沪教版2017年高中数学高二上册《数列》全套教案
沪教版高中数学高二上册第七章数列的极限课件

极限不存在
2.5
2
1.5
系列1 系列2 1
0.5
0
0
5
10
15
20
25
30
35
40
45
沪教版高中数学高二上册第七章数列 的极限 课件( 公开课 课件)
例3. 判断下列数列是否存在极限,若存在求出极限
n, n 5
(2)an
1 n
,n
6
存在极限,
lim
n
an
0
6
5
4
3
系列1
2
1
0
0
2
4
6
8
10
12
an
0
(3) 1, 1,1, 1, , (1)n1,
极限不存在
例1. 判断下列数列是否存在极限,若存在求出极限
(4) 3,3,3, ,3,
存在极限,
lim
n
an
3
(5) 1, 2, 3, , n,
极限不存在
(6)
1 2
,
2 22
,
3 23
,
,
n 2n
,
存在极限,
lim
n
an
0
沪教版高中数学高二上册第七章数列 的极限 课件( 公开课 课件)
lim
n
1 n2
lim
n
2 n
0 2 lim 1 0 0 0
n n
(2)lim 3n 4 n n
lim(3 4) lim 3 lim 4
n
n
n n n
3 4 lim 1 3 0 3 n n
沪教版高中数学高二上册第七章数列 的极限 课件( 公开课 课件)
沪教版(上海)高二数学上册7.1数列课件

(5)1,1,1,1,1,….
3.
项的序数
项
1, 2, 3, 4, …, n,…
ห้องสมุดไป่ตู้a1 , a2 , a3 , a4 , , an , ,
a1 f (1), a2 f (2), a3 f (3), a4 f (4), , an f (n)
与421是否为该数列中的项?若是应为第几项?
1.数列的定义
2数列的项与序数,通项公式
3.数列是定义在正整数集或其子集上函数
7.1 数 列(1)
“一尺之棰”每日剩下的部分
1 1 1
1
1
, , , , ⋯
2 4 8 16 32
中国数学家祖冲之在前人的基础上,经过刻苦钻
研,反复演算,将圆周率推算至小数点后7位数
(即3.1415926与3.1415927之间),并得出了
圆周率分数情势的近似值。
的不足近似值:
3, 3.1,3.14, 3.141, 3.1415,
(3) , , ,
2 4 8 16
例3.视察下列数列的构成规律,写出数列的一个通项公式
1 1 1 1
(1) − , , − , , ⋯
2 4 8 16
(2)9,99,999,9999, ⋯
3 2 5 3 7
(3) , , , , , ⋯
2 3 12 10 30
(4)2,0,2,0,2,0, ⋯
例4.已知无穷数列1×2,2×3,3×4,……,n(n+1),……判断420
的第一项,(也称首项)排在第二位称为这个数列的第二项,…,
排在第n位的数称为第n项.
沪教版2017年高中数学高二上册《数列》全套教案

沪教版高中数学高二上册《数列》教案目录➢7.1 数列(数列的递推公式) (1)➢7.1 数列(数列的递推公式) (7)➢数列的递推关系 (12)➢7.1 (1)数列(数列及通项) (15)➢第三章数列 (23)➢用构造法求数列的通项公式 (25)➢等差数列(二) (31)➢7.2(1)等差数列 (35)➢等差数列 (38)➢等差数列 (40)➢7.2(4)等差数列的通项公式和前 (46)➢7.3(3)等比数列的前n项和(1) (53)➢7.3(4)等比数列的前n项和(2) (59)➢等比数列的前 (64)➢7.4 数学归纳法 (66)➢7.5数学归纳法的应用 (78)➢7.6 归纳—猜想—论证 (85)➢7.7 (2)极限的运算法则 (89)➢数列极限的定义 (99)➢7.8(1)无穷等比数列的各项和(1) (101)➢7.8 (2) 无穷等比数列的各项和(2) (108)➢课题:无穷等比数列各项的和(1) (113)➢无穷等比数列各项的和 (117)7.1 数列(数列的递推公式)一、教学内容分析本节课是数列的第二课时,教学内容是“数列的递推公式”,学生对数列已有的认知程度:数列的有关概念和数列的通项公式.二、教学目标设计1、知道递推公式也是给出数列的一种方法;2、理解数列通项公式的意义,观察数列项与项之间的内在联系,逐步形成学生的观察能力;3、通过阅读框图,正确理解算法程序,掌握建立递推关系式的方法,形成数学阅读能力.三、教学重点及难点重点:理解数列通项公式的意义,利用递推关系式,揭示数列项与项之间的内在联系.难点:阅读算法程序框图,建立递推关系式.四、教学用具准备多媒体设备五、教学流程设计六、教学过程设计一、情景引入1.观察3、6、9、12、15、18、21. ①2.思考在数列①中,项与项之间有什么关系?[说明]:13,a =2132433,3,3,a a a a a a =+=+=+或 2132432,3,24,3a a a a a a === 3.讨论由此,数列①也可以用下面的公式表示:113(27)3n n a a n a -=+ ≤≤⎧⎨=⎩ 或 11(27)13n n n a a n n a -⎧= ≤≤⎪-⎨⎪=⎩二、学习新课1.