第3章_范数理论及其应用
向量范数3-1,3-2,3-3

A
X AX
X x1 , x2 , , xn R n
T
试证上述函数是向量范数,称为向量的加权范数或椭圆范数。 证明 因为A是正定对称矩阵,故存在可逆矩阵P,使得
P T AP I
从而
A P
X
A
1 2 A
T 1
P P
T T 1 2
1
1 T
1 2
P 1 B T B
证明 易验证条件(i)和(ii)成立,现验证条件(iii)也 成立。 下面用到了Chauchy-Schwarz不等式。
x y
2 2
x y , x y ( x, x ) ( x, y ) ( y , x ) ( y , y )
x
2 2
2 x
2y2源自 y2 2定理对 x ( x , x ,, x )T C n C n R 分别定义三个函数 1 2 n
x
x
1
x
i 1
n i 1
n
i
1 2
1-范数,
)
2
( xi
2
2-范数(或Euclid范数)
x
max xi
1 i n
∞-范数(或最大值范数)。
它们均构成范数。 说明:在同一个向量空间,可以定义多种向量范数,而对 于同一个向量,不同定义的范数,其大小可能不同。
AX
AX H A X H A X
即矩阵范数与向量范数相容
算子范数
定义 设
即由向量范数构造矩阵范数
和
分别是 C m 和 C n
3-1,2,3,4向量范数.ppt

x
∞
= max x i
1≤ i ≤ n
它们均构成范数。 它们均构成范数。 说明:在同一个向量空间,可以定义多种向量范数, 说明:在同一个向量空间,可以定义多种向量范数,而对 于同一个向量,不同定义的范数,其大小可能不同。 于同一个向量,不同定义的范数,其大小可能不同。
x = (1,2,−3)
T
x1 =6
第二节 矩阵范数
主要内容: 主要内容: 1·矩阵范数的定义、性质 矩阵范数的定义、 矩阵范数的定义 2·算子范数(由向量诱导的矩阵范数) 算子范数(由向量诱导的矩阵范数) 算子范数 3·几种常用的矩阵范数 几种常用的矩阵范数
定义
设A∈C
m×n
定义一个实值函数
⋅
C
m× n
满足: → R 满足:
(1)正定性 (2)齐次性 (3)三角不等式 (4)相容性 (4)相容性 则
Ax
Ax 是C
n
Dn = x = ( x1 , x 2 , ⋯ , x n )
知 Ax 在D n上取到最大值。 上取到最大值。
{
的连续函数,D 的连续函数,
T
n
是C n中的有界闭集, 中的有界闭集,
x =1
}
最后证明
A 成为矩阵范数
A ≥ Ax0 x0 > 0;
n 正定性: 正定性 设 A ≠ 0, 则存在 x0 ≠ 0 ∈ C , 使 Ax0 ≠ 0,
x+ y
2 2
= ( x + y , x + y ) = ( x , x ) + ( x, y ) + ( y , x ) + ( y , y )
≤ x 2 +2 x
《高等数学》第三章 范数理论及其应用

例3、设 A
aij
C mn , x
mn
1,,n T
,证明
1
n n
2 2
A
m2
i 1
j 1
aij
是矩阵范数,且与 x 相容 2
证明:(1)~(2)成立,
设 Bmn ,划分 A a1,, an , B b1,, bn ,则有
则
x
也是 C n
中的一个向量范数。
证:1)设 A a1, a2 ,, an ,由假设知a1, a2 ,, an
线性无关。
x1
当 x0
Ax
a1 , , an
x2
a1 x1
an xn
0
xn
又因为 y 是 C m 中的一个向量范数,有 Ax 0
x y B x y Bx By x y
A
2
2
2
A
A
2010-12-6
10
例3:设 y 是 C m中的一个向量范数,给定矩阵 A C mn ,它的n个列向量线性无关。对于 C m
中的一个向量 x x1, x2 ,, xn T ,规定
x
Ax
Abl 1
A
m1
b1
1
A m1
bl 1
A m1
b1
1
bl
1
A B m1 m1
n
因此, A m1
aij
是矩阵范数,且与 x 相容 1
i, j1
2010-12-6
范数在数值计算中的应用

