linux系统性能优化及瓶颈分析

合集下载

Linux操作系统内核性能测试与调优

Linux操作系统内核性能测试与调优

Linux操作系统内核性能测试与调优操作系统是计算机系统中最核心的软件之一,它负责协调和管理计算机硬件资源以及提供统一的用户界面。

Linux操作系统因其开放源代码、稳定性和安全性而备受欢迎。

然而,在大规模和高负载的环境中,Linux操作系统的性能可能会出现瓶颈。

因此,进行内核性能测试与调优是非常重要的。

一、性能测试的重要性在处理大量数据和并发用户请求时,操作系统的性能会成为瓶颈。

通过性能测试,我们可以了解操作系统在不同负载情况下的表现,进而定位和解决性能瓶颈。

性能测试有助于提高系统的响应时间、吞吐量和并发性能,从而确保系统的稳定运行。

二、性能测试的分类1. 压力测试:通过模拟实际用户行为或产生大量虚拟用户,并观察系统在负载增加的情况下的响应时间和吞吐量。

常用的压力测试工具包括Apache JMeter和Gatling等。

2. 负载测试:通过模拟实际业务场景,并且能够测试系统在高负载情况下的响应能力和稳定性。

这种测试方法可以帮助我们发现系统在繁忙时是否仍然能够正常工作,并识别可能存在的性能瓶颈。

3. 并发测试:通过模拟多个并发用户并行执行相同或不同的操作,以验证系统在并发访问下的性能表现。

这种测试方法可以评估系统的并发处理能力和资源利用率。

三、内核性能调优的重要性Linux操作系统的性能与其内核配置息息相关。

对内核的性能调优可以提高系统的响应速度、降低延迟和提高吞吐量。

通过调整内核参数和优化内核模块,可以使操作系统更好地适应特定的工作负载。

四、内核性能调优的方法1. 内核参数调整:根据系统的工作负载特点,适当调整内核参数。

例如,可以通过修改TCP/IP堆栈参数来提高网络性能,或者通过修改文件系统参数来提高磁盘I/O性能。

2. 内核模块优化:优化内核使用的模块,选择性加载和卸载不必要的模块,以减少内核的资源占用和启动时间。

3. 中断处理优化:通过合理分配和调整中断处理的优先级,减少中断处理的开销,提高系统的性能。

linux性能调优学习笔记

linux性能调优学习笔记

Linux 性能调优1.Profiling几种工具profiling 包括几种:cpu profiling,即提到的性能分析。

memory profiling,即分析程序性能。

network profiling,即网络流量的分析。

另外,profiling又分两种:1, sampling。

即采样方式。

2, instruments,即插装代码技术。

(包含: 编译期间,链接期间,运行期间)。

oprofile ---- 属于sampling 方式,即不影响程序行为,也不需要重启程序,它是对cpu进行采样分析。

gprof ---- 属于插装技术,需在编译期间增加-pg 选项,属于GNU 部分,不需安装,随着gcc附带。

valgrind--- 属于插装技术,需要在运行期间增加valgrind选项。

(其中massif工具用于内存分析,callgrind用于性能分析)google-perftools ---- 属于插装技术,需要在链接期间增加-L/usr/lib -lprofiler 选项。

2.gprof 分析linux程序性能瓶颈gcc -pg -o test test.ctest运行的时候会把搜集的信息保存在gmoun.out中fedora 不能使用-lc_p选项的问题一般gprof只能查看用户函数信息。

如果想查看库函数的信息,需要在编译是再加入“-lc_p”编译参数代替“-lc”编译参数,这样程序会链接libc_p.a库,才可以产生库函数的profiling信息。

需要安装glibc-profile,下载地址http://ftp.riken.jp/Linux/fedora/core/updates/2/i386/glibc-profile-2.3.3-27.1.i386.rp。

gprof hello gmon.out -p 得到每个函数占用的执行时间gprof hello gmon.out -q 得到call graph,包含了每个函数的调用关系,调用次数,执行时间等信息。

perf用法

perf用法

perf用法详解perf是Linux系统下的性能分析工具,可以用于分析程序的性能瓶颈和优化程序。

下面将详细介绍perf的用法和常见用法。

一、perf的基本用法1.安装perf在Ubuntu系统下,可以使用以下命令安装perf:2.使用perf record记录性能事件使用以下命令可以记录程序运行时的性能事件:其中,-g表示记录调用栈信息,-p表示记录指定进程的pid。

