Journal of molecular modeling 2011 Tosco-1
电纺丝合成树枝状Ag-TiO2复合材料及光催化降解有机物

燥 箱 中干燥 1 2h后 , 4 0c煅 烧 3h 于 5 C .自然 降至室 温 , 到 TO 得 i 纳米纤 维 . 将 TO 纳 米 纤 维 浸 入 0 0 1m lLA N 溶 液 中 ,并 将 样 品 在 高 压 汞灯 (0 ) 分 别 照 射 i, .0 o/ g O 10W 下 1 i, , 6h后 , 5rn 6h 3 a 用高 纯水 以及 乙醇洗 涤 3次 , 干燥 后在 4 0℃ 马弗 炉 中煅 烧 3h后 备用 . 5
(.5g V 04 P溶于 3m P L乙醇 ) 继续搅拌 1 .将混合溶液加入注射器 中( 1 , , h 图 ) 控制工作电压为 l 0
k 调 节接 收器 与纺丝 针头 距离 为 1 m, 液 的流 出速度 为 0 5mL h V, 0e 溶 . / .将 所得 纤 维在 10℃ 真空 干 2
1 3 材料 结构 形貌 表征 .
通过 JM一 0 F场发 射扫 描 电镜 ( E E 进行 产物形 貌 表征 ; D 一dac S 7 1 4 F S M) 在 8avneX射 线 衍射 仪 上 ( 德
国 Bu e 公 司) 行结 构表 征 ( uK rkr 进 C a射线 , 0 14 8n , 描角度 2 。 8 。 步长 0 0 。 A: . 5 1 m) 扫 0~ 0 , .2 .
(2 ) TO 纳米 纤维 相 比 , 方 法合成 的复合 材料 在光催 化 降解 亚 甲基蓝 的过 程 中表现 出更 优 异 的 P5 及 i: 该
催 化 性能 .
1 实 验 部 分
1 1 试剂 与仪 器 .
聚 乙烯 吡咯烷 酮 ( V , 子量 100 0 购 于 Af公 司 ; PP 分 300 ) l a 钛酸 四异 丙酯 、 醋酸 、乙醇 和硝酸 银购 冰 于北 京化 学试 剂公 司 ; i P5 ( 量分 数 为 2 % 金 红石 和 8 %锐 钛 矿 ) 于 D gsa 司.实验 用 TO ( 2 ) 质 0 0 购 eus 公 水 均 为 Mi— lQ高纯 水.高压 电纺 丝设 备购 自天津 市东 文高压 电源厂 . l
2011年国家自然基金获得者——复旦大学

何曼君《高分子物理》(第3版)配套题库【名校考研真题】第5章 聚合物的非晶态 【圣才出品】

第5章聚合物的非晶态一、选择题1.下列物理量中,可以用来表示聚合物流动性的有下列()。
[中科院研究生院2012研]A.表观黏度;B.黏流活化能;C.熔融指数;D.剪切速率。
【答案】A、C【解析】A表观黏度又称表观剪切黏度,是非牛顿流体(如聚合物熔体和浓溶液)在剪切流动过程中,某一剪切应力下剪切应力与剪切速率的比值,以ηa表示;B黏流活化能是描述材料黏-温依赖性的物理量。
定义为流动过程中,流动单元(对高分子材料而言即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量;C熔融指数,全称熔液流动指数,或熔体流动指数,是一种表示塑胶材料加工时的流动性的数值;D剪切速率:流体的流动速相对圆流道半径的变化速率。
2.下列聚合物的玻璃化转变温度从高到低的顺序是()。
[华南理工大学2008研] A.聚甲基丙烯酸甲酯>聚丙烯酸丁酯>聚丙烯酸甲酯B.聚丙烯酸丁酯>聚丙烯酸甲酯>聚甲基丙烯酸甲酯C.聚甲基丙烯酸甲酯>聚丙烯酸甲酯>聚丙烯酸丁酯【答案】C【解析】当侧基是柔性时,侧基越长,链的柔顺性越好,聚合物的柔顺性大小为聚丙烯酸丁酯>聚丙烯酸甲酯。
侧基体积增大,空间位阻效应增加,柔顺性下降,故柔顺性聚丙烯酸甲酯>聚甲基丙烯酸甲酯。
柔顺性越好,玻璃化转变温度越低,故Tg从高到低依次为聚甲基丙烯酸甲酯>聚丙烯酸甲酯>聚丙烯酸丁酯。
二、判断题根据WLF自由体积理论认为发生玻璃化转变时,聚苯乙烯和聚碳酸酯的自由体积分数是一样的。
()[华南理工大学2008研]【答案】×【解析】WLF方程的适用范围是Tg<T<Tg+100℃。
三、填空题1.图5-1为聚对苯二甲酰对苯二胺浓硫酸溶液的粘度-温度关系曲线,请对A、B及C 区中聚合物分子取向度的大小进行排序______。
[南开大学2011研]图5-1【答案】B>C>A【解析】温度很低时,刚性分子在溶液中均匀分散,无规取向,形成均匀的各向同性溶液;随着温度升高,体系形成向列型液晶,这时溶液中各向异性与各向同性共存;温度继续升高各向异性所占比例增大,直到体系成为均匀的各向异性溶液。
二氮化锇结构和弹性性质的第一性原理计算

二氮化锇结构和弹性性质的第一性原理计算詹国富;莫玉梅【摘要】研究了在莹石结构(C1),黄铁矿结构(C2)和白铁结构(C18)下二氮化锇的结构和弹性性质。
通过密度泛函理论,计算了它不同的结构参数和体弹模量、剪切模量以及弹性常数。
弹性常数的计算反应了 OsN2具有很强的硬度。
%We have studied the structure and elastic properties of OsN2 in fluorite, pyrite and marcasite.The equilibri-um lattice parameter, bulk modulus ,its pressure derivative and elastic modulus are calculated.The result of elastic modulus indicate the hardness of OsN2 is high.【期刊名称】《上饶师范学院学报》【年(卷),期】2016(036)006【总页数】3页(P60-62)【关键词】密度泛函理论;结构参数;弹性性质【作者】詹国富;莫玉梅【作者单位】广东理工学院工业自动化系,广东肇庆 526100;广东理工学院工业自动化系,广东肇庆 526100【正文语种】中文【中图分类】O469过渡金属的氮化物、氧化物、硼化物等因其优越的物理化学性质,诸如耐高温、半导体性质、超导性能等[1],因而在光学涂层、耐磨涂层、切割工具方面有着广泛地应用[2]。
众多研究3d和4d金属化合物的工作已经做过了,而铂、铱、铑的氮化物在极端条件下相继被合成出来[3-7],相关的性质也有了一定的研究。
作为过渡金属的二氮化锇,它的一些常温常压下的结构性质、电子结构等都有了一定的了解[8,9]。
总能量计算是基于密度泛函理论,采用Perdew-Burke-Ernergof(PBE)交换关联泛函[10]和广义梯度近似(GGA)的交换关联势。
釉原蛋白羧基末端肽加速细胞周期促进成釉细胞系ALC细胞增殖

《中国组织工程研究》 Chinese Journal of Tissue Engineering Research99·研究原著·刘敏,女,1993年生,陕西省汉中市人,汉族,在读硕士,主要从事牙釉质发育相关影响因素研究。
通讯作者:王磊,博士,副主任医师,副教授,北京大学口腔医院修复科,北京市 100081并列通讯作者:王衣祥,博士,研究员,副教授,北京大学中心实验室,北京市 100081文献标识码:A来稿日期:2019-03-04 送审日期:2019-03-06 采用日期:2019-05-23 在线日期:2019-09-26Liu Min, Master candidate, Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, ChinaCorresponding author: Wang Lei, MD, Associate chief physician, Associate professor, Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, ChinaCorresponding author: Wang Yixiang, MD, Researcher, Associate professor, ClinicalLaboratory, Peking University Hospital of Stomatology, Beijing 100081, China釉原蛋白羧基末端肽加速细胞周期促进成釉细胞系ALC 细胞增殖刘 敏1,王睿捷1,宋丹阳1,杨 随1,谭 陶2,王 磊1,王衣祥3 (北京大学口腔医院,1修复科,3中心实验室,北京市 100081; 2北京大学首钢医学院口腔科,北京市 100144)DOI:10.3969/j.issn.2095-4344.1858 ORCID: 0000-0003-4338-4123(刘敏)文章快速阅读:文题释义:釉原蛋白羧基末端肽:是由牙齿发育过程中成釉细胞表达的基质金属蛋白酶20水解全长釉原蛋白产生的,其具有调控骨髓间充质干细胞和牙周膜成纤维细胞增殖和分化的作用。
基于分子动力学的氧化石墨烯对PVA纤维-CSH界面影响机理研究

第42卷第11期2023年11月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.11November,2023基于分子动力学的氧化石墨烯对PVA 纤维-CSH界面影响机理研究臧㊀芸,王㊀攀,王慕涵,王鑫鹏,侯东帅,赵铁军(青岛理工大学土木工程学院,青岛㊀266520)摘要:纤维增强混凝土的宏观力学性能与纤维/基体的界面结合密切相关㊂本文通过分子动力学模拟,研究氧化石墨烯(GO)对聚乙烯醇纤维(PVA)/基体界面结合的影响㊂结果表明,当GO 与PVA 纤维以共价键连接时,PVA 纤维从混凝土中被拉出所需的拉力最大,GO 的存在能提升纤维与基体的界面黏结性能㊂混凝土基体与GO 主要以钙氧键和氢键连接,其中钙氧键数量多且化学键强度高㊂但GO 与PVA 纤维物理连接时,GO 与PVA 纤维仅依靠强度较弱的氢键连接,对界面的黏结性能带来负面作用㊂此外,GO 受到更多离子键和氢键的束缚,原子平移运动减少,与基体的界面黏结性能提高㊂关键词:氧化石墨烯;PVA 纤维;混凝土;界面;分子动力学中图分类号:TU528㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)11-3799-08Influence Mechanism of Graphite Oxide on PVA Fiber-CSH Interface Based on Molecular DynamicsZANG Yun ,WANG Pan ,WANG Muhan ,WANG Xinpeng ,HOU Dongshuai ,ZHAO Tiejun (Department of Civil Engineering,Qingdao University of Technology,Qingdao 266520,China)Abstract :The macroscopic mechanical properties of fiber reinforced concrete are closely related to the interfacial bonding of fiber /matrix.In this paper,the effect of graphene oxide (GO)on the interfacial bonding of polyvinyl alcohol fiber (PVA)/matrix was studied by molecular dynamics simulation.The results show that when GO and PVA fiber are connected by covalent bond,the tensile force required for PVA fiber to be pulled out from concrete is the largest,and the presence of GO can improve the interfacial bonding performance between fiber and matrix.The concrete matrix and GO are mainly connected by calcium-oxygen bonds and hydrogen bonds,in which the number of calcium-oxygen bonds is large and the strength of chemical bonds is high.However,when GO and PVA fiber are physically connected,GO and PVA fiber are only connected by weak hydrogen bonds,which has a negative effect on the bonding performance of interface.In addition,GO is bound by more ionic bonds and hydrogen bonds,the atomic translational motion is reduced,and the interfacial bonding performance with matrix is improved.Key words :graphene oxide;PVA fiber;concrete;interface;molecular dynamics 收稿日期:2023-06-01;修订日期:2023-08-12基金项目:国家自然科学基金(U2006224,51978352,51908308)作者简介:臧㊀芸(1986 ),女,博士研究生㊂主要从事土木工程材料方面的研究㊂E-mail:zangyun001@通信作者:侯东帅,博士,教授㊂E-mail:dshou@ 0㊀引㊀言水泥基材料是应用最广泛的建筑材料之一,然而它存在脆性大㊁韧性差㊁易发生突然破坏和耐久性差等缺点㊂添加纤维是提高水泥基材料抗拉强度和韧性的常用方法[1],纤维的主要作用是在断裂区起到桥接作用㊂聚乙烯醇(polyvinyl alcohol,PVA)纤维因其优异的耐碱性能㊁高强度和高弹性而备受关注,已被广泛应用于应变硬化水泥基材料(strain hardening cementitious composites)的制造[2]㊂然而,PVA 纤维尚未被证明可以防止微裂纹的形成或细化孔隙结构,它不能显著提高水泥基材料的耐久性㊂随着纳米技术的兴起,将纳米3800㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷材料(如碳纳米管(carbon