概念辨析如果已知数列}{n a 的任一项与它的前一项1n a -(或前几项)间的关系可用一个公式来表示,那么这个公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法.2.例题分析例3.根据下列递推公式写出数列的前4项: (1)1121(2),1;n n a a n a -=+ ≥⎧⎨=⎩ (2)1115(2),100.n n a a n a -=- ≥⎧⎨=⎩ 解:(1)由题意知:121324312121132123172127115a a a a a a a ==+=⨯+==+=⨯+==+=⨯+=这个数列的前4项依次为1,3,7,15.(2)由题意知:1213243100,1515100851515(85)100,151510085a a a a a a a ==-=-=-=-=--==-=-=-这个数列的前4项依次为100,-85,100,-85.[说明] 已知数列的首项(或前几项),利用递推公式可以依次求出数列以后的项. 例4.根据图7-5中的框图,建立所打印数列的递推公式,并写出这个数列的前5项. 解:由图7-5可知,数列的首项为3,从第二项起数列中的每一项都是前一项与前一项减1所得的差之积,即111(1)(210),3.n n n a a a n a --=- ≤≤⎧⎨=⎩ 利用上述递推公式,计算可得到数列的前5项依次为3,6,30,870,756030.[说明] 解答本例的关键是要读懂框图,框图呈现的是算法程序,该程序就是递推关系.3.问题拓展例1.1112(2),1, 1.n n n a a a n a a +-=+ ≥⎧⎨==⎩解:由题意知:123214321,1112213a a a a a a a a ===+=+==+=+=这个数列的前4项依次为1,1,2,3.[说明] 由递推公式1112(2),1, 1.n n n a a a n a a +-=+ ≥⎧⎨==⎩给出的数列叫做斐波那契数列.斐波那契(L.Fibonacci,1170-1250),意大利数学家,他在1202年所著的《计算之书》中,提出的“兔子问题”所用的数列被后人称为斐波那契数列. 斐波那契的兔子问题:假设一对初生兔子要一个月才到成熟期,而一对成熟兔子每个月都会生下一对兔子.那么,由一对初生兔子开始,12个月后会有多少对兔子呢? 用记号“”表示初生的幼兔,“•”表示成熟的兔子,则有下图得到前七项:1,1,2,3,5,8,13进一步可以发现:从第三项起,每一项都是前面两项之和.下面给出证明:设n a 表示第n 个月的兔子数,n b 表示第n 个月幼兔,n c 表示第n 个月的成熟兔,则:n n n a b c =+由题意有:11112,nn n n n n n c c b a b c a -----=+=== *21(2,)n n n a a a n n N --∴=+≥∈,证毕. ∴1到12个月的兔子数依序是:1,1,2,3,5,8,13,21,34,55,89,144,243. ∴12个月后共有243对兔子.例2.已知数列{}n a 的第1项是1,第2项是2,以后各项由12(3)nn n a a a n --=+ ≥给出.(1)写出这个数列的前5项; (2)利用上面的数列{}n a ,通过公式1n n na b a +=构造一个新数列{}n b ,写出数列{}n b 的前5项;(3)继续计算数列{}n b 的第6项到第10项,你发现数列{}n b 的相邻两项之间有怎样的关系. 解:由递推关系:1212(3),1, 2.n n n a a a n a a --=+ ≥⎧⎨==⎩ (1)数列{}n a 的前5项依次为:1,2,3,5,8(2)数列{}n b 的前5项依次为:358132,,,,2358. (3)数列{}n b 的第5项到第10项依次为:21345589144,,,,1321345589. 观察1:2341231,1,1235b b b =+=+=+,…,1055189b =+. 于是,数列{}n b 的相邻两项之间具有:111(2)n n b n b -=+ ≥.观察2:212323121(1)1,1(1)1,23b b b b b b -=⇒-=-=⇒-=,…, 10910551(1)189b b b -=⇒-=. 于是,数列{}n b 的相邻两项之间具有:1(1)1(2)n n b b n --= ≥.[说明](1)题是利用递推关系求数列的项;(2)题是构造一个数列写出部分项;(3)题是通过观察部分项,猜想递推关系式.例3.根据框图,建立所打印数列的递推公式,并写出数列的前5项.解:根据框图,数列的递推公式为1112(210,*)231n n n a a n n N a a --+⎧= ≤≤∈⎪+⎨⎪=⎩ 数列的前5项依次为:313552331,,,,52189377. [说明] 阅读框图,正确理解框图中的赋值语句,准确把握递推信息,是解此类题的关键.三、巩固练习: 7.1(2)1,2.四、课堂小结1、数列递推公式的概念;2、利用递推公式解题的基本类型:(1)根据递推公式,求数列的部分项;(2)已知数列的部分项,写出数列相邻两项的关系;(3)根据算法程序框图,建立递推关系式.