执行完毕后,会生成一个名为perf.data的文件,其中包含了程序运行时的性能事件信息。

3.使用perf report分析性能事件使用以下命令可以分析perf.data文件中的性能事件:该命令会显示程序运行时的性能事件报告,包括每个函数的CPU占用情况、调用栈信息等。

二、perf的常见用法1.性能分析使用perf record和perf report可以分析程序的性能瓶颈,找到CPU占用较高的函数或线程,从而进行优化。

2.内存泄漏检测使用perf工具可以检测程序的内存泄漏情况。

例如,可以使用以下命令检测程序是否存在内存泄漏:其中,-o表示输出结果到指定文件,--表示后面的参数为程序和参数。

执行完毕后,生成一个名为output_file的文件,其中包含了程序运行时的性能事件信息。

然后可以使用以下命令分析内存泄漏:其中,--sort=dso表示按照共享库名称进行排序,--dso表示只显示共享库名称。

执行完毕后,会显示程序运行时的内存占用情况报告,包括每个共享库的内存占用情况、调用栈信息等。

如果某个共享库的内存占用较高,则可能是该共享库存在内存泄漏问题。

3.缓存失效分析使用perf工具可以分析程序的缓存失效情况。

例如,可以使用以下命令分析程序运行时的缓存失效情况:其中,--表示后面的参数为程序和参数,--表示其他选项参数。

执行完毕后,生成一个名为output_file的文件,其中包含了程序运行时的性能事件信息。

然后可以使用以下命令分析缓存失效情况:其中,--sort=sym表示按照函数名称进行排序。

Linux系统性能测试脚本使用Shell脚本实现对Linux系统性能的压力测试和评估

Linux系统性能测试脚本使用Shell脚本实现对Linux系统性能的压力测试和评估

Linux系统性能测试脚本使用Shell脚本实现对Linux系统性能的压力测试和评估在开发和运维过程中,评估和测试系统性能是至关重要的。

这有助于发现可能存在的瓶颈和问题,以便及时采取措施进行优化和改进。

Linux系统提供了丰富的工具和命令来评估和测试系统性能,而其中使用Shell脚本来实现性能测试可以更加方便和有效。

一、性能测试的目的和重要性性能测试是为了评估计算机系统或软件在特定条件下的运行性能。

它可用于评估系统的稳定性、可靠性、可扩展性、响应时间等指标。

通过性能测试,我们可以发现系统的瓶颈,优化资源的利用,提高系统的吞吐量和响应速度。

二、Shell脚本的优势Shell脚本是Linux系统中常用的脚本语言,具有以下优势:1. 简单易用:Shell脚本语法相对简单,易于理解和学习,而且可以直接在终端运行,不需要编译和链接过程。