nanotubes,CNTs)[3-5]㊁石墨烯和氧化石墨烯(graphene oxide,GO)[6-8])应用于水泥基材料来提高性能已成为近年来新的研究热点㊂与疏水碳纳米管和石墨烯不同,氧化石墨烯引入了含氧基团,如羟基㊁羰基和羧基,是一种优秀的亲水材料[9-10]㊂研究表明,氧化石墨烯的加入可以提高混凝土的抗压抗折强度[11]和耐久性[12-14]㊂因此,利用PVA纤维和氧化石墨烯的协同效应,有望大幅提高水泥基材料的综合性能㊂李相国等[15]研究证明GO复掺PVA纤维可以显著改善水泥基材料孔结构,降低孔隙率,提高水泥基材料抗氯离子渗透性能并降低水泥基材料收缩率㊂Jiang等[16]研究发现在水泥基材料中添加氧化石墨烯可以起到细化孔隙结构的作用,同时提高水化产物在PVA纤维上的黏附性,有利于PVA纤维与水泥基体的结合㊂氧化石墨烯与PVA纤维耦合改性的水泥基材料表现出优异的力学强度和耐久性㊂Yao等[17]利用氧化石墨烯对PVA纤维表面改性,使其化学键能提高80倍以上,混凝土试样抗拉强度提高35.6%㊂然而,GO的存在打破了原有的界面结构,纤维与基体之间的界面变成纤维与GO之间的界面和GO与基体间的界面,界面中化学键的键合也发生了改变㊂在纤维增强水泥基复合材料中,纤维和基体分担载荷,应力通过纤维和基体间的界面传递㊂因此,界面的组成和性能是决定纤维增强水泥基复合材料性能的关键㊂Wang等[18]通过分子动力学分析发现,PVA纤维中的羟基与水化产物中的钙离子可以形成稳定的离子键,因此PVA纤维与水化产物有较好的黏结力㊂GO对界面的影响尚不清晰,而这将直接影响纤维增强水泥基材料的性能㊂本文先通过拉拔模拟计算纤维从界面中拉出所需要的拉拔力,借助力学响应描述界面黏附行为㊂通过静态结构和动态结构分析,探究GO对PVA/CSH界面黏结性能的影响机理㊂本研究有助于指导GO和PVA 在水泥基复合材料中发挥最佳的协同作用㊂1㊀模拟方法1.1㊀模型建立依据Pellenq等[19]和Manzano等[20]提出的方法,基于托贝莫来石(11Å)结构构建了Ca/Si比值为1.7的水化硅酸钙(CSH)模型㊂选取无水托贝莫来石(11Å)层状结构作为建模的初始构型㊂根据硅链的Q n分布结果,随机删除桥接的SiO2和二聚体结构(Si2O4),得到复合硅链的钙硅骨架和层状结构㊂再通过巨正则蒙特卡洛法(GCMC)模拟水分子逐渐吸附在钙硅骨架孔隙上直至饱和这一过程㊂根据液态水在室温下的性质,设定化学势为0,温度为300K,成功建立CSH初始模型,如图1(a)所示㊂根据Allington等[21]提出的方法构建氧化石墨烯模型㊂将石墨烯的单位单元(x=4.62Å,y=3.69Å,z=3.40Å,α=β=γ=90ʎ)在x和y 方向分别扩大,再将环氧( O )㊁羟基( OH)和羧基( COOH)三个官能团修饰到石墨烯上㊂其中 O 和 OH基团分布在石墨烯表面, COOH基团分布在石墨烯边缘,如图1(b)所示㊂氧化石墨烯薄片的化学成分为C10O1(OH)1(COOH)0.5,符合氧化石墨烯典型官能团覆盖率,即含氧量为20%~30%[22]㊂PVA纤维模型如图1(c)所示,每个PVA纤维链具有50个碳原子㊂参照文献[23]结果,本文建立了两种GO/PVA模型:第一种PVA模型如图1(d)所示,GO物理附着在PVA表面,无共价键连接;第二种PVA模型如图1(e)所示,GO与PVA纤维通过脱水缩聚,形成酯基 COO ,使GO与PVA纤维以共价键形式连接㊂因模型中含有多种氧原子和氢原子,为了方便后面的分析将其进行区分㊂O s表示CSH中硅氧四面体中的非桥接氧原子,O hs表示CSH的羟基氧原子,O hp表示PVA纤维中的氧原子,O o表示GO片中C O C中的氧原子, O hg表示GO片中 OH中的氧原子㊂此外, COOH中有两种位置的氧原子,O 表示以双键连接碳的氧原子,O hg表示以单键连接碳的氧原子㊂H op表示PVA纤维中的羟基氢原子,H og表示GO片中含氧官能团中的氢原子㊂从所建立的CSH分子模型层间处切开,并向外平移以预留足够空间插入GO和PVA纤维,并在y方向预留足够的空间保证纤维可以拉出㊂将PVA纤维插入CSH形成的纤维界面定义为界面CP,如图1(f)所示㊂将PVA/GO(物理附着)插入CSH,纤维与GO形成的界面定义为界面CGP1,如图1(g)所示㊂将PVA-GO(形成共价键)插入CSH,纤维与GO成为一体后与CSH形成的界面定义为界面CGP2,如图1(h)所示㊂三个模拟盒子尺寸大小一致,均为x=44.10Å,y=160.70Å,z=67.47Å,α=β=γ=90ʎ㊂㊀第11期臧㊀芸等:基于分子动力学的氧化石墨烯对PVA纤维-CSH界面影响机理研究3801图1㊀氧化石墨烯㊁PVA纤维㊁CSH的结构及连接方式Fig.1㊀Structures and connection modes of graphene oxide,PVA fiber and CSH1.2㊀力㊀场力场的选择对模拟的准确性十分关键,CSH基底采用CLAYFF力场,此力场已被成功用于黏土㊁水泥水化产物㊁多组分矿物体系的模拟[24-25]㊂PVA纤维采用CVFF力场,CVFF已被广泛应用于有机物建模[26-27]㊂CLAYFF与CVFF联合力场已证明适用于模拟胶凝材料与聚合物㊁有机物之间的界面特性[28]㊂此联合力场3802㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷采用Lorentz-Berthelot 混合规则[29]㊂1.3㊀模拟过程模拟过程分为预平衡阶段㊁平衡阶段和拉拔阶段㊂所有模拟均采用大尺度原子/分子大规模并行模拟器(LAMMPS)平台进行计算㊂所有原子在NPT 系统中弛豫1000ps,时间步长设置为1fs,温度为300K㊂平衡后再运行1000ps,此阶段保持系统与环境变量均不变,每1ps 记录一次轨迹数据,收集到1000帧原子轨迹,用于平衡状态下界面结构和动力学行为分析㊂此后,在NVT 系综下对已经平衡的模型进行拉拔模拟,每根纤维链最右侧的碳原子作为外力的位置[30],时间步长设置为1fs㊂外力和界面能每100s 记录一次㊂拉拔力计算如式(1)所示㊂F =K [(x 0+vt )-x com ](1)式中:F 为拉拔力,x 0为所选碳原子在纤维y 方向上的初始质心,K 为弹簧常数,v 为拉力的速度,t 为模拟时间,x com 为所选碳原子质心沿y 方向的动态位置㊂2㊀结果与讨论2.1㊀拉拔过程图2㊀三个界面的拉力-时间关系Fig.2㊀Pull-out force-time relations of three interfaces 通过拉拔模拟计算得到拉拔力-时间曲线,如图2所示㊂在没有GO 的情况下纤维与CSH 形成界面CP㊂加入GO 后,纤维与GO 形成了新的界面CP1㊂从图2中可以清楚地看到,PVA 纤维从CSH 中被拉出所需要的拉力明显高于PVA /GO 从CSH 中被拉出所需要的拉力,这说明PVA /CSH 的界面黏结力优于PVA /GO界面的黏结力㊂此外,三个界面的拉拔力均波动较大,呈锯齿形逐渐减小㊂在模拟初期,拉拔力逐渐增大,主要原因是化学键的伸长㊂当化学键被过度拉伸直至断裂,拉力会突然下降,在松弛阶段又形成新的化学键,导致拉力再次增大,因此拉拔力呈波动状态㊂随着纤维拉出长度增加,界面处化学键减少,拉拔力逐渐减小㊂由此得出,纤维的拔出过程伴随化学键的断裂和重组㊂图3为拉拔过程第1000ps 快照,从图3(a)中可以发现,GO 与PVA 以物理方式连接时,纤维会从GO 之间很轻易地被拉出,说明GO /PVA 界面的黏结性能很差,GO 的加入对界面的黏结性能起到消极作用㊂如图3(b)所示,在PVA 纤维和GO 以共价键形式连接时,PVA 纤维和GO 作为一个整体同时被拉出㊂PVA-GO 与CSH 形成界面CGP2,此时纤维被拉出所需要的拉力最大,说明CGP2界面的黏结性能最好,GO 的加入对界面的黏结性能起到增强作用㊂图3㊀拉拔过程第1000ps 快照Fig.3㊀Snapshots of pull-out process at 1000ps㊀第11期臧㊀芸等:基于分子动力学的氧化石墨烯对PVA纤维-CSH界面影响机理研究3803 2.2㊀界面静态结构分析径向分布函数(radial distribution function,RDF)表示周围原子出现在中心原子一定范围内的可能性,是原子局部密度与系统的平均密度比值㊂RDF曲线可定性表征配位原子之间的空间相关性,曲线出现峰值的距离越近,表明两原子之间排列更规则,形成的化学键更强,峰值越高说明两原子相关性更高㊂同时,RDF也揭示了界面的连接机制㊂图4为径向分布函数计算结果㊂在CP界面中Ca O hp和氢键的RDF曲线均存在明显的峰值,说明在CSH与PVA纤维之间既存在Ca O hp离子键连接也存在氢键连接,如图4(a)所示㊂而在CP1界面(GO与PVA纤维之间),GO中的氧与PVA纤维中的氢形成脆弱的氢键,如图4(b)所示㊂与氢键相比,离子键的键能远大于氢键㊂键能越大,化学键越牢固,含有该键的分子越稳定,这充分说明了CSH与PVA纤维之间的联系远强于GO与PVA纤维的联系㊂图4㊀CGP1界面㊁CGP2界面和CP界面的径向分布函数Fig.4㊀RDF of CGP1,CGP2and CP interfaces在PVA纤维与GO以共价键连接时,PVA纤维与GO形成一个整体,与CSH之间形成了界面CGP2㊂Ca O o㊁Ca O hg㊁Ca O RDF曲线均存在明显的峰值,如图4(c)所示,这说明GO中的含氧官能团均可以与CSH中的钙离子形成离子键,钙离子与GO中氧原子连接,充当了GO与CSH之间的桥梁㊂其中Ca O hg 和Ca O o的RDF曲线峰值更高,说明离子键中的氧位主要由 OH和 O 提供㊂与CP界面相比,CGP2界面中的Ca O的RDF曲线峰值更高,这是因为在GO中拥有更多能够与CSH中阳离子形成有效化学键的极性位点㊂除了离子键外,界面CP和CGP2中氢键的RDF曲线都有明显的峰值,但在CGP2界面中氢键RDF曲线位置更为靠左,峰值更尖锐,这充分说明在这个界面中有更强的界面成键相互作用,如图4(d)所示㊂根据以上分析可以得出结论,在水泥基质中掺入的GO片可以通过离子键和氢键连接硅酸盐骨架,从而加强了有机相和无机相之间的界面连接㊂在拉拔模拟阶段,纤维从CSH中被拉出的过程中,大量的化学键会被拉伸甚至断裂㊂键长越短,原子核之间的距离越小,键能越大,化学键越稳定,破坏这种化学键需要克服的能量就越多㊂化学键越稳定,对原子3804㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷运动的阻碍就越大,化学键越难断裂㊂根据前面的分析,在CGP2界面中形成的Ca O离子键和氢键数量最多,稳定性高,这意味着需要克服很大的键能才能将纤维从CSH中拉出㊂而PVA纤维与GO之间只有较弱的氢键,键能很小,较小的拉力就能将纤维拉出㊂拉拔仿真结果与本节分析结果一致㊂键合结构图如图5所示㊂图5㊀界面键合示意图Fig.5㊀Interface bonding diagrams化学键的稳定性可以通过时间相关函数(temporal correlation function,TCF)来描述㊂TCF值接近1,表明化学键稳定㊂如果TCF的值降至零,则说明化学键易断开且不稳定㊂根据前面章节的分析可知,CP界面和CGP2界面是通过Ca O离子键和氢键连接,而CGP1界面仅仅通过氢键将PVA纤维与CSH连接㊂本小节计算了三种界面间的化学键的时间相关函数,计算结果如图6(a)所示㊂在CGP2界面中Ca O键的TCF 值略高于CP界面,这意味着PVA和CSH之间形成的化学键更频繁地断裂和重组㊂在CGP2界面中, Ca O 键㊁Ca O o键和Ca O hg键的TCF值分别稳定在0.80㊁0.90和0.98左右,略有波动㊂与Ca O hg键和Ca O o键的TCF曲线相比,Ca O 键的TCF曲线下降更快,这表明连接GO和CSH的离子键主要由羟基提供氧位㊂这一结果与RDF分析结果一致㊂此外,Ca O键的TCF曲线大都在最初略有下降,然后几乎保持不变㊂这表明CSH中Ca和氧形成的离子键可以长时间连接㊂图6㊀Ca O键和H O键的时间相关函数Fig.6㊀Time correlation function of Ca O and H O bond第11期臧㊀芸等:基于分子动力学的氧化石墨烯对PVA 纤维-CSH 界面影响机理研究3805㊀三个界面中的氢键的TCF 曲线如图6(b)所示㊂相比于Ca O 键,氢键的TCF 曲线明显下降得更快,这也证明了离子键在界面连接中起到主导作用㊂界面之间化学键稳定性的差异解释了纤维与基体之间相互作用的差异㊂PVA 纤维和GO 之间没有稳定的离子键连接,导致PVA 纤维更容易被拉出㊂界面动态分析表明,三种界面结合强度依次为:CGP2>CP >CGP1,这说明如果GO 与PVA 纤维之间没有形成共价键,而只是以物理形式附着在PVA 纤维表面,不利于提升界面黏结性能,当PVA 纤维与GO 以共价键形式连接时,GO 才能发挥拥有更多极性氧位的优势,对界面的黏结性能才能起到增强作用㊂这与试验中的结果保持一致[23]㊂图7㊀不同界面的黏附能Fig.7㊀Adhesion energy of different interfaces 作用在PVA 纤维上的恢复力来自界面的相互作用,由黏附能提供[31]㊂在分子水平上,黏附能也可以用作表征界面黏结性能的参数㊂在CSH /PVA 模型中,只有存在CP (CSH /PVA)界面㊂而在CSH /GO /PVA 模型中虽然存在两个界面CSH /GO 和GO /PVA,但根据2.1节的分析,当纤维被拔出时,对纤维拉出行为产生影响的是GO /PVA 界面,所以仅计了CGP1(GO /PVA)界面的黏附能㊂在CSH /GO-PVA 模型中,GO 与PVA 纤维以共价键连接,只有界面CGP2(GO /CSH)影响到纤维被拉出行为㊂界面黏附能计算结果如图7所示,CGP1界面的黏附能仅为1979.3kcal /mol(1kJ =4.184kcal),而CP 界面的黏附能为3780.7kcal /mol,明显比界面CGP1要高出很多,这说明CSH /PVA 界面有更强的相互作用㊂CGP2界面的黏附能绝对值最大,为5515.9kcal /mol,这意味着当GO 与PVA 纤维形成共价键连接时,GO 对界面黏结性能起到增强作用㊂3㊀结㊀论1)PVA /CSH 界面主要是以钙氧离子键和氢键连接,而PVA /GO 界面仅依靠氢键连接㊂2)CGP2界面的黏结性能优于CP 界面和CGP1界面,其中CGP1界面的黏结性能最差㊂3)当PVA 纤维与GO 以共价键方式连接时,GO 发挥多极性氧位的优势,与CSH 之间形成更强的键合作用,从而加强了有机相和无机相之间的界面连接㊂当GO 以物理形式附着在PVA 纤维表面时,对界面的黏结性能起负面作用㊂参考文献[1]㊀杨宇林.