五、作业布置练习册(A )6、7、8;练习册(B )2、4.七、教学设计说明本节课是数列的第二课时,学生对数列已有的认知程度:数列的有关概念和数列的通项公式.因此,本节课的教学设计应围绕以下几点开展教学:1、让学生明白:递推公式也是给出数列的一种方法;2、理解数列通项公式的意义,观察数列项与项之间的内在联系,以此来培养学生的观察能力;3、通过阅读框图,正确理解算法程序,掌握建立递推关系式的方法,以培养学生的数学阅读能力.7.1 数列(数列的递推公式)教学目的:1.了解数列的递推公式,明确递推公式与通项公式的异同;2.会根据数列的递推公式写出数列的前几项;3.能根据所给的计算机框图语言写出数列的递推公式教学重点:根据数列的递推公式写出数列的前几项教学难点:能根据所给的计算机框图语言写出数列的递推公式授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:由于并非每一函数均有解析表达式一样,也并非每一数列均有通项公式(有通项公式的数列只是少数),因而研究递推公式给出数列的方法可使我们研究数列的范围大大扩展递推是数学里的一个非常重要的概念和方法在数列的研究中,不仅很多重要的数列是用递推公式给出的,而且它也是获得一个数列的通项公式的途径:先得出较为容易写出的数列的递推公式,然后再根据它推得通项公式但是,这项内容也是极易膨胀的,例如研究用递推公式给出的数列的性质,从数列的递推公式推导通项公式等,这样就会加重学生负担考虑到学生是在高二刚开始学习,我们必须牢牢把握教学要求,只要能初步体会一下能根据递推公式写出一个数列的前几项、能根据所给的计算机框图语言写出数列的递推公式就行了教学过程:一、复习引入:上节学习知识点如下⒈数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 ⒋ 数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.5.数列的图像都是一群孤立的点.6.数列有三种表示形式:列举法,通项公式法和图象法.7. 有穷数列:项数有限的数列.8. 无穷数列:项数无限的数列.9.递增数列:从第2项起,每一项都大于它的前一项的数列。
沪科版数学高中数列教案

沪科版数学高中数列教案
我们需要明确教案的教学目标。
在数列单元中,学生应该能够理解数列的基本概念,包括通项公式、递推关系等;掌握等差数列与等比数列的性质及其求和公式;了解并运用数列在解决实际问题中的应用。
还需要培养学生通过数列问题进行逻辑推理的能力,以及利用数学工具进行探究和证明的技能。
接下来是教学内容的组织。
教案应从数列的定义出发,引导学生认识并区分不同类型的数列,如等差数列、等比数列以及其他特殊数列。
在此基础上,进一步讲解数列的通项公式和求和公式的推导过程,使学生不仅仅停留在记忆公式的表面,而是能够深刻理解公式背后的数学原理。
教学方法的选择也是教案设计中的关键一环。
建议采用启发式和探究式的教学方法,鼓励学生参与到问题的发现、分析和解决过程中来。
例如,在讲解等差数列的求和公式时,可以设置一个与学生生活相关的现实问题,让学生尝试通过建立数列模型来解决问题,从而深化对知识点的理解。
为了检验学生的学习效果,教案还包括了相应的练习题和案例分析。
这些题目应当覆盖数列的各个知识点,既有基础的计算题,也有一定难度的应用题和证明题。
通过不同层次的题目训练,学生可以逐步提升解题技巧和逻辑思维能力。
评价方式的设定也不容忽视。
教案应提出多元化的评价标准,不仅关注学生的考试成绩,还要重视学生在课堂讨论、作业完成以及实际操作中的表现。
这样的评价体系有助于全面了解学生的学习状况,同时也鼓励学生在多方面展示自己的能力。
沪教版高二上册数学数列等差数列教案二级第一学期

等差数列教材:等差数列(二)目的:通过例题的讲解,要求学生进一步认清等差数列的有关性质意义,并且能够用定义与通项公式来判断一个数列是否成等差数列。
过程:一、复习:等差数列的定义,通项公式二、例一 在等差数列{}n a 中,d 为公差,若+∈N q p n m ,,,且q p n m +=+求证:1︒ q p n m a a a a +=+ 2︒ d q p a a q p )(-+=证明:1︒ 设首项为1a ,则d q p a d q a d p a a a dn m a d n a d m a a a q p n m )2(2)1()1()2(2)1()1(111111-++=-++-+=+-++=-++-+=+∵ q p n m +=+∴q p n m a a a a +=+2∵d p a a p )1(1-+= d p a d q p d q a d q p a q )1()()1()(11-+=-+-+=-+ ∴ d q p a a q p )(-+=注意:由此可以证明一个定理:设成等差数列,则与首末两项距离相等的两项和等于首末两项的和 ,即:ΛΛ=+=+=+--23121n n n a a a a a a同样:若p n m 2=+ 则 p n m a