淮北师范大学2013届学士学位论文范数在数值计算中的应用学院、专业数学科学学院数学与应用数学研究方向数值分析学生姓名李双阳学号***********指导教师姓名陈昊指导教师职称讲师2013年月日范数在数值计算中的应用李双阳(淮北师范大学数学科学学院,淮北,235000)摘要范数在解决数值计算中的一些问题有很大的用处。
应用复合最速下降法,给出了求解矩阵方程组(AXB=E,CXD=F)加权范数下对称解及最佳逼近问题的迭代解法。
对任意给定的初始矩阵,改迭代算法能够在有限步迭代计算之后得到矩阵方程组的对称解,并且在上述解集合中也可以给出指定矩阵的最佳逼近矩阵。
并对线性方程组解的误差估计的推广定理理解对解的误差与矩阵、摄动矩阵、向量、摄动向量、算子范数之间的关系进行证明。
从而了解范数以及极限的概念以致更好的解决像函数的一次逼近、二次逼近、矩阵方程组对称解的最佳逼近以及线性方程组解的误差估计等数值计算问题。
关键词:最速下降法,对称解,最佳逼近,摄动矩阵,算子范数Norm in the application of the numerical calculationLi Shuangyang(School of Mathematical Science, Huaibei Normal University, Huaibei, 235000)AbstractNorm in numerical calculation in solving the problems are of great use. Application of compound the steepest descent method, solving matrix equations is presented (AXB = E, CXD = F) weighted norm under symmetric solution and the optimal approximation problem of iterative method. On any given initial matrix, the iterative algorithm can step in finite iterative calculation after get the symmetric solutions of matrix equations, and also in the solution set can be specified matrix optimal approximation of the matrix is given. And the error estimates of solutions of the linear equation theorem to understand the solution of the error and matrix, the perturbation matrix, vector, the perturbation dynamics, the relationship between the operator norm. To understand the norm and the concept of limit so that a better solution as a function of an approximation, quadratic approximation, symmetric matrix equations solution of the optimal approximation and the error of linear equations and numerical calculation.Key words:The steepest descent method, the symmetric solution of optimal approximation, the perturbation matrix operator norm目录一.引言................................................................................................ - 1 -二.范数性质........................................................................................... - 2 -2.1向量范数、矩阵范数的基本性质 ........................................... - 2 -定理2.1.1 .................................................................................. - 2 -定理2.1.2 .................................................................................. - 2 -定理2.1.3 .................................................................................. - 2 -定理2.1.4 .................................................................................. - 2 -定理2.1.5 .................................................................................. - 2 -2.2.李普希兹条件下范数的一些性质 ........................................... - 4 -定理2.2.1.................................................................................. - 4 -定理2.2.2 .................................................................................. - 4 -定理2.2.3 .................................................................................. - 4 -定理2.2.4 .................................................................................. - 5 -定理2.2.5 .................................................................................. - 5 -定理2.2.6 .................................................................................. - 6 - 三.加权范数下矩阵方程组的对称解及其最佳逼近 ....................... - 6 - 例题............................................................................................ - 8 -四.向量范数、矩阵范数下线性方程组解的误差估计的推广 ........ - 10 -4.1证明.......................................................................................... - 10 -4.2证明.......................................................................................... - 11 - 结论...................................................................................................... - 12 -参考文献.............................................................................................. - 12 - 致谢...................................................................................................... - 13 -一.引言近年来,随着计算机技术的普及和计算速度的不断提高,数值计算在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开数值计算,其在航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛应用已使设计水平发生了质的飞跃。
关于范数的总结范文

关于范数的总结范文
一、范数的定义
范数(Norm)是对向量空间中的向量长度或矩阵列之间的距离的度量。
范数具有很好的抽象性,可以用来衡量向量与向量、矩阵与矩阵之间的距
离(不同定义的范数衡量的是不同的距离),是向量空间、矩阵理论以及
机器学习和深度学习等各个领域都很重要的概念。
范数,由曼哈顿距离和欧氏距离得名,有着自然的几何解释:向量或
矩阵表示为一个点,范数则表示为该点到原点的距离。
向量空间中的范数
不仅代表着向量的长度,还可以用来衡量向量之间的距离,从而被广泛应
用于不同的领域,其中有几种范数的定义比较重要,如曼哈顿距离、欧式
距离、切比雪夫距离和闵式距离等。
二、范数的分类
1)一阶范数:一阶范数是指向量中元素绝对值之和,或者是矩阵每
一列元素绝对值之和,也就是模,常用的一阶范数有曼哈顿距离L1、欧
氏距离L2和切比雪夫距离L∞。
2)二阶范数:二阶范数是指向量每个元素的绝对值平方和,或者是
矩阵每一列元素的绝对值平方和,也叫做F范数或Frobenius范数。
它表
示的是一个矩阵中向量的总范数,常用于评估数据的分布特征。
范数及其应用