2. 灵活性高:Shell脚本可以通过调用系统命令和工具来实现各种功能,包括性能测试。

并且可以结合其他脚本语言进行更复杂的操作。

3. 命令丰富:在Linux系统中,有大量的命令和工具可供使用,可以通过Shell脚本集成这些命令和工具来完成性能测试任务。

三、Shell脚本实现性能测试的步骤1. 设定测试环境:在开始性能测试之前,需要准备适当的环境,并安装必要的工具和软件。

例如,可以使用yum命令安装sysstat工具和其他性能测试工具。

2. 编写Shell脚本:Shell脚本负责执行性能测试的具体步骤和命令。

可以使用循环结构和计时器来模拟实际的压力测试情况。

3. 运行脚本:通过运行Shell脚本,可以执行性能测试并获取测试结果。

测试结果可以保存到文件中以便后续分析和比较。

4. 分析测试结果:根据测试结果,可以进行性能评估和分析,找出性能瓶颈,并提出相应的优化建议。

四、Shell脚本示例下面是一个简单的Shell脚本示例,用于实现Linux系统的CPU、内存和磁盘性能测试。

```bash#!/bin/bash# 测试CPU性能echo "CPU性能测试开始..."sysbench --test=cpu --cpu-max-prime=20000 runecho "CPU性能测试结束。

系统性能评估与优化:如何评估系统性能,找出系统瓶颈并进行优化

系统性能评估与优化:如何评估系统性能,找出系统瓶颈并进行优化

系统性能评估与优化:如何评估系统性能,找出系统瓶颈并进行优化引言当我们使用计算机系统进行各种任务时,系统性能是至关重要的。

无论是进行科学计算、玩游戏还是进行日常办公,我们都希望系统能够以高效、快速、可靠的方式完成任务。

然而,系统的性能受到多种因素的影响,包括硬件配置、软件设计、网络连接等等。

因此,对系统性能进行全面评估和优化是非常必要的。

本文将介绍如何评估系统性能,找出系统瓶颈并进行系统性能优化。

我们将从初步评估开始,逐步深入,探讨各种评估和优化方法。

通过了解系统性能评估与优化的基本原理和方法,我们将能够更好地理解和处理系统性能问题。

初步评估要评估系统的性能,首先需要对系统进行初步评估。

这个评估过程可以简单地观察系统在正常使用情况下的表现,包括响应速度、运行稳定性等方面。

虽然这种评估方法并不精确,但可以帮助我们初步了解系统的性能。

观察响应速度观察系统的响应速度是初步评估系统性能的一种简单有效的方法。

我们可以观察系统在各种不同任务下的响应速度,比较其快慢。

一般来说,如果系统的响应速度较快,那么系统的性能可能较好;反之,如果系统响应速度较慢,可能存在性能问题。

运行稳定性评估除了观察响应速度,我们还可以评估系统的运行稳定性。

运行稳定性是指系统能够持续稳定运行的能力。

我们可以观察系统在长时间运行时是否存在崩溃、卡顿等问题。

如果系统经常出现这些问题,那么可能存在性能问题。

性能评估方法初步评估只能提供一些主观的参考,为了更准确地评估系统性能,我们需要使用一些科学的方法和工具。

下面将介绍几种常用的系统性能评估方法。

负载测试负载测试是评估系统性能的一种常用方法。

在负载测试中,我们会模拟系统在不同负载情况下的工作状态,观察系统对负载的响应能力。

常用的负载测试工具包括Apache JMeter、LoadRunner等。

通过负载测试,我们可以得到系统在不同负载情况下的性能指标,如响应时间、吞吐量等,从而评估系统的性能。

Linux系统性能优化脚本使用Shell脚本实现对Linux系统性能的优化和调整

Linux系统性能优化脚本使用Shell脚本实现对Linux系统性能的优化和调整

Linux系统性能优化脚本使用Shell脚本实现对Linux系统性能的优化和调整Linux是一种常用的操作系统,广泛应用于服务器、个人电脑等领域。

随着系统的使用时间的增长,系统性能可能会逐渐下降,为了保持系统的高效运行,我们可以通过使用Shell脚本来进行性能优化和调整。

本文将介绍如何使用Shell脚本进行Linux系统性能的优化。

一、优化磁盘空间磁盘空间在Linux系统中扮演着重要的角色,因为磁盘空间的占用情况直接影响到系统的运行速度和稳定性。

通过使用Shell脚本,我们可以进行磁盘空间的优化。

下面是一个简单的脚本示例,用于删除指定目录下的临时文件:```shell#!/bin/bash# 清理临时文件temp_dir="/tmp"rm -rf ${temp_dir}/*```此脚本将清理/tmp目录下的所有临时文件。

您可以根据自己的需求修改脚本,并将其添加到定时任务中,以定期清理临时文件。

二、优化内存使用内存是系统性能的关键因素之一。

通过优化内存使用,可以提高系统的响应速度和稳定性。

下面是一个示例脚本,用于释放Linux系统中的内存:```shell#!/bin/bash# 释放内存sync; echo 3 > /proc/sys/vm/drop_caches```此脚本通过将3写入/proc/sys/vm/drop_caches文件来释放内存。

您可以根据需要修改脚本并将其添加到定时任务中,以定期释放内存。

三、优化网络性能网络性能是Linux系统中的另一个重要因素。

通过优化网络设置,可以提高系统的网络传输速度和稳定性。

下面是一个示例脚本,用于优化TCP/IP设置:```shell#!/bin/bash# 优化TCP/IP设置sysctl -w net.ipv4.tcp_max_syn_backlog=65536sysctl -w dev_max_backlog=65536sysctl -w net.ipv4.tcp_tw_recycle=1sysctl -w net.ipv4.tcp_tw_reuse=1```此脚本通过修改sysctl参数来优化TCP/IP设置。

解决Linux系统常见的卡顿问题让你的电脑运行如飞

解决Linux系统常见的卡顿问题让你的电脑运行如飞

解决Linux系统常见的卡顿问题让你的电脑运行如飞Linux系统作为一款开源操作系统,被越来越多的人所使用。

然而,有时候我们在使用Linux系统时会遇到一些卡顿的问题,这给我们的使用体验带来了一定的困扰。

本文将就解决Linux系统常见的卡顿问题的方法进行探讨,帮助你的电脑运行如飞。

1. 确保系统更新:及时进行系统的更新,可以解决很多不稳定和卡顿的问题。

你可以通过命令行方式更新系统,具体步骤如下:```sudo apt-get updatesudo apt-get upgrade```这样可以检查并更新系统的软件包,保持系统的稳定性和安全性。

2. 优化启动项:Linux系统启动时默认会加载一些启动项,这些启动项可能有些并不是你每次都需要的。

你可以通过禁用一些不必要的启动项来减少系统负担,提高系统的响应速度。