a a 2=+例二 在等差数列{}n a 中,1︒ 若a a =5 b a =10 求15a解:155102a a a += 即152a a b += ∴ a b a -=2152︒ 若m a a =+83 求 65a a +解:65a a +=m a a =+833︒ 若 65=a 158=a 求14a解:d a a )58(58-+= 即 d 3615+= ∴ 3=d从而 33396)514(514=⨯+=-+=d a a4︒ 若 30521=+++a a a Λ 801076=+++a a a Λ 求151211a a a +++Λ解:∵ 6+6=11+1 7+7=12+2 ……∴ 11162a a a += 12272a a a += ……从而)(151211a a a +++Λ+=+++)(521a a a Λ2)(1076a a a +++Λ ∴151211a a a +++Λ=2)(1076a a a +++Λ-)(521a a a +++Λ =2×80-30=130三、判断一个数列是否成等差数列的常用方法1.定义法:即证明 )(1常数d a a n n =--已知数列{}n a 的前n 项和n n S n 232-=,求证数列{}n a 成等差数列,并求其首项、公差、通项公式。
高二数学上册 7.1《数列的通项》教案(2) 沪教版

第三章 数列教材:数列、数列的通项公式目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
过程:一、从实例引入1. 堆放的钢管 4,5,6,7,8,9,102. 正整数的倒数 51,41,31,21,1 3. ,,,,的不足近似值,,精确到414.141.14.11001.01.0124. 1的正整数次幂:1,1,1,1,…5. 无穷多个数排成一列数:1,1,1,1,…二、提出课题:数列1. 数列的定义:按一定次序排列的一列数(数列的有序性)2. 名称:项,序号,一般公式n a a a ,,,21 ,表示法{}n a3. 通项公式:n a 与n 之间的函数关系式如 数列1: 3+=n a n 数列2:na n 1= 数列4:*,)1(N n a n n ∈-= 4. 分类:递增数列、递减数列;常数列;摆动数列;有穷数列、无穷数列。
5. 实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集 N*(或它的有限子集{1,2,…,n })的函数,当自变量从小到大依 次取值时对应的一列函数值,通项公式即相应的函数解析式。
6. 用图象表示:— 是一群孤立的点例一 (见教材 例一 略)三、关于数列的通项公式1. 不是每一个数列都能写出其通项公式 (如数列3)2. 数列的通项公式不唯一 如 数列4可写成 n n a )1(-=和 ⎩⎨⎧-=11n a *,2*,12N k k n N k k n ∈=∈-= 3. 已知通项公式可写出数列的任一项,因此通项公式十分重要=四、补充例题:写出下面数列的一个通项公式,使它的前n 项分别是下列各数:1.1,0,1, 0 *,2)1(11N n a n n ∈-+=+ 2.32-,83,154-,245,356- 1)1(1)1(2-++⋅-=n n a n n 3.7,77,777,7777 )110(97-⨯=n n a 4.1,7,13,19,25,31 )56()1(--=n a n n5.23,45,169,25617 12212-+=n n n a 五、小结:1. 数列的有关概念2. 观察法求数列的通项公式六、作业:。
沪教版高二上册数学数列及通项教案二级第一学期

7.1 (1)数列(数列及通项)一、教学内容分析本小节的重点是数列的概念.在由日常生活中的具体事例引出数列的定义时,要注意抓住关键词“次序”,准确理解其概念,还应让学生了解数列可以看作以正整数集(或它的有限子集)为定义的函数()na f n =,使学生能在函数的观点下理解数列的概念,这里要特别注意分析数列中项的“序号n ”与这一项“n a ”的对应关系(函数关系),这对数列的后续学习很重要.本小节的难点是能根据数列的前几项抽象归纳出一些简单数列的通项公式.要循序渐进的引导学生分析归纳“序号n ”与“n a ”的对应关系,并从中抽象出与其对应的关系式.突破难点的关键是掌握数列的概念及理解数列与函数的关系,需注意的是,与函数的解析式一样,不是所有的数列都有通项公式;给出数列的有限项,其通项公式也并不唯一,如给出数列的前k 项,若()na f n =,则()(1)(2)()n a f n n n n k =+-⋅--L 都是数列的通项公式,教学上只要求能写出数列的一个通项公式即可. 二、教学目标设计理解数列的概念、表示、分类、通项等,了解数列与函数的关系 ,掌握数列的通项公式,能用通项公式写出数列的任意一项,对于比较简单的数列,会根据其前几项写出它的一个通项公式.发展和培养学生从特殊到一般的归纳能力,提高观察、抽象的能力. 三、教学重点及难点理解数列的概念;能根据一些数列的前几项抽象、归纳出数列的通项公式. 