纤维混凝土复合材料耐久性能研究综述[J].混凝土,2012(2):78-80+85.YANG Y L.Review on durability of complex fiber concrete[J].Concrete,2012(2):78-80+85(in Chinese).[2]㊀KANDA T,LI V C.Practical design criteria for saturated pseudo strain hardening behavior in ECC [J].Journal of Advanced ConcreteTechnology,2006,4(1):59-72.[3]㊀KONSTA-GDOUTOS M S,METAXA Z S,SHAH S P.Multi-scale mechanical and fracture characteristics and early-age strain capacity of highperformance carbon nanotube /cement nanocomposites[J].Cement and Concrete Composites,2010,32(2):110-115.[4]㊀KONSTA-GDOUTOS M S,METAXA Z S,SHAH S P.Highly dispersed carbon nanotube reinforced cement based materials[J].Cement andConcrete Research,2010,40(7):1052-1059.[5]㊀SUN G X,LIANG R,LU Z Y,et al.Mechanism of cement /carbon nanotube composites with enhanced mechanical properties achieved byinterfacial strengthening[J].Construction and Building Materials,2016,115:87-92.[6]㊀PAN Z,HE L,QIU L,et al.Mechanical properties and microstructure of a graphene oxide-cement composite [J].Cement and ConcreteComposites,2015,58:140-147.[7]㊀LV S H,MA Y J,QIU C C,et al.Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J].Construction and Building Materials,2013,49:121-127.[8]㊀LU Z Y,HOU D S,MA H Y,et al.Effects of graphene oxide on the properties and microstructures of the magnesium potassium phosphate3806㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷cement paste[J].Construction and Building Materials,2016,119:107-112.[9]㊀GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.[10]㊀LU Z Y,CHEN G C,HAO W B,et al.Mechanism of UV-assisted TiO2/reduced graphene oxide composites with variable photodegradation ofmethyl orange[J].RSC Advances,2015,5(89):72916-72922.[11]㊀LONG W J,WEI J J,MA H Y,et al.Dynamic mechanical properties and microstructure of graphene oxide nanosheets reinforced cementcomposites[J].Nanomaterials,2017,7(12):407.[12]㊀何㊀威,许吉航.少层石墨烯对普通混凝土性能的影响[J].硅酸盐通报,2021,40(5):1477-1488.HE W,XU J H.Effect of few-layer graphene on properties of ordinary concrete[J].Bulletin of the Chinese Ceramic Society,2021,40(5): 1477-1488(in Chinese).[13]㊀陈㊀旭,汉光昭,裴玉胜,等.不同含量石墨烯对混凝土抗冻性能的影响[J].建筑施工,2021,43(8):1659-1663.CHEN X,HAN G Z,PEI Y S,et al.Influence of different content of graphene on frost resistance of concrete[J].Building Construction,2021, 43(8):1659-1663(in Chinese).[14]㊀徐义洪,范颖芳.氧化石墨烯分散液对混凝土抗盐冻性能的影响[J].混凝土,2022(2):1-5.XU Y H,FAN Y F.Effects of graphene oxide dispersion on the salt-frost resistance of concrete[J].Concrete,2022(2):1-5(in Chinese).[15]㊀李相国,任钊锋,徐朋辉,等.氧化石墨烯复合PVA纤维增强水泥基材料的力学性能及耐久性研究[J].硅酸盐通报,2018,37(1):245-250.LI X G,REN Z F,XU P H,et al.Research on mechanical properties and durability of graphene oxide composite PVA fiber reinforced cement-based material[J].Bulletin of the Chinese Ceramic Society,2018,37(1):245-250(in Chinese).[16]㊀JIANG W G,LI X G,LV Y,et al.Cement-based materials containing graphene oxide and polyvinyl alcohol fiber:mechanical properties,durability,and microstructure[J].Nanomaterials,2018,8(9):638.[17]㊀YAO X P,SHAMSAEI E,CHEN S J,et al.Graphene oxide-coated poly(vinyl alcohol)fibers for enhanced fiber-reinforced cementitiouscomposites[J].Composites Part B:Engineering,2019,174:107010.[18]㊀WANG P,QIAO G,ZHANG Y,et al.Molecular dynamics simulation study on interfacial shear strength between calcium-silicate-hydrate andpolymer fibers[J].Construction and Building Materials,2020,257:119557.[19]㊀PELLENQ R J M,KUSHIMA A,SHAHSAVARI R,et al.A realistic molecular model of cement hydrates[J].Proceedings of the NationalAcademy of Sciences of the United States of America,2009,106(38):16102-16107.[20]㊀MANZANO H,MOEINI S,MARINELLI F,et al.Confined water dissociation in microporous defective silicates:mechanism,dipole distribution,and impact on substrate properties[J].Journal of the American Chemical Society,2012,134(4):2208-2215.[21]㊀ALLINGTON R D,ATTWOOD D,HAMERTON I,et al.A model of the surface of oxidatively treated carbon fibre based on calculations ofadsorption interactions with small molecules[J].Composites Part A:Applied Science and Manufacturing,1998,29(9/10):1283-1290. [22]㊀JIAO S P,XU Z P.Selective gas diffusion in graphene oxides membranes:a molecular dynamics simulations study[J].ACS Applied Materials&Interfaces,2015,7(17):9052-9059.[23]㊀LU C,LU Z Y,LI Z J,et al.Effect of graphene oxide on the mechanical behavior of strain hardening cementitious composites[J].Constructionand Building Materials,2016,120:457-464.[24]㊀WANG P,QIAO G,HOU D S,et al.Functionalization enhancement interfacial bonding strength between graphene sheets and calcium silicatehydrate:insights from molecular dynamics simulation[J].Construction and Building Materials,2020,261:120500.[25]㊀SHAHRIYARI R,KHOSRAVI A,AHMADZADEH A.Nanoscale simulation of Na-Montmorillonite hydrate under basin conditions,application ofCLAYFF force field in parallel GCMC[J].Molecular Physics,2013,111(20):3156-3167.[26]㊀KUNDALWAL S,KUMAR S.Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineeredinterphase[J].Mechanics of Materials,2016,102:117-131.[27]㊀KUNDALWAL S,MEGUID S.Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites[J].EuropeanJournal of Mechanics-A Solids,2017,64:69-84.[28]㊀HOU D S,YANG Q R,JIN Z Q,et al.Enhancing interfacial bonding between epoxy and CSH using graphene oxide:an atomistic investigation[J].Applied Surface Science,2021,568:150896.[29]㊀ALLEN M P,TILDESLEY D puter simulation of liquids[M].New York:Oxford University Press,2017.[30]㊀LU Z,YU J,YAO J,et al.Experimental and molecular modeling of polyethylene fiber/cement interface strengthened by graphene oxide[J].Cement and Concrete Composites,2020(112):103676.[31]㊀LI X Y,LU Z Y,CHUAH S,et al.Effects of graphene oxide aggregates on hydration degree,sorptivity,and tensile splitting strength of cementpaste[J].Composites Part A:Applied Science and Manufacturing,2017,100:1-8.。
北大冷冻电镜全原子动力学分析进入新阶段
北大冷冻电镜全原子动力学分析进入新阶段文/本刊记者王郁今年1月4号,北京大学物理学院人工微结构和介观物理国家重点实验室、前沿交叉学科研究院定量生物学中心毛有东课题组在《自然》杂志上发表了题为《底物结合的人源26S蛋白酶体的冷冻电镜结构和动力学》的长论文,通过冷冻电子显微镜和机器学习技术的结合,解析了人源蛋白酶体26S在降解底物过程中的七种中间态构象的高分辨(2.8-3.6埃)精细原子结构,局部分辨率最高达到2.5埃。