```sudo systemctl list-unit-files |grep enabledsudo systemctl disable <service_name>```在上述命令中,`<service_name>`为你想要禁用的启动项的名称。

仅禁用你确实不需要的启动项,以避免对系统正常运行产生影响。

3. 检查系统资源:卡顿问题有时可能是由于系统资源不足引起的,因此我们需要检查系统的资源使用情况。

通过命令`top`或者`htop`可以实时监测当前系统资源的使用情况。

```sudo apt-get install htophtop```如果系统资源占用率过高,可以通过关闭一些不必要的程序来释放系统资源。

4. 清理临时文件:临时文件是在Linux系统中非常常见的,它们可以占用系统的存储空间,并影响系统的性能。

定期清理临时文件可以帮助我们提高系统的运行效果。

```sudo apt-get autocleansudo apt-get autoremove```上述命令会清理掉一些已经不需要的系统文件和依赖包,释放系统的存储空间。

性能测试--瓶颈分析方法

性能测试--瓶颈分析方法

性能测试--瓶颈分析方法1、内存分析方法内存分析用于判断系统有无内存瓶颈,是否需要通过增加内存等手段提高系统性能表现。

内存分析需要使用的计数器:Memory类别和Physical Disk类别的计数器。

内存分析的主要方法和步骤:〔1〕首先查看Memory\Available Mbytes指标如果该指标的数据比较小,系统可能出现了内存方面的问题,需要继续下面步骤进一步分析。

注:在UNIX/LINUX中,对应指标是FREE(KB)〔2〕注意Pages/sec、Pages Read/sec和Page Faults/sec的值操作系统回利用磁盘较好的方式提高系统可用内存量或者提高内存的使用效率。

这三个指标直接反应了操作系统进行磁盘交换的频度。

如果Pages/sec的技术持续高于几百,可能有内存问题。

Pages/sec值不一定大九说明有内存问题,可能是运行使用内存映射文件的程序所致。

Page Faults/sec说明每秒发生页面失效次数,页面失效次数越多,说明操作系统向内存读取的次数越多。

此事需要查看Pages Read/sec的计数值,该计数器的阀值为5,如果计数值超过5,则可以判断存在内存方面的问题。

注:在UNIX/LINUX系统中,对于指标是(page)si和(page)so.(3)根据Physical Disk计数器的值分析性能瓶颈对Physical Disk计数器的分析包括对Page Reads/sec和%Disk Time及Aerage Disk Queue Length的分析。