四、教学流程设计五、教学过程设计一、复习回顾思考并回答问题:函数的定义二、讲授新课1、概念引入请同学们观察下面的例子,看看它们有什么共同特点:(课本p5)①食品罐头从上到下排列成七层的罐头数依次为:3,6,9,12,15,18,21②延龄草、野玫瑰、大波斯菊、金盏花、紫宛花、雏菊花的花瓣数从少到多依次排成一列数:3,5,8,13,21,34③1,1.7,1.73,1.732,1.7320,1.73205,L④-2的1次幂,2次幂,3次幂,4次幂L依次排成一列数:-2,4,-8,16,L⑤无穷多个1排成一列数:1,1,1,1,1,L⑥谢尔宾斯基三角形中白色三角形的个数,按面积大小,从大到小依次排列成的一列数:1,3,9,27,81,L⑦依次按计算器出现的随机数:0.098,0.264,0.085,0.956由学生回答上面各例子的共同特点:它们均是一列数,它们是有一定次序的,由此引出数列及有关定义:1、定义:按一定次序排列起来的一列数叫做数列.其中,数列中的每一个数叫做这个数列的项,各项依次叫做这个数列的第1项(首项),第2项,第3项L ,第n 项,L数列的一般形式可以写成:123,,,n a a a a L L简记作{}n a2、函数观点:数列可以看作以正整数集N *(或它的有限子集)为定义域的函数()n a f n =,当自变量按照从小到大的 顺序依次取值时,所对应的一列函数值3、数列的分类:有穷数列: 项数有限的数列 (如数列①、②、⑦)无穷数列:项数无限的数列 (如数列③、④、⑤、⑥) 4、数列的通项:如果数列{}n a 的第n 项n a 与n 之间可以用一个公式()na f n =来表示,那么这个公式就叫做这个数列的通项公式.启发学生练习找上面各数列的通项公式: 数列① :3(17)n a n n =≤≤数列④:(1)2n n n a =-⋅数列⑤:1n a = (常数数列)数列⑥:13n na -=指出(由学生思考得到)数列的通项公式不一定都能由观察法写出(如数列②);数列并不都有通项公式(如数列③、⑦);由数列的有限项归纳出的通项公式不一定唯一 (如数列①的通项还可以写为:3(1)(2)(3)(4)(5)(6)(7)(17)n a n n n n n n n n n =+-------≤≤5、数列的图像:请同学练习画出数列①的图像,得出其特点:数列的图像都是一群孤立的点2、例题精析例1:根据下面的通项公式,写出数列的前5项:(课本P6) (1)21n n a n -=+; (2)344()4n n a =+-解:(1)前5项分别为:1121,0,,,2452-(2)前5项分别为:25373377811,,,,41664256[说明]由数列通项公式的定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项.例2:写出下面数列的一个通项公式,使它前面的4项分别是下列各数: (1)1,5,9,13;(2)222221314151,,,;2345-+-+(3)3579,,,24816解:(1)43na n =-(2)2(1)(1)1n n n a n ++-=+(3)212nn n a +=[说明]:认真观察各数列所给出的项,寻求各项与其项数的关系,归纳其规律,抽象出其通项公式.例3:观察下列数列的构成规律,写出数列的一个通项公式(补充题) (1)1111,,,, (24816)--(2)9,99,999,9999,L(3)32537,,,,,23121030L(4)2,0,2,0,2,0,L解:(1)1(1)2nn na =-(2)9101,991001,101n n a =-=-∴=-Q L(3)32537,,,,,23121030L 可写成345672,,,,,26122030(1)n n a n n +∴=+L (4)Q 2=1+1,0=1-1 11(1)n na +∴=+-(或22sin ,1cos 2n n n a a n ππ==-,或2(0(n n a n ⎧⎪=⎨⎪⎩为奇数)为偶数))[说明] 本例的(2)-(4)说明了对数列项的一般分拆变形技巧.例4、根据图7-5中的图形及相应的点数,写出点数的一个通项公式 : (课本P7)解:(1)na n n =+[说明] 本类“图形分析”题,解题关键在于正确把握图形依次演变的规律,再依点数写出它的通项公式三、巩固练习 练习7.1(1)四、课堂小结本节课学习了数列的概念,要注意数列与数集的区别,数列中的数是按一定次序排列的,而数集中的元素没有次序;本节课的难点是数列的通项公式,要会根据数列的通项公式求其任意一项,并会根据数列的一些项由观察法写出一些简单数列的一个通项公式.五、课后作业1.书面作业:课本习题7.1 A 组 习题1.----5 2.思考题:(补充题及备选题) 1.有下面四个结论,正确的是(C) ①数列的通项公式是唯一的; ②每个数列都有通项公式;③数列可以看作是一个定义在正整数集上的函数 ④在直角坐标系中,数列的图象是一群孤立的点 A 、①②③④ B 、③ C 、④ D 、③④L,则A 、第6项B 、第7项C 、第8项D 、第9项 3.