这些三维结构展现了惊人的时空连续性,生动呈现了原子水平的蛋白酶体和底物相互作用的动态过程,首次实现了对三磷酸腺苜酶(AAA-ATPase)六聚马达分子内三磷酸腺苜(ATP)水解全周步进循环完整过程的原子水平观测和三维建模,发现三种不同的ATP水解协同反应模式,及其如何调控蛋白酶体复杂多样的功能。
论文解决了一系列长期悬而未决的重要科学问题:蛋白酶体如何进行泛素识别和去泛素化;三磷酸腺普酶分子马达如何打开其轴心通道并与底物结合;底物转运如何启动;三磷酸腺昔酶马达如何将化学能转化为机械能,进而实现底物解折叠的协同动力学机制。
这是《自然》杂志首次发表系统性、优于3.6埃分辨率水平实验研究超大复合蛋白质机器的动力学过程和原理的论文,标志冷冻电镜的发展开始进入全原子动力学分析的新"里程”。
《自然》杂志编辑部和审稿人对该论文的发表高度重视,从9月12日投稿、审稿到11月12日正式在线发表,用时仅两个月时间。
蛋白酶体如何实现底物降解的原子水平工作机制亟待突破该论文通讯作者、北京大学教授毛有东介绍,泛素-蛋白酶体体系是细胞内最重要的蛋白质降解通路,对维持生物体内蛋白质的浓度平衡,以及对调控蛋白、错误折叠或受到损伤的蛋白的快速降解起着至关重要的作用,参与了细胞周期、基因表达调控等多种细胞进程,由UPS失常引发的蛋白质新陈代谢异常与众多人类重大疾病直接相关。
2004年,Aaron Ciechanover、Irwin Rose 和Avram Hershko三位科学家被授予了诺贝尔化学奖,以表彰他们对该降解通路的发现。
Journal of Molecular Modeling
ORIGINAL PAPERTheoretical study on monometallic cyanide cluster fullerenes MCN@C 74(M=Y,Tb)Xu Gao 1&Li-Juan Zhao 1&Dong-Lai Wang 1Received:10August 2015/Accepted:19October 2015#Springer-Verlag Berlin Heidelberg 2015Abstract New monometallic cyanide cluster endohedral ful-lerenes MCN@C 74(M=Y ,Tb)have been investigated using density functional theory.Four isomers of MCN@C 74are con-sidered based on four lowest energy C 742−isomers,namely one cage with isolated pentagons and three isomers with a pentagon-pentagon junction.The results show that the variation of the cluster size has slight influence on the structures and relative stabilities of MCN@C 74.The MCN@D 3h (14246)-C 74derived from the only C 74cage with the isolated pentagons are predicted to possess the lowest energy.More importantly,in MCN@D 3h (14246)-C 74,the encapsulated YCN or TbCN clus-ter is triangular,similar to the results reported on YCN@C s (6)-C 82and TbCN@C 2(5)-C 82.Furthermore,IR spectra and 13C NMR spectra have also been explored to assist future experi-mental characterization.Keywords Endohedral fullerene .IR and 13C NMR spectra .MCN@C 74.StabilityIntroductionEndohedral metallofullerenes (EMFs)have attracted much at-tention as a new class of fullerene-based materials because of their unique structures and fascinating properties.They are promising for various applications in biomedicine,electron-ics,photovoltaics,and materials science [1–9].To date,a largenumber of EMFs have been synthesized and isolated by using various experimental techniques.According to the number of encaged metals,EMFs can be classified into mono-EMFs,di-EMFs,and cluster EMFs [4].The cluster EMFs have gained particular attention,because they can be obtained in high pro-duction yield and high stability.Since the first isolation of nitride clusterfullerene Sc 3N@C 80[10],enormous progress in synthesis and isolation of some stable cluster EMFs has been made.In addition to metal nitride,EMFs are also found with other metal clusters,such as metal carbide [11],metal sulfide [12],metal oxide [13],metal hydrocarbon [14],and metal carbonitride [15].The cluster EMFs always contain multiple (two to four)metal atoms and non-metallic atoms inside the fullerene cages.Very little is known about monometallic cluster endohedral fullerenes until the synthesis of a new kind of YCN@C s (6)-C 82[16]in ing a modified Krätschmer-Huffman DC-arc discharge method with the addition of N 2while TiO 2is added in the raw mixture,Yang et al.[16]have successfully synthesized the first monometallic cyanide clusterfullerene,YCN@C s (6)-C 82.The structure of YCN@C s (6)-C 82has been determined unambiguously by single-crystal X-ray diffraction crystallography and 13C NMR.The second monometallic cy-anide clusterfullerene family member,TbCN@C 2(5)-C 82[17]has also been synthesized by Yang ’s group recently.These experimental findings stimulated the theoretical researchers ’passion for this new endohedral fullerene family.In light of quantum calculations,the MCN (M=Y ,Tb)clusters were re-cently suggested to be stable in C 2v (9)-C 82cage [18].Our recent theoretical investigation revealed that two MCN@-C 76(M=Sc,Y)isomers utilize two non-IPR C 2v (19138)-C 76a n d C 1(17459)-C 76c a g e s [19].T h e s t ru c t u r e s YCN@D 3h (24109)-C 78and YCN@C 2v (24107)-C 78are the most probable isomers for the C 78monometallic cyanide clus-ter endohedrals [20].*Dong-Lai Wangdonglaiwang@1Department of Chemistry,Anshan Normal University,Anshan 114007,ChinaJ Mol Model (2015) 21:295 DOI 10.1007/s00894-015-2844-5C 74is called B missing fullerene ^because it has been observed in soot produced by arc discharge,but it has not yet been isolated in macroscopic amounts.Similar to C 60and C 70fullerenes,C 74possesses only one structural iso-mer [21],i.e.,D 3h (14246)-C 74,that obeys the isolated pentagon rule (IPR).Previous theoretical studies [22,23]on D 3h (14246)-C 74have predicted an unusually small highest occupied molecular orbital (HOMO)-lowest unoc-cupied molecular orbital (LUMO)energy gap,suggesting a high chemical reactivity.However,the C 74cage is sta-bilized significantly by encapsulating a divalent metal at-om,with two electrons transferred from the metal to the C 74.Experimentally,the C 74-related endohedral fullerenes M@C 74,where M=Ca [24],Sr [25],Ba [26],Sm [27],Eu [28],and Yb [29,30],have been isolated.The M@C 74(M=Ca,Sr,Ba,Sm,Eu)and one Yb@C 74EMFs are determined to utilize the IPR-satisfying D 3h (14246)-C 74isomer [24–37].Computational studies suggest that the minor isomer of Yb@C 74possesses the non-IPR C 1(13393)-C 74or C 1(14049)-C 74structure [33].The elec-tronic state of carbon cage in M@C 74(M=Ca,Sr,Ba,Sm,Eu,Yb)is the same as that of YCN@C s (6)-C 82[16]and TbCN@C 2(5)-C 82[17].Thus,it is very interesting to know if such a monometallic cyanide cluster can also be encapsulated into C 74to form endohedral fullerenes and what properties they possess.This information is essential for the further development of EMFs.In this paper,den-sity functional theory (DFT)computations were performed to explore the geometrical structures of MCN@C 74(M=Y ,Tb).Moreover,the electronic structures and properties for the lowest-energy isomers have been determined and reported.Computational detailsFollowing the previous researcher [31],four lowest energy C 742−isomers are considered,namely the unique D 3h (14246)-C 74IPR cage and three non-IPR cages with a pentagon-pentagon junction.V arious possible isomers were explored byplacing the MCN (M=Y ,Tb)clusters