一般来说,监督学习可以看做最小化下面的目标函数:
L(yi,f(xi;w)) 衡量我们的模型(分类或者回归)对第i个样 本的预测值f(xi;w)和真实的标签yi之前的误差。
L0范数与L1范数
L0范数是指向量中非0的元素的个数。如果我 们用L0范数来规则化一个参数矩阵W的话,就是 希望W的大部分元素都是0,让参数W是稀疏的 。
c1 x
x
c2 x
并称 和 定理
为 Cn上的等价范数。
(向量序列收敛性定理) 设 xk Cn , 则
k xi xi 0, i 1, 2, , n lim xk x 0 lim k k
lim x k = x
k
其中 x k x1 , x2 , , xn
这说明,W的L1范数是绝对值,|w|在w=0处是不可微的。
L1范数和L0范数可以实现稀疏,L1因具有比L0更好的优 化求解特性而被广泛应用。
稀疏的原因
特征选择
稀疏规则化受欢迎的一个关键原因在于它能实现特征的 自动选择。
可解释性
通过稀疏可以使模型更容易解释。
L2范数
L2范数: ||W||2,在回归里面,有人把有它的 回归叫“岭回归”,有人也叫它“权值衰减”。 它的强大功效是改善机器学习里面一个非常重要 的问题:过拟合。
上面的图是线性回归,从左到右分别是欠拟合,合适的 拟合和过拟合三种情况。
Logistic回归
如果模型复杂(可以拟合任意的复杂函数),它可以让 我们的模型拟合所有的数据点,也就是基本上没有误差。 对于回归来说,就是我们的函数曲线通过了所有的数据 点。对分类来说,就是我们的函数曲线要把所有的数据 点都分类正确。这两种情况很明显过拟合了。
数值计算方法-范数

(A) = max{i } 为A的谱半径。
1 j n
推论:矩阵特征值与矩阵范数关系 若是矩阵A的特征值,即存在非零向量x使得Ax x, 则有
A
也即矩阵特征值得模不大于矩阵的任何一范数。
F 范数:(P71) A
2 a ij , i, j n
F
在矩阵分析中,一般把上述范数称为Frobinius范数, 简称F-范数
(1) || A || || x || 5 5 10 , 49.5 || A || || x || (2) || b || || x || 5 5 10 , 1.99 || A || || x ||
向量序列,如果 lim xi( k ) xi , i 1,2, , n, 则称
k
向量序列{x ( k ) }收敛于向量x ( x1 , x2 , xn )T , 并记为 lim x ( k ) x
k
等式成立的充要条件是 lim x ( k ) -x
k
推论:对称矩阵范数的关系 设A为对称矩阵, 则 || A ||2 | max ( A) |, 又若A非奇异(可逆) ,
1 则 || A1 ||2 || min ( A) || 。
证明:由A A知
T T 2 2 || A ||2 ( A A ) ( A ) | ( A ) | 2 max max max
i 1 n p
max xi ;
1i n
③欧几里得(Euclid )范数: x 2=
2 x i i 1
n
例.求下列向量的各种常用范数
x (1,4,3, 1)T
解: x 1 = x1 x2 x4 9; x2 x
范数理论及其应用

i i p = i 1= i 1
∑ξ
n
n
+η =
p
∑ξ
n
i
+ ηi
n
p −1
ξi + ηi
p −1
= i 1= i 1
≤ ∑ ξi + ηi
p −1
ξi + ∑ ξi + ηi
ηi
应用 Hölder 不等式
n q p n ( p−1)q ξi + ηi ξi ≤ ∑ ξi + ηi ∑ ∑ ξi i 1= i 1= i 1 n p −1 n q p n ( p−1)q ξi + ηi ηi ≤ ∑ ξi + ηi η ∑ ∑ i i 1= i 1= i 1 n p −1 1 1 1 p
(m、M 与 x 无关) ,它就称为向量范数的等价 得 m x α ≤ x β ≤ M x α, 性。 同时有
1 x ≤ x M β
α
≤
1 x m
β
7
二、矩阵范数 1. 矩阵范数定义:设 k m×n (k = c或R) 表示数域 k 上全体 m × n 阶矩阵的集 合。若对于 k m×n 中任一矩阵 A,均对应一个实值函数,并满足以下四个 条件: (1)非负性: A ≥ 0 ,等号当且仅当 A=0 时成立; (2)齐次性: αA = α A , α ∈ k; (3)三角不等式: A + B ≤ A + B , A,B ∈ k m×n 则称 A 为广义矩阵范数; (4)相容性: AB ≤ A B 则称 A 为矩阵范数。
(3)三角不等式 x + y ≤ x + y , x, y ∈ V 。 则称 x 为 V 中向量 x 的范数,简称为向量范数。 例 1. x ∈ Cn ,它可表示成 x =ξ [ 1 ξ 2 ξn ] , ξi ∈ C ,