数列7,9,11,13,… 2n -1 中,项的个数为(C) A 、n B 、2n -1 C 、n -3 D 、n -4 4.已知数列的通项公式为:1(21,)12(2,)n n n k k N n a n k k N **⎧=-∈⎪+=⎨⎪=∈⎩,它的前四项依次为____________解:前四项依次为:11,4,,16245.试分别给出满足下列条件的无穷数列}{na 的一个通项公式(1)对一切正整数n ,1n a n<(2)对一切正整数n ,11n n a a +-<解:(1)11n a n =+(不唯一)(2)11,2nn a n a n== 等(不唯一)6.写出下列数列的一个通项公式(1)11112,4,6,8,35917L(2)3,8,15,24,35, (3)1317,,,,38324--L(4)0,0.3,0.33,0.333,0.3333,… (5)1,0,-1,0,1,0,-1,0,… 解:(1)1221n na n =++; (2)2(1)1n a n =+- (3)1221(1)(1)1n nn a n +-=-+- (4)111(1)310nn a -=-(5)sin2n n a π=7.根据下面的图像及相应的点数,写出点数的一个通项 公式:解:以中间点为参照点,把增加的点作为方向点来分析,有: 第1个图形有一个方向,点数为1点; 第2个图形有2个方向,点数为1+2⋅1=3点; 第3个图形有3个方向,点数为1+3g 2=7点; 第4个图形有4个方向,点数为1+4⋅3=13点;…………第n 个图形有n 个方向,点数21(1)1n n nn +⋅-=-+点21na n n ∴=-+六、教学设计说明本节课为概念课,按照“发现式”教学法进行设计结合一些具体的例子,引导学生认真观察各数列的特点,逐步发现其规律,进而抽象、归纳出其通项公式例题设计主要含以下二个题型:(1) 由数列的通项公式,写出数列的任意一项;(2) 给出数列的若干项,观察、归纳出数列的一个通项公式补充的思考题,可作为学有余力的同学的能力训练题,也可作为教师的备选题.。
沪教版(上海)数学高二上册-7.1 数列 (1) 课件 优秀课件PPT

通项公式:如果数列 an的 第n项与n之间的关系可用一
个公式来表示,那么这个公式就叫做这个 数列的通项公式。
例如:
1,2,3, 4… … 的一个通项公式: an n
1,
1,1, 23
1 4
… … 的一个通项公式:
an
1 n
三、数列与函数的关系
对于数列中的每个序号n,都有唯一的一个项 an与之对应.
,
(
-
1 3
),
1 4
,
-
1 5
,
1 6
,
(
-
1 7
)
观察-归纳-猜想-验证
练习
1. 根据数列的通项公式填表:
n
1
an
-1
2 ··· 5 ··· 49 ··· n
1 ··· 7 ··· 95 ··· 2n 3
2.写出数列的一个通项公式,使它的前4项分别是下列 各数:
(1) 1 , 1 , 1 , 1 ; 5 10 15 20
项的序号 1 2 3 4 … n … (自变量)
项
a a1 a2 a3 4 …an … (函数值)
从函数的观点看:数列可以看成以正整数集
(或其子集)为定义域的函数 an ,f (当n) 自变量
n 按从小到大的顺序依次取值时,f (n所) 对应的一列数。
数列的图像 an
10
an=2n
8
6 4
2
0 1 23 45 6 7 n
(2)3, 5, 9,17, 33
(3) 1 , 2, 9 , 8, 25 ; 22 2
(4) 1 , 1 , 1 , 1 2 4 8 16
本节课的主要内容: 数列的有关概念; 数列与集合的区别 数列的通项公式; 数列与函数的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪教版高中数学高二上册《数列》教案目录➢7.1 数列(数列的递推公式) (1)➢7.1 数列(数列的递推公式) (7)➢数列的递推关系 (12)➢7.1 (1)数列(数列及通项) (15)➢第三章数列 (23)➢用构造法求数列的通项公式 (25)➢等差数列(二) (31)➢7.2(1)等差数列 (35)➢等差数列 (38)➢等差数列 (40)➢7.2(4)等差数列的通项公式和前 (46)➢7.3(3)等比数列的前n项和(1) (53)➢7.3(4)等比数列的前n项和(2) (59)➢等比数列的前 (64)➢7.4 数学归纳法 (66)➢7.5数学归纳法的应用 (78)➢7.6 归纳—猜想—论证 (85)➢7.7 (2)极限的运算法则 (89)➢数列极限的定义 (99)➢7.8(1)无穷等比数列的各项和(1) (101)➢7.8 (2) 无穷等比数列的各项和(2) (108)➢课题:无穷等比数列各项的和(1) (113)➢无穷等比数列各项的和 (117)7.1 数列(数列的递推公式)一、教学内容分析本节课是数列的第二课时,教学内容是“数列的递推公式”,学生对数列已有的认知程度:数列的有关概念和数列的通项公式.二、教学目标设计1、知道递推公式也是给出数列的一种方法;2、理解数列通项公式的意义,观察数列项与项之间的内在联系,逐步形成学生的观察能力;3、通过阅读框图,正确理解算法程序,掌握建立递推关系式的方法,形成数学阅读能力.