好的预测效果和解释性,但对相关影响因素的选择和数据的质量要求较高。
近年来,神经网络在铁路客流预测中得到了广泛应用。
神经网络是一种基于人工神经元构造的计算模型,它通过学习历史数据的非线性关系,模拟人脑的神经元之间的相互作用,从而实现对未来客流的预测。
神经网络具有较强的非线性处理能力和适应性,能够提高铁路客流预测的准确性和稳定性。
除了客流预测,铁路客流优化也是铁路运输系统的重要任务之一。
铁路客流优化旨在通过合理的运输资源配置和调整策略,提高运输效率、减少运输成本、提升服务质量。
常用的客流优化方法包括列车运行图优化、乘车策略优化、站点布局优化等。
列车运行图优化是指在保证运输安全和准点性的前提下,通过合理调整列车运行图,提高铁路网络的运输能力。
列车运行图优化方法主要包括列车停站时间优化、列车运行速度优化、列车运行间隔优化等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、意义
1、设计铁路能力的依据。
客运量是选定铁路主要技术标准的依据,而主要技术标准又决定着运输装备的能力,它不应小于调查或预测的客运量,以满足国家要求的运输任务;
2、是评价铁路经济效益的基础。
客运量决定铁路的运营收入、运输成本等经济效益指标。
客运量大,则收入多、成本低;
3、是影响线路方案取舍的重要因素。
铁路选线中,出现大量的线路方案比较。
若运量大,则投资大的方案中选,运营支出小。
总之,若调查或预测的客运量偏大,则铁路标准偏高,技术装备能力也偏高,因而投资较大。
但运营后发现实际运量偏小,则会造成铁路能力闲置,投资浪费,由于运营收入少,铁路的经济效益必然降低;若调查或预测的客运量偏小,虽初期投资省,但运营后能力很快就会饱和,从而过早的引起铁路改扩建,追加投资增大,也不经济。
二、影响客运量的因素
直通吸引范围:等距离原则划定(“哪边近走哪边”),上下行分别勾画;
地方吸引范围:运价最低(运距最低)原则确定(“哪边花钱少走哪边”)。
随着社会经济的不断发展,客运量也在不断增加,因此,只有把握住影响客运量增长的因素,才能更好地预测出客运量的大小。
影响因素主要有:
1、国家的政治、经济形势,国民经济的增长速度与发展战略,运价政策和旅客对运费的承受能力,这些因素,在预测远期运量时需加以考虑;
2、设计线在路网中的地位和作用,以及邻接铁路的布局和能力,都将影响直通客运量;
3、设计线沿线的资源情况,工矿、电力等大型企业的发展规划,农林牧副渔和乡镇企业的发展情况,以及城乡人口、人均收入的增长情况,也将影响地方客运量;
4、设计线沿线的公路、水运等交通状况和发展规划,将影响设计线分担客运量的比重;
5、突发事件的影响:疾病、自然灾害等。
三、客运量预测方法
定性预测方法是主要以预测人员的经验判断为依据而进行的预测。
预测者根据自己掌握的实际情况、实践经验、专业水平,对未来货运发展前景的性质、方向和程度做出判断。
其特点为:需要的数据少,能考虑无法定量的因素,比较简便可行。
定性预测方法:经济调查法(直接估算法:根据规划线吸引范围内的经济、人口、人均收入等情况,比照邻接铁路每天开行的旅客列车对数,直接估计规划线运营初期每天需要开行的列车对数,远期可按每隔若干年增加一对估算)、德尔菲法(专家调查法)、类推法(时间类推和局部类推)、头脑风暴法等。
但这种方法往往在很大程度上取决于参加预测的人员的经验、专业理论水平以及所掌握的实际情况,因此存在片面性,准确性不高的缺点。
定量预测方法则是以历史统计资料和有关信息为依据,运用各种数学方法来预测未来客运市场需求情况,即未来的运量。
定量预测方法最大的优点就是客观性,这类方法的预测精度和可靠性在很大程度上取决于数据的准确性和预测方法的科学性。
定量预测方法:时间序列法(移动平均法、指数平滑法、季节指数法、自回归分析、趋势外推法、灰色预测法)、影响因素分析法(回归分析法、系数法:乘车系数和产值系数)、四阶段法(交通生成、交通分布、交通方式划分、交通流分配)。
时间序列分析预测法是一种依据客运量的历史变化趋势,找出其随时间变化的规律,并通过数学模型来表示,然后根据模型来进行预测的方法。
这种方法的主要优点是需要数据少、简便,只要所研究的运量时间序列的趋势没有大的波动,预测效果较好。
这类方法的缺点是无法反映出运量变化的原因,对于影响运量变化的外部因素变化,如调整经济政策和发展速度而引起的运输需求的变动无法反映。
影响总运输需求的主要因素有很多,但具体的预测目标类型、范围是不同的,必须细致地分析其最