with different orientations within the C 74cage.Full geometry optimizations for the C 74isomers and their dianions were carried out using the B3LYP density functional [38,39]with the 6-31G*basis set.Optimizations on the YCN@C 74structures were per-formed at the B3LYP/6-31G*-lanl2dz level (6-31G*basis set for C and N atoms and Lanl2dz [40]basis set with the corresponding pseudopotential for Y atom).Geometries of TbCN@C 74isomers were optimized at the B3LYP/6-31G*-MWB54level (6-31G*basis set for C and N atoms and effective core potential basis set MWB54[41]for Tb at-om).On the basis of the optimized geometries,frequency calculations were done at the same level of theory.Vibra-tional analysis confirms that all the reported structures in this work correspond to an energy minimum on the poten-tial energy surface.NMR spectra were computed using gauge-independent atomic orbital (GIAO)method and the optimized geometries at the same theory level for the lowest-energy isomers.The computed 13C chemical shifts of MCN@C 74,relative to those of C 60,were converted to the tetramethylsilane (TMS)scale using the experimental value for C 60(142.5ppm)[42].For comparison,another hybrid density functional PBE1PBE [43]was also employed for the reoptimizations of four lowest energy MCN@C 74isomers with the same basis set.All the calcu-lations were carried out using the Gaussian 09program [44].Results and discussionRelative energies and stabilitiesC 74has only one IPR-satisfying isomer ofD 3h symme-try,while it also has 14,245isomers violating the IPR rule (but still have a surface comprised of 26hexagons and 12pentagons).Nagase et al.[31]searched through all 615,576cage structures (composed of pentagons,hexagons,and one heptagon)and predicted several low-est energy dianions (C 742−).The carbon cageisomerismD 3h (14246)-C 74C 1(14049)-C 74C 1(13393)-C 74C 2(14227)-C 74Fig.1Isomers of C 74.The pentagon-pentagon fusions are highlighted in red295 Page 2of 8J Mol Model (2015) 21:295of EMFs shows a good correlation with the relative stabilities of the corresponding negatively charged cages [45].For YCN@C s(6)-C82and TbCN@C2(5)-C82,two electrons are transferred from the inner cluster to the C82cage[16,17].Therefore,four lowest energy C742−isomers[31]are selected as the candidate cages to de-termine the cage structures of MCN@C74(M=Y,Tb). Figure1depicts geometries and symmetries of the four chosen C74isomers predicted at the B3LYP/6-31G*lev-el of theory.The calculated energy values and the rela-tive energies are given in Table1.The results from the B3LYP/6-31G*calculations show that D3h(14246)-C742−is the most stable among dianion isomers.Three non-IPR isomers,C1(14049)-C74,C1(13393)-C74,and C2(14227)-C74,are far less stable than the IPR D3h(14246)-C74in the dianionic state(23.56,27.90, and43.27kcal mol−1higher in energy,respectively). Our computations for the stability order of the C742−isomers is in agreement with the previous work[31]. The relative energies and HOMO-LUMO gaps of MCN@C74(M=Y,Tb)are presented in Table2.In the c a s e o f Y C N@C74E M F s,t h e I P R s t r u c t u r e YCN@D3h(14246)-C74is predicted as the most stable s tr uct ur e at b o th B3LY P/6-31G*-la n l2dz and PBE1PBE/6-31G*-lanl2dz levels.A non-IPR structure YCN@C1(14049)-C74is the second most stable one with the relative energy of7.27(B3LYP)and 6.58 (PBE1PBE)kcal mol−1.The other two YCN@C74iso-mers locate more than14kcal mol−1energy higher than the lowest one in both methods.For the TbCN@C74 EMFs,the encapsulation of the TbCN cluster does not change the order of isomer stability found for YCN@C74,indicating the increase of the cluster size might have slight influence on the relative stabilities of the two types of MCN@C74series.The B3LYP sep-aration energies agree quite well with the PBE1PBE computations.Moreover,the relative energy changes from B3LYP to PBE1PBE are less than 1.5kcal mol−1.Therefore,the energies are converged enough to give a qualitatively accurate picture of the stability of these four isomers.Electronic and geometric structuresThe HOMO-LUMO energy gap has been used as an index of kinetic stability for fullerenes and metallofullerenes[45,46].The HOMO-LUMO gap for neutral IPR D3h(14246)-C74is0.70eV.Smaller energy gap for D3h(14246)-C74isomer may result in its lower kinetic stability.This may explain its absence in the normal fullerene solvent extraction from primary soot.The B3LYP calculated HOMO-LUMO gaps are 1.19and 1.18eV for YCN@D3h(14246)-C74and TbCN@D3h(14246)-C74,respectively.The encapsulation of the MCN clusters increases the HOMO-LUMO gap, which suggests MCN@D3h(14246)-C74become much less reactive than the empty D3h(14246)-C74.The exper-imentally available divalent mono-EMFs M@C74 (M=Ca,Sr,Ba,Sm,Eu,Yb)all possess the IPR D3h(14246)-C74cage.Therefore,it is reasonable to speculate that MCN@D3h(14246)-C74should be the iso-mer obtained in the experiment.In addition,The HOMO-LUMO gaps of isomers MCN@C1(14049)-C74 are large and show their kinetic stability.Table2DFT-predicted relative energies(E rel,kcal mol−1)and HOMO-LUMO gaps(Gap,eV)of MCN@C74(M=Y,Tb)Isomers Symm a YCN@-C74TbCN@-C74B3LYP/6-31G*-lanl2dz PBE1PBE/6-31G*-lanl2dz B3LYP/6-31G*-mwb54PBE1PBE/6-31G*-mwb54E rel Gap E rel Gap E rel Gap E rel Gap14246(PA=0)C s0.00 1.190.00 1.390.00 1.180.00 1.39 14049(PA=1)C17.27 1.61 6.58 1.838.63 1.627.89 1.84 13393(PA=1)C115.79 1.4914.34 1.7117.35 1.4915.98 1.71 14227(PA=1)C124.83 1.2524.51 1.4524.85 1.2424.66 1.43a Symmetry of the MCN@C74EMFsTable1The B3LYP/6-31G*relative energies(E rel,kcal mol−1)andHOMO-LUMO gap energies(Gap,eV)of C74and C742−Isomers a Symmetry b C74C742−E rel Gap E rel Gap14246(PA=0)D3h0.000.700.00 1.6014049(PA=1)C119.58 1.0523.56 1.4513393(PA=1)C126.47 1.1527.90 1.4614227(PA=1)C215.70 2.1143.270.91a The numbering of the isomers follows the nomenclature of Fowler andManolopoulos[21].PA is the number of pentagon adjacenciesb Symmetry of the original empty cageJ Mol Model (2015) 21:295 Page3of8 295F i g u r e 2s h o w s t h e o p t i m i z e d s t r u c t u r e s o f YCN@D 3h (14246)-C 74and TbCN@D 3h (14246)-C 74.The lowest-energy structures YCN@D 3h (14246)-C 74and TbCN@D 3h (14246)-C 74exhibit similar geometries:the Y or Tb atom sits