三、教学重点及难点重点:理解数列通项公式的意义,利用递推关系式,揭示数列项与项之间的内在联系.难点:阅读算法程序框图,建立递推关系式.四、教学用具准备多媒体设备五、教学流程设计六、教学过程设计一、情景引入1.观察3、6、9、12、15、18、21. ①2.思考在数列①中,项与项之间有什么关系?[说明]:13,a =2132433,3,3,a a a a a a =+=+=+或 2132432,3,24,3a a a a a a === 3.讨论由此,数列①也可以用下面的公式表示:113(27)3n n a a n a -=+ ≤≤⎧⎨=⎩ 或 11(27)13n n n a a n n a -⎧= ≤≤⎪-⎨⎪=⎩二、学习新课1.概念辨析如果已知数列}{n a 的任一项与它的前一项1n a -(或前几项)间的关系可用一个公式来表示,那么这个公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法.2.例题分析例3.根据下列递推公式写出数列的前4项: (1)1121(2),1;n n a a n a -=+ ≥⎧⎨=⎩ (2)1115(2),100.n n a a n a -=- ≥⎧⎨=⎩ 解:(1)由题意知:121324312121132123172127115a a a a a a a ==+=⨯+==+=⨯+==+=⨯+=这个数列的前4项依次为1,3,7,15.(2)由题意知:1213243100,1515100851515(85)100,151510085a a a a a a a ==-=-=-=-=--==-=-=-这个数列的前4项依次为100,-85,100,-85.[说明] 已知数列的首项(或前几项),利用递推公式可以依次求出数列以后的项. 例4.根据图7-5中的框图,建立所打印数列的递推公式,并写出这个数列的前5项. 解:由图7-5可知,数列的首项为3,从第二项起数列中的每一项都是前一项与前一项减1所得的差之积,即111(1)(210),3.n n n a a a n a --=- ≤≤⎧⎨=⎩ 利用上述递推公式,计算可得到数列的前5项依次为3,6,30,870,756030.[说明] 解答本例的关键是要读懂框图,框图呈现的是算法程序,该程序就是递推关系.3.问题拓展例1.1112(2),1, 1.n n n a a a n a a +-=+ ≥⎧⎨==⎩解:由题意知:123214321,1112213a a a a a a a a ===+=+==+=+=这个数列的前4项依次为1,1,2,3.[说明] 由递推公式1112(2),1, 1.n n n a a a n a a +-=+ ≥⎧⎨==⎩给出的数列叫做斐波那契数列.斐波那契(L.Fibonacci,1170-1250),意大利数学家,他在1202年所著的《计算之书》中,提出的“兔子问题”所用的数列被后人称为斐波那契数列. 斐波那契的兔子问题:假设一对初生兔子要一个月才到成熟期,而一对成熟兔子每个月都会生下一对兔子.那么,由一对初生兔子开始,12个月后会有多少对兔子呢? 用记号“”表示初生的幼兔,“•”表示成熟的兔子,则有下图得到前七项:1,1,2,3,5,8,13进一步可以发现:从第三项起,每一项都是前面两项之和.下面给出证明:设n a 表示第n 个月的兔子数,n b 表示第n 个月幼兔,n c 表示第n 个月的成熟兔,则:n n n a b c =+由题意有:11112,nn n n n n n c c b a b c a -----=+=== *21(2,)n n n a a a n n N --∴=+≥∈,证毕. ∴1到12个月的兔子数依序是:1,1,2,3,5,8,13,21,34,55,89,144,243. ∴12个月后共有243对兔子.例2.已知数列{}n a 的第1项是1,第2项是2,以后各项由12(3)nn n a a a n --=+ ≥给出.(1)写出这个数列的前5项; (2)利用上面的数列{}n a ,通过公式1n n na b a +=构造一个新数列{}n b ,写出数列{}n b 的前5项;(3)继续计算数列{}n b 的第6项到第10项,你发现数列{}n b 的相邻两项之间有怎样的关系. 解:由递推关系:1212(3),1, 2.n n n a a a n a a --=+ ≥⎧⎨==⎩ (1)数列{}n a 的前5项依次为:1,2,3,5,8(2)数列{}n b 的前5项依次为:358132,,,,2358. (3)数列{}n b 的第5项到第10项依次为:21345589144,,,,1321345589. 观察1:2341231,1,1235b b b =+=+=+,…,1055189b =+. 于是,数列{}n b 的相邻两项之间具有:111(2)n n b n b -=+ ≥.观察2:212323121(1)1,1(1)1,23b b b b b b -=⇒-=-=⇒-=,…, 10910551(1)189b b b -=⇒-=. 