如果Pages Read/sec很低,同时%Disk Time 和Average Disk Queue Length的值很高,则可能有磁盘瓶颈。

但是,如果队列长度增加的同时Pages Read/sec并未降低,则是内存不足。

注:在UNIX/LINUX系统中,对应的指标是Reads(Writes)per sec、Percent of time the disk is busy和Average number of transactions waiting for service.2、处理器分析法〔1〕首先看System\%Total Processor Time 性能计数器的计数值该计数器的值表达服务器整体处理器利用率,对多处理器的系统而言,该计数器提醒所有CPU的平均利用率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

linux系统性能优化及瓶颈分析一,用vmstat分析系统I/O情况[root@localhost ~]# vmstat -n 3 (每个3秒刷新一次)procs-----------memory--------------------swap--- ---io---- --system---- ------cpu--------r b swpd free buff cache si so bi bo in cs us sy id wa1 0 144 186164 1052522386848 0 0 18 166 83 2 48 21 31 02 0 144 189620 1052522386848 0 0 0 177 10391210 34 10 56 00 0 144 214324 1052522386848 0 0 0 10 1071 670 32 5 63 00 0 144 202212 1052522386848 0 0 0 189 1035 558 20 377 02 0 144 158772 1052522386848 0 0 0 203 10652832 70 14 15 0IO-bi:从块设备读入的数据总量(读磁盘)(KB/S)-bo:写入到块设备的数据总量(写磁盘)(KB/S)随机磁盘读写的时候,这2个值越大(如超出1M),能看到CPU在IO等待的值也会越大二,用iostat分析I/O子系统情况如果你的系统没有iostat,sar,mpstat等命令,安装sysstat-7.0.2-1.el5.i386.rpm包,iostat工具将对系统的磁盘操作活动进行监视。

它的特点是汇报磁盘活动统计情况,同时也会汇报出CPU 使用情况。

同vmstat一样,iostat也有一个弱点,就是它不能对某个进程进行深入分析,仅对系统的整体情况进行分析。

iostat的语法如下:程序代码iostat [ -c | -d ] [ -k ] [ -t ] [ -V ] [ -x [ device ] ] [ interval [ count ] ]-c为汇报CPU的使用情况;-d为汇报磁盘的使用情况;-k表示每秒按kilobytes字节显示数据;-t为打印汇报的时间;-v表示打印出版本信息和用法;-x device指定要统计的设备名称,默认为所有的设备;interval指每次统计间隔的时间;count指按照这个时间间隔统计的次数。

iostat在内核2.4和内核2.6中数据来源不太一样,对于kernel 2.4, iostat 的数据的主要来源是 /proc/partitions;在2.6中,数据来源主要是/proc/diskstats和/sys/block/sd*/stat这两个文件#cat /proc/diskstats | grep sda8 0 sda 17945521 1547188 466667211 174042714 1585387442776252 469241932 2406054445 0 137655809 25809604228 1 sda1 936 1876 6128 2 sda2 19489178 466659986 58655070 4692402248 3 sda3 1270 1441 332648 4 sda4 4 80 08 5 sda5 648 1442 08 6 sda6 648 1442 0第1列 : 磁盘主设备号(major)第2列 : 磁盘次设备号(minor)第3列 : 磁盘的设备名(name)第4列 : 读请求总数(rio)第5列 : 合并的读请求总数(rmerge)第6列 : 读扇区总数(rsect)第7列 : 读数据花费的时间,单位是ms.(从__make_request到end_that_request_last)(ruse)第8列 : 写请求总数(wio)第9列 : 合并的写请求总数(wmerge)第10列 : 写扇区总数(wsect)第11列 : 写数据花费的时间,单位是ms. (从__make_request到end_that_request_last)(wuse)第12列 : 现在正在进行的I/O数(running),等于I/O队列中请求数第13列 : 系统真正花费在I/O上的时间,除去重复等待时间(aveq)第14列 : 系统在I/O上花费的时间(use)。

#iostat -x 1Linux 2.6.18-53.el5PAE (localhost.localdomain) 03/27/2009avg-cpu: %user %nice %system %iowait %steal %idle30.72 0.00 5.00 5.72 0.00 58.56 Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %utilsda 0.79 21.81 9.15 8.08 237.99 2 39.29 27.69 1.32 76.31 4.07 7.02sdb 0.69 19.13 3.26 2.99 153.08 176.92 52.85 0.43 68.80 5.96 3 .72sdc 3.47 89.30 10.95 7.30 213.30 7 72.94 54.04 1.32 72.43 4.18 7.63每项数据的含义如下,rrqm/s: 每秒进行 merge 的读操作数目。