主要的影响因素,设法将其用量化指标反映出来。
通过对过去和现在的指标数据进行分析研究,可以找出运输需求与相关经济量的关系,用于对运量进行预测。
这类预测方法在数据量足够多的情况下,常可获得较好的精度,并提供运量变化原因方面的信息。
其缺点是自变量、外在变量指标未来值的选择,本身就带有预测性(比如:乘车系数法中未来人口的预测),影响预测的准确程度。
新建铁路预测方法:没有统计资料,只有在调查研究的基础上,借助预测者的丰富经验,并和与规划线条件相近的既有线类比来进行预测。
目前,对新的预测方法的研究已取得了一些成果,如将灰色系统理论、神经网络理论、遗传算法理论及组合方法引入到客运量预测中。
现在应用的预测方法:客运量是非线性系统
2、BP (Back Propagation )神经网络(按误差逆传播算法的非循环多级前馈神经网络)模型:信息的正向传播和误差的反向传播。
误差是否收敛、误差可接受程度或预设次数。
合理选用传递函数。
具有预测精度高、收敛速度快等特点。
3、遗传算法(GA)是一种基于自然选择(达尔文进化论)和基因遗传学(孟德尔)原理的优化搜索方法。
遗传算法在计算机上模拟生物的进化过程和基因的操作,并不需要对象的特定知识,也不需要对象的搜索空间是连续可微的,它具有全局寻优的能力。
四、灰色模型与线性回归模型组合的预测方法
灰色系统认为一切随机量都是在一定范围内、一定时段上变化的灰色量和灰过程。
对于灰色量的处理不是寻求它的统计规律和概率分布,而是将杂乱无章的原始数据列,通过一定的方法处理,变成比较有规律的时间序列数据。
即以数找数的规律,再建立动态模型。
这就弥补了概率统计方法的不足。
铁路运量的增长,受国民经济各部门多层次多因素的影响。
这些因素有可知的,有未知的,因而可用灰色模型寻求运量增长与时间序列的规律。
不需要大量的统计数据就可以建立数学模型,利用有限的统计数据推导系统本身的发展规律;不需要统计数据具有典型的分布规律,数据的波动可经过累加处理,弱化其影响。
但适用于单一的指数增长数据序列,对于出现的异常数据无法处理,因此与线性回归模型结合起来,处理这些异常数据。
建模过程:
(1)数据处理
如图,某省历年统计数据,用(0)()x
t 表示,很明显,2003年的运量突降,属于变异数据,因此需要对其进行调整。
取原始数据序列(0)(4980,5085,4864,5695,5842,6313)X =,用公式(1)(1)()
x t t x t σ++=计算数据级比,然后求出级比平均值,得到调整后的2003年的客运量为5344万人,从而调整后的数据序列(0)(4980,5085,5344,5695,5842,6313)X =,将各年度统计量逐年累加,得(0)(4980,10065,15409,21104,26946,33259)X =。
(2)用微分方程拟合数据序列(1)
()x t 一阶微分方程的形式为(1)(1)dx ax u dt +=,该微分方程的解为(1)(0)(1)((1))at u u x t x e a a -+=-+, 式中 ,a u —参数,可由最小二乘法求得,即 1()T T n
a B B B y u -⎛⎫=⋅ ⎪⎝⎭
(1)(1)(1)(1)(1)(1)1(2)(1)21(3)(2)21()(1)2x x x x B x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦ ⎪ ⎪⎡⎤-+⎣
⎦ ⎪= ⎪ ⎪ ⎪⎡⎤-+- ⎪⎣⎦⎝
⎭,(0)(0)(0)(2),(3),,()T
n y x x x n ⎡⎤=⎣⎦,求出参数,a u 后便建立起灰色预测模型。
(3)预测值的还原
模型计算出来的是预测的累加值,记为(1)
()x k ,因此还要进行真正预测值的还原,即预测值(0)(1)(1)()()(1)x k x k x k =--。
(4)精度检验
方差比c :c=S 2/S 1
小误差概率p :{}(0)(0)1()0.6745k S εε-<
式中 S 1
—原始数据列的均方差,1S
S 2
—残差的均方差,2S (0)(0)(0)()()()k x k x k ε=-。
(5)残差修正
灰色理论中灰色预测方法的优点是算法简单,易于掌握,运算速度快,模型的拟合精度较高,对于短期预测能给出很好的预测效果,缺点是对于具有波动性的系统预测的效果不是很理想。
交通流本身具有很多不确定性的因素,受环境因素、突发事件的影响比较大,具有很强的波动性,因此在短期交通流预测中预测的精度往往不高。