于是,数列{}n b 的相邻两项之间具有:1(1)1(2)n n b b n --= ≥.[说明](1)题是利用递推关系求数列的项;(2)题是构造一个数列写出部分项;(3)题是通过观察部分项,猜想递推关系式.例3.根据框图,建立所打印数列的递推公式,并写出数列的前5项.解:根据框图,数列的递推公式为1112(210,*)231n n n a a n n N a a --+⎧= ≤≤∈⎪+⎨⎪=⎩ 数列的前5项依次为:313552331,,,,52189377. [说明] 阅读框图,正确理解框图中的赋值语句,准确把握递推信息,是解此类题的关键.三、巩固练习: 7.1(2)1,2.四、课堂小结1、数列递推公式的概念;2、利用递推公式解题的基本类型:(1)根据递推公式,求数列的部分项;(2)已知数列的部分项,写出数列相邻两项的关系;(3)根据算法程序框图,建立递推关系式.五、作业布置练习册(A )6、7、8;练习册(B )2、4.七、教学设计说明本节课是数列的第二课时,学生对数列已有的认知程度:数列的有关概念和数列的通项公式.因此,本节课的教学设计应围绕以下几点开展教学:1、让学生明白:递推公式也是给出数列的一种方法;2、理解数列通项公式的意义,观察数列项与项之间的内在联系,以此来培养学生的观察能力;3、通过阅读框图,正确理解算法程序,掌握建立递推关系式的方法,以培养学生的数学阅读能力.7.1 数列(数列的递推公式)教学目的:1.了解数列的递推公式,明确递推公式与通项公式的异同;2.会根据数列的递推公式写出数列的前几项;3.能根据所给的计算机框图语言写出数列的递推公式教学重点:根据数列的递推公式写出数列的前几项教学难点:能根据所给的计算机框图语言写出数列的递推公式授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:由于并非每一函数均有解析表达式一样,也并非每一数列均有通项公式(有通项公式的数列只是少数),因而研究递推公式给出数列的方法可使我们研究数列的范围大大扩展递推是数学里的一个非常重要的概念和方法在数列的研究中,不仅很多重要的数列是用递推公式给出的,而且它也是获得一个数列的通项公式的途径:先得出较为容易写出的数列的递推公式,然后再根据它推得通项公式但是,这项内容也是极易膨胀的,例如研究用递推公式给出的数列的性质,从数列的递推公式推导通项公式等,这样就会加重学生负担考虑到学生是在高二刚开始学习,我们必须牢牢把握教学要求,只要能初步体会一下能根据递推公式写出一个数列的前几项、能根据所给的计算机框图语言写出数列的递推公式就行了教学过程:一、复习引入:上节学习知识点如下⒈数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 ⒋ 数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.5.数列的图像都是一群孤立的点.6.数列有三种表示形式:列举法,通项公式法和图象法.7. 有穷数列:项数有限的数列.8. 无穷数列:项数无限的数列.9.递增数列:从第2项起,每一项都大于它的前一项的数列。
10.递减数列:从第2项起,每一项都小于它的前一项的数列。
二、讲解新课:知识都来源于实践,最后还要应用于生活用其来解决一些实际问题.观察钢管堆放示意图,寻其规律,建立数学模型.模型一:自上而下:第1层钢管数为4;即:1↔4=1+3第2层钢管数为5;即:2↔5=2+3第3层钢管数为6;即:3↔6=3+3第4层钢管数为7;即:4↔7=4+3第5层钢管数为8;即:5↔8=5+3第6层钢管数为9;即:6↔9=6+3第7层钢管数为10;即:7↔10=7+3若用n a 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且1(3+=n a n ≤n ≤7) 运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,运用这一关系,会很快捷地求出每一层的钢管数这会给我们的统计与计算带来很多方便 让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律) 模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1即41=a ;114512+=+==a a ;115623+=+==a a依此类推:{111(2n 7)4a a n n a =+-≤≤=对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要 定义:1.递推公式:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前n 项)间的关系可以用一个公式来表示,那么这个公 式就叫做这个数列的递推公式说明:(1)递推公式也是给出数列的一种方法如下数字排列的一个数列:3,5,8,13,21,34,55,89 递推公式为:)83(,5,32121≤≤+===--n a a a a a n n n (2)一个数列的递推公式有时可能有多种表示形式。