即 rmerge/swrqm/s: 每秒进行 merge 的写操作数目。

即 wmerge/sr/s: 每秒完成的读 I/O 设备次数。

即 rio/sw/s: 每秒完成的写 I/O 设备次数。

即 wio/srsec/s: 每秒读扇区数。

即 rsect/swsec/s: 每秒写扇区数。

即 wsect/srkB/s: 每秒读K字节数。

是 rsect/s 的一半,因为每扇区大小为512字节。

wkB/s: 每秒写K字节数。

是 wsect/s 的一半。

avgrq-sz: 平均每次设备I/O操作的数据大小 (扇区)。

即(rsect+wsect)/(rio+wio)avgqu-sz: 平均I/O队列长度。

即 aveq/1000 (因为aveq的单位为毫秒)。

await: 平均每次设备I/O操作的等待时间 (毫秒)。

即(ruse+wuse)/(rio+wio)svctm: 平均每次设备I/O操作的服务时间 (毫秒)。

即 use/(rio+wio) %util: 一秒中有百分之多少的时间用于 I/O 操作,或者说一秒中有多少时间I/O队列是非空的,即use/1000 (因为use的单位为毫秒),如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。

svctm 一般要小于 await (因为同时等待的请求的等待时间被重复计算了),svctm 的大小一般和磁盘性能有关,CPU/内存的负荷也会对其有影响,请求过多也会间接导致 svctm 的增加。

await 的大小一般取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式。

如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明 I/O 队列太长,应用得到的响应时间变慢,如果响应时间超过了用户可以容许的范围,这时可以考虑更换更快的磁盘,调整内核 elevator 算法,优化应用,或者升级 CPU。

队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水。

io/s = r/s +w/sawait=(ruse+wuse)/io(每个请求的等待时间)await*io/s=每秒内的I/O请求总共需要等待的msavgqu-sz=await*(r/s+w/s)/1000(队列长度)以下数据其实与/proc/diskstats中除设备号与设备名外的其它数据是一一对应关系,只是统计的方法略有差别而已。

#cat /sys/block/sda/stat17949157 1547772 466744707 174070520 15855905 42781288 469298468 2406092114 2 137680700 2581025934三,sar -b 监控I/O#sar -b 1 10Linux 2.6.18-53.el5PAE (localhost.localdomain) 03/29/200912:19:40AM tps rtps wtps bread/s bwrtn /s12:19:42AM 21.48 9.40 12.08 187.92 429.5312:19:43AM 14.00 14.00 0.00 840.00 0.00 12:19:44AM 10.29 8.82 1.47 235.29 217.65 12:19:45AM 12.87 10.89 1.98 752.48 142.5712:19:46AM 19.82 12.61 7.21 425.23 381.98 12:19:47AM 19.00 19.00 0.00 512.00 0.00 12:19:49AM 9.29 9.29 0.00 262.86 0.00 12:19:50AM 16.00 5.00 11.00 144.00 536.00 12:19:51AM 17.65 8.82 8.82 211.76 235.29 12:19:52AM 41.41 29.29 12.12 614.14 363.64 Average: 17.75 12.30 5.45 397.19 231.99-tps:每秒钟对磁盘发送transfer的总数,一个transfer就是一个I/O,多个逻辑请求组合成一个对磁盘的I/O请求,一个transfer的大小不确定。

-rtps:每秒钟的物理读的总数-wtps:每秒钟的物理写的总数-bread/s:每秒钟从磁盘读取的数据总数-bwrtn/s:每秒钟写入磁盘的数据的总数四,sar -d 1 10Linux 2.6.18-53.el5PAE (localhost.localdomain) 03/29/200912:38:56 AM DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util12:38:57 AM dev8-0 15.00 232.00 0.00 15.47 0.010.87 0.87 1.3012:38:57 AM dev8-16 6.00 80.00 320.00 66.67 0.058.67 8.67 5.2012:38:57 AM dev8-32 10.00 224.00 0.00 22.40 0.099.20 9.20 9.20tps:每秒钟对磁盘发送transfer的总数,一个transfer就是一个I/O,多个逻辑请求组合成一个对磁盘的I/O请求,一个transfer的大小不确定rd_sec/s每秒钟读取的扇区数,每个扇区512 bytes.wr_sec/s每秒钟写入的扇区数,每个扇区512 bytes.avgrq-sz对磁盘请求的扇区的平均大小。

相关文档
最新文档