upon a [6,6]-bond of a pyracyclene unit,as found for divalent metal atoms (Ca,Sr,Ba,Sm,Eu,Yb)in D 3h (14246)-C 74cage;the inner N and C atoms nearly locate in the center of the cage.The endohedral YCN or TbCN cluster is triangular,similar to the result reported on YCN@C s (6)-C 82[16]and TbCN@C 2(5)-C 82[17].Some structural data are pre-sented in Table 3.From Table 3,it can be seen that the optimized bond lengths with B3LYP calculations are in reasonable agreement with those with PBE1PBE calculations.The C-N distance in the MCN moiety is almost constant (about 1.182Å)by the B3LYP and PBE1PBE calculations,which is in excellent agreement with the results from recent density functional studiesfor YCN@C s (6)-C 82[18,19],YCN@D 3h (24109)-C 78and YCN@C 2v (24107)-C 78[20](about 1.183Åat the same level of theory),but this value is slightly longer than the C-N distance (about 0.94Å)observed in YCN@C s (6)-C 82[16]and TbCN@C 2(5)-C 82[17].The calculated distances between M and the CN unit nitro-gen are 2.327and 2.397Åfor YCN@D 3h (14246)-C 74and TbCN@D 3h (14246)-C 74with B3LYP calculations,and 2.336and 2.407Åwith PBE1PBE calculations re-spectively.These bond lengths are comparable to the corresponding bond distances in YCN@C s (6)-C 82[16]and TbCN@C 2(5)-C 82[17].The HOMO and LUMO orbitals of MCN@D 3h (14246)-C 74and D 3h (14246)-C 742−are depicted in Fig.3.It is revealed that in MCN@D 3h (14246)-C 74structures the HOMO is pre-dominately delocalized on the carbon cage and the LUMO is mainly localized on the pyracylene unit close to the M.The HOMO and LUMO orbitals of YCN@D 3h (14246)-C 74and TbCN@D 3h (14246)-C 74resemble that of the empty D 3h (14246)-C 742−dianion.So the valence state of [M 3+(CN)−]2+@[C 74]2−(M=Y,Tb)can be assigned to MCN@C 74,as in the case of YCN@C s (6)-C 82[16]and TbCN@C 2(5)-C 82[17]EMFs.To get more information about the physical properties of new MCN@D 3h (14246)-C 74EMFs,the vertical ionization potential (VIP)(the energy difference between the cation and its neutral species at the same neutral geometry)and vertical electron affinity (VEA)(the energy difference be-tween the neutral species and its anion at the same neutral geometry)of MCN@D 3h (14246)-C 74and D 3h (14246)-C 74have also been computed (Table 3).Fullerenes,in general,exhibit relatively large EAs.The experimentally measured VEAs of C 60and D 3h (14246)-C 74are 2.67[47]and 3.28eV [48],respectively.The very large VEA value of D 3h (14246)-C 74compared with C 60is consistent with a re-markably high stability of C 74anion observed in the gas-phase experiments [48].The calculated VIP and VEA values of D 3h (14246)-C 74are 5.91and 2.97eV at the B3LYP/6-31G*level,and 6.09and 3.19eV at the PBE1PBE/6-31G*level,respectively.The predicted VEA for D 3h (14246)-C 74with the PBE1PBE method is close to the experimental val-ue.Insertion of the MCN clusters increases the cage IPs.Table 3Optimized structural parameters,VIP and VEA for MCN@D 3h (14246)-C 74and D 3h (14246)-C 74obtained using B3LYP method aStructureC-N bond M-C bond M-N bond M-C-N angle VIP VEA (Å)(Å)(Å)(deg.)(eV)(eV)YCN@D 3h (14246)-C 74 1.182(1.183) 2.585(2.565) 2.327(2.336)64.1(65.5) 6.08(6.28) 2.67(2.86)TbCN@D 3h (14246)-C 74 1.182(1.182)2.589(2.576)2.397(2.407)67.3(68.4)6.09(6.29) 2.68(2.87)D 3h (14246)-C 745.91(6.09)2.97(3.19)aData in parentheses obtained using PBE1PBE method(a)(b)Fig.2Two views of optimized structures of YCN@D 3h (14246)-C 74(a )and TbCN@D 3h (14246)-C 74(b ).Orange and blue balls denote C and N atoms of the inner CN unit,while red and purple balls represent Yand Tb atoms,respectively295 Page 4of 8J Mol Model (2015) 21:295The calculated VIPs of MCN@D 3h (14246)-C 74are about 0.17(B3LYP)and 0.19(PBE1PBE)eV higher than that of pristine C 74,indicating MCN@D 3h (14246)-C 74are more difficult to lose electrons.On the other hand,the VEAs of YCN@D 3h (14246)-C 74and TbCN@D 3h (14246)-C 74are 2.67and 2.68eV at the B3LYP level,and 2.86and 2.87eV at the PBE1PBE level,respectively,smaller than that of C 74.However,compared with C 60,MCN@D 3h (14246)-C 74pos-sess large VEA values,suggesting that they are good electron acceptors.IR and 13C NMR spectraThe infrared (IR)spectra of YCN@D 3h (14246)-C 74,TbCN@D 3h (14246)-C 74,and D 3h (14246)-C 742−were com-puted at the B3LYP level.As shown in Fig.4,the spectra of YCN@D 3h (14246)-C 74and TbCN@D 3h (14246)-C 74exhibit a high resemblance to the spectra of D 3h (14246)-C 742−.Two regions (200–1000cm −1and 1000–1700cm −1)in the IR spectra of MCN@D 3h (14246)-C 74are mainly attributed to the vibrations of the D 3h (14246)-C 742−cage.The strongest absorption peaks (1132and 1133cm −1for YCN@D 3h (14246)-C 74and TbCN@D 3h (14246)-C 74)correspond to the tangential vibrations of the carbon cage.Several other relatively strong peaks (1048,1353,1416,1593cm −1for YCN@D 3h (14246)-C 74,1047,1352,1414,1592cm −1for TbCN@D 3h (14246)-C 74)are also caused by the stretching vibrations of the tangential carbon cage vibra-tional mode.In contrast,the C-N stretching frequencies (νCN )of the internal CN unit (2117and 2121cm −1for YCN@D 3h (14246)-C 74and TbCN@D 3h (14246)-C 74,respec-tively)have very weak absorption intensities;similar results can also be found in YCN@C s (6)-C 82and YCN@C 78(νCN at 2115,2122,and 2121cm −1for YCN@C s (6)-C 82,YCN@D 3h (24109)-C 78,and YCN@C 2v (24107)-C 78,respec-tively,at the same level of theory)[20].(a)HOMOLUMO(b)HOMOLUMO(c)HOMOLUMOFig.3HOMO and LUMO of YCN@D 3h (14246)-C 74(a ),TbCN@D 3h (14246)-C 74(b ),and D 3h (14246)-C 742−(c )obtained using B3LYP method5001000150020002500*YCN@D 3h (14246)-C74Frequency/cm-1*TbCN@D 3h (14246)-C 74D 3h (14246)-C742-Fig.4Comparison of the IR spectrum of charged empty cage C 742−and the corresponding MCN@C 74(M=Y ,Tb).The asterisks mark νCN stretching frequenciesJ Mol Model (2015) 21:295 Page 5of 8 295The 13C NMR spectra of YCN@D 3h (14246)-C 74and TbCN@D 3h (14246)-C 74EMFs are also computed (Fig.5).The overall molecular symmetry of MCN@D 3h (14246)-C 74has changed from D 3h to C s .Thus,MCN@D 3h (14246)-C 74display 41signals,including 34full intensity signals and seven half intensity ones.The chemical shifts of the cage carbons of YCN@D 3h (14246)-C 74are computed from 124to 165ppm at the B3LYP/6-31G*-lanl2dz level.For TbCN@D 3h (14246)-C 74,the chemical shifts of the cage carbons are from 126to 163ppm at the B3LYP/6-31G*-MWB54level,very close to the YCN@D 3h (14246)-C 74range.The cluster size influence is minor.The signals of the internal CN carbon atom are 189and 187ppm for YCN@D 3h (14246)-C 74and TbCN@D 3h (14246)-C 74respectively.These values are similar to those of YCN@C 78previously reported (194and 196ppm for YCN@D 3h (24109)-C 78and YCN@C 2v (24107)-C 78respec-tively,at the same level of theory)[20].ConclusionsIn summary,the geometrical structures and electronic properties of four endohedral MCN@C 74(M=Y,Tb)metallofullerenes have been computationally investigated.The B3LYP and PBE1PBE calculations agree in predicting the IPR-satisfying MCN@D 3h (14246)-C 74structures as the lowest energy isomer.Both YCN and TbCN clusters adopt the triangular structure within the D 3h (14246)-C 74cage as characterized in YCN@C s (6)-C 82and TbCN@C 2(5)-C 82.The calculated C-N and M-N bond lengths of the internal MCN moiety in MCN@D 3h (14246)-C 74are similar to those found in YCN@C s (6)-C 82and TbCN@C 2(5)-C 82.Molecular orbital analysis reveals that formal charge trans-fer of 2e takes place from MCN unit to the C 74cage.Therefore,structural determination of M@D 3h (14246)-C 74(M=Ca,Sr,Ba,Sm,Eu,Yb)allows the assignment of the same host cage for YCN@D 3h (14246)-C 74and20019018017016015014013012012YCN@D 3h (14246)-C 74D e g e n e r a c yChemical Shifts (ppm)20019018017016015014013012012TbCN@D 3h (14246)-C 74D e g e n e r a c yChemical Shifts (ppm)Fig.5The computed 13C NMR spectra.Intensities are given in atoms per cage.The blue lines denote chemical shifts of the CN carbon atoms295 Page 6of 8J Mol Model (2015) 21:295TbCN@D3h(14246)-C74.In addition,IR spectra and13C NMR spectra have been simulated theoretically to assist the future experimental exploration.Acknowledgments This work was supported by Natural Science Foun-dation of Liaoning Province,China(No.2013020096)and Department of Education of Liaoning Province,China(Grant No.L2015002). References1.Dunsch L,Yang SF(2007)Metal nitride cluster fullerenes:theircurrent state and future prospects.Small3:1298–13202.Chaur MN,Melin F,Ortiz AL,Echegoyen L(2009)Chemical,electrochemical,and structural properties of endohedral metallofullerenes.Angew Chem Int Ed48:7514–75383.Yamada M,Akasaka T,Nagase S(2010)Endohedral metal atomsin pristine and functionalized fullerene cages.Acc Chem Res43: 92–1024.Lu X,Akasaka T,Nagase S(2011)Chemistry of endohedralmetallofullerenes:the role of metals.Chem Commun47:5942–59575.Rodríguez-Fortea A,Balch AL,Poblet JM(2011)Endohedralmetallofullerenes:a unique host–guest association.Chem Soc Rev40:3551–35636.Lu X,Feng L,Akasaka T,Nagase S(2012)Current status andfuture developments of endohedral metallofullerenes.Chem Soc Rev41:7723–77607.Popov AA,Yang SF,Dunsch L(2013)Endohedral fullerenes.Chem Rev113:5989–61138.Cong H,Yu B,Akasaka T,Lu X(2013)Endohedralmetallofullerenes:an unconventional core-shell coordination union.Coord Chem Rev257:2880–28989.Jin P,Tang C,Chen Z(2014)Carbon atoms trapped in cages:metalcarbide clusterfullerenes.Coord Chem Rev270–271:89–111 10.Stevenson S,Rice G,Glass T,Harich K,Croner F,Jordan MR,Craft J,Hadju E,Bible R,Olmstead MM,Maitra K,Fisher AJ, Balch AL,Dorn HC(1999)Small-bandgap endohedral metallofullerenes in high yield and purity.Nature401:55–57 11.Shi ZQ,Wu X,Wang CR,Lu X,Shinohara H(2006)Isolation andcharacterization of Sc2C2@C68:a metal-carbide endofullerene witha non-IPRcarbon cage.Angew Chem Int Ed45:2107–211112.Dunsch L,Yang SF,Zhang L,Svitova A,Oswald S,Popov AA(2010)Metal sulfide in a C82fullerene cage:a new form of endohedral clusterfullerenes.J Am Chem Soc132:5413–5421 13.Stevenson S,Mackey MA,Stuart MA,Phillips JP,Easterling ML,Chancellor CJ,Olmstead MM,Balch AL(2008)A distorted tetra-hedral metal oxide cluster inside an icosahedral carbon cage.Synthesis,isolation,and structural characterization of Sc4(μ3-O)2@I h-C80.J Am Chem Soc130:11844–1184514.Krause M,Ziegs F,Popov AA,Dunsch L(2007)Entrapped bondedhydrogen in a fullerene:the five-atom cluster Sc3CH in C80.ChemPhysChem8:537–54015.Wang TS,Feng L,Wu JY,Xu W,Xiang JF,Tan K,Ma YH,ZhengJP,Jiang L,Lu X,Shu CY,Wang CR(2010)Planar quinary cluster inside a fullerene cage:synthesis and structural characterizations of Sc3NC@C80-I h.J Am Chem Soc132:16362–1636416.Yang S,Chen C,Liu F,Xie Y,Li F,Jiao M,Suzuki M,Wei T,WangS,Chen Z,Lu X,Akasaka T(2013)An improbable monometallic cluster entrapped in a popular fullerene cage:YCN@C s(6)-C82.Sci Rep3:148717.Liu F,Wang S,Guan J,Wei T,Zeng M,Yang S(2014)Putting aterbium-monometallic cyanide cluster into the C82fullerene cage: TbCN@C2(5)-C82.Inorg Chem53:5201–520518.Zheng H,Zhao X,He L,Wang WW,Nagase S(2014)Quantumchemical determination of novel C82monometallofullerenes in-volving a heterogeneous group.Inorg Chem53:12911–12917 19.Meng QY,Wang DL,Xin G,Li TC,Hou DY(2014)Linear mono-metallic cyanide cluster fullerenes ScCN@C76and YCN@C76:a theoretical put Theor Chem1050:83–8820.Zhao LJ,Wang DL(2015)Monometallic cyanide cluster fullereneYCN@C78:a theoretical prediction.Int J Quantum Chem115:779–78421.Fowler PW,Manolopoulos DE(1995)An atlas of fullerenes.Oxford University Press,Oxford22.Zhang BL,Wang CZ,Ho KM,Xu CH,Chan CT(1993)The ge-ometry of large fullerene cages:C72to C102.J Chem Phys98:3095–310223.Diener MD,Alford JM(1998)Isolation and properties of small-bandgap fullerenes.Nature393:668–67124.Wan TSM,Zhang HW,Nakane T,Xu Z,Inakuma M,Shinohara H,Kobayashi K,Nagase S(1998)Production,isolation,and electronic properties of missing fullerenes:Ca@C72and Ca@C74.J Am Chem Soc120:6806–680725.Haufe O,Hecht M,Grupp A,Mehring M,Jansen M(2005)Isolation and spectroscopic characterization of new endohedral ful-lerenes in the size gap of C74to C76.Z Anorg Allg Chem631:126–13026.Reich A,Panthofer M,Modrow H,Wedig U,Jansen M(2004)Thestructure of Ba@C74.J Am Chem Soc126:14428–1443427.Okazaki T,Suenaga K,Lian YF,Gu ZN,Shinohara H(2000)DirectEELS observation of the oxidation states of Sm atoms in Sm@C2n metallofullerenes(74≤2n≤84).J Chem Phys113:9593–9597 28.Kuran P,Krause M,Bartl A,Dunsch L(1998)Preparation,isolationand characterisation of Eu@C74:the first isolated europium endohedral fullerene.Chem Phys Lett292:580–58629.Xu JX,Lu X,Zhou XH,He XR,Shi ZJ,Gu ZN(2004)Synthesis,isolation,and spectroscopic characterization of ytterbium-containing metallofullerenes.Chem Mater16:2959–296430.Xu JX,Tsuchiya T,Hao C,Shi ZJ,Wakahara T,Mi WH,Gu ZN,Akasaka T(2006)Structure determination of a missing-caged metallofullerene:Yb@C74(II)and the dynamic motion of the encaged ytterbium ion.Chem Phys Lett419:44–4731.Nagase S,Kobayashi K,Akasaka T(1999)Unconventional cagestructures of endohedral metallofullerenes.J Mol Struct (THEOCHEM)461–462:97–10432.Okazaki T,Suenaga K,Lian Y,Gu Z,Shinohara H(2001)Intrafullerene electron transfers in Sm-containing metallofullerenes:Sm@C2n(74≤2n≤84).J Mol Graph Model19: 244–25133.Slanina Z,Uhlik F,Nagase S(2006)Computed structures of twoknown Yb@C74isomers.J Phys Chem A110:12860–12863 34.Slanina Z,Nagase S(2006)Stability computations for Ba@C74isomers.Chem Phys Lett422:133–13635.Rappoport D,Furche F(2009)Structure of endohedral fullereneEu@C74.Phys Chem Chem Phys11:6353–665836.Xu W,Hao Y,Uhlik F,Shi Z,Slanina Z,Feng L(2013)Structuraland electrochemical studies of Sm@D3h-C74reveal a weak metal-cage interaction and a small band gap species.Nanoscale5:10409–1041337.Uhlik F,Slanina Z,Lee SL,Adamowicz L,Nagase S(2013)Stability Calculations for Eu@C74Isomers.Int J Quantum Chem 113:729–73338.Becke AD(1993)Density-functional thermochemistry.III.The roleof exact exchange.J Chem Phys98:5648–5652J Mol Model (2015) 21:295 Page7of8 29539.Lee C,Yang W,Parr RG(1988)Development of the Colle-Salvetticorrelation-energy formula into a functional of the electron density.Phys Rev B37:785–78940.Hay PJ,Wadt WR(1985)Ab initio effective core potentials formolecular calculations.Potentials for K to Au including the outer-most core orbitals.J Chem Phys82:299–31041.Dolg M,Stoll H,Savin A,Preuss H(1989)Energy-adjustedpseudopotentials for the rare earth elements.Theor Chim Acta75: 173–19442.Lu X,Chen ZF,Thiel W,Schleyer PVR,Huang RB,Zheng LS(2004)Properties of fullerene[50]and D5h decachlorofullerene[50]:a computational study.J Am Chem Soc126:14871–1487843.Perdew JP,Burke K,Ernzerhof M(1996)Generalized gradientapproximation made simple.Phys Rev Lett77:3865–386844.Frisch MJ,Trucks GW,Schlegel HB et al.(2009)Gaussian09,Revision A01.Gaussian Inc.,Wallingford45.Popov AA,Dunsch L(2007)Structure,stability,and cluster-cageinteractions in nitride clusterfullerenes M3N@C2n(M=Sc,Y;2n=68-98):a density functional theory study.J Am Chem Soc 129:11835–1184946.Liu X,Schmalz TG,Klein DJ(1992)Favorable structures forhigher fullerenes.Chem Phys Lett188:550–55447.Wang XB,Ding CF,Wang LS(1999)High resolution photoelec-tron spectroscopy of C60−.J Chem Phys110:8217–822048.Boltalina OV,Dashkova EV,Sidorov LN(1996)Gibbs energies ofgas-phase electron transfer reactions involving the larger fullerene anions.Chem Phys Lett256:253–260295 Page8of8J Mol Model (2015) 21:295。
双层MoS2
斯异质结。 基于密度泛函理论的第一性原理计算结果表明,ML MoS2 / VS2 和 BL MoS2 / VS2 异质结均表现出 p
型肖特基势垒,但在由 BL MoS2 构成的异质结中,肖特基势垒高度显著降低,仅为 0. 08 eV,十分接近于欧姆
接触的形成。 此外,通过对两种异质结光吸收光谱的计算,发现 BL MoS2 / VS2 异质结的介电函数的实部和虚
膜材料 [9-11] 。 目前为止,基于二维 MoS2 纳米片的场效应晶体管和数字电路已被成功制造。 值得关注的是,
在纳米电子器件中引入二维 MoS2 纳米片不可避免地涉及到与金属的接触,而相应的接触性质将会显著影响
器件的性能 [12-14] 。 因此,如何在金属半导体界面有效地降低接触电阻,对设计高性能纳米电子器件具有重
Key words: density functional theory; MoS2 ; electronic structure; van der Waals heterojunction; Schottky barrier;
light absorption
0 引 言
近年来,以石墨烯为代表的二维纳米材料因其独特的机械和电子性能而得到了广泛的研究与应用 [1-5] 。
用于描述交换关联作用 [18] ,投影缀加平面波方法被用来考虑离子与电子间相互作用。 平面波展开的截断能
被设置为 500 eV,采用 11 × 11 × 1 的 K 点网格在布里渊区进行取样,能量和力的收敛标准分别为 10 - 5 eV、
0. 01 eV / Å。 为避免相邻晶格之间的相互作用,真空层被设定为 15 Å 以确保消除层间的相互影响。 在非对
that the heterojunction composed of bilayer MoS2 has higher absorption peaks. The research results provide a theoretical basis
何曼君高分子物理名词解释完整版
几何异构(顺反异构):由于主链双键的碳原子上的取代基不能绕双键旋转,当组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺式、反式两种构型,它们称作几何异构。
键接异构(顺序异构):是指结构单元在高分子链中的连接方式。一般头-尾相连占主导优势,而头-头(或尾-尾)相连所占比例较低。
(2)侧基:侧基的极性越大,极性基团数目越多,相互作用越强,单键内旋转越困难,分子链柔顺性越差。非极性侧基的体积越大,内旋转位阻越大,柔顺性越差。对称性侧基,可使分子链间的距离增大,相互作用减弱,柔顺性大。侧基对称性越高,分子链柔顺性越好。
(3)支化:1、短支链使分子链间距离加大,分子间作用力减弱,从而对链柔性具有一定改善作用。2、长支链则起到阻碍单键内旋转作用,导致链柔性下降。
4.柔顺性的比较(分子结构对柔顺性的影响)
答:由于分子内旋转是导致分子链柔顺性的根本原因,而高分子链的内旋转又受其分子结构的制约,因而分子链的柔顺性与其分子结构密切相关。分子结构对柔顺性的影响有:
(1)主链结构:1、主链完全由C-C键组成的碳链高分子都具有较大的柔性。如PE、PP和乙丙橡胶等。2、当主链中含C-O,C-N,Si-O键时,柔顺性好。(这是因为O、N原子周围的原子比C原子少,内旋转的位阻小;而Si-O-Si的键角也大于C-C-C键,因而其内旋转位阻更小,即使在低温下也具有良好的柔顺性。如::-Si-O->-C-O->-C-C-。)3、当主链中含非共轭双键时,虽然双键本身不会内旋转,但却使相邻单键的非键合原子(带*原子)间距增大使内旋转较容易,柔顺性好。4、当主链中由共轭双键组成时,由于共轭双键因p电子云重叠不能内旋转,因而柔顺性差,是刚性链。如聚乙炔、聚苯。5、在主链中引入不能内旋转的芳环、芳杂环等环状结构,可提高分子链的刚性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SOFTWARE REPORTOpen3DQSAR:a new open-source software aimed at high-throughput chemometric analysis of molecular interaction fieldsPaolo Tosco &Thomas BalleReceived:25December 2009/Accepted:1February 2010/Published online:11April 2010#Springer-Verlag 2010Abstract Open3DQSAR is a freely available open-source program aimed at chemometric analysis of molecular interaction fields.MIFs can be imported from different sources (GRID,CoMFA/CoMSIA,quantum-mechanical electrostatic potential or electron density grids)or generated by Open3DQSAR itself.Much focus has been put on automation through the implementation of a scriptable interface,as well as on high computational performance achieved by algorithm parallelization.Flexibility and interoperability with existing molecular modeling software make Open3DQSAR a powerful tool in pharmacophore assessment and ligand-based drug design.Keywords Chemometrics .Molecular interaction fields .PLS .3D-QSAR .Variable selectionIntroductionFrom a methodological point of view computer-aided drug design is usually split into two branches,namely structure-based and ligand-based techniques.The latter are the only option when direct knowledge about the structure of the target cannot be attained,but a pool of compounds displaying different degrees of binding affinity,functional potency or enzyme inhibitory activity at the aforementioned target is available.This information can be conveyed into quantitative models which can guide further development of ligands with improved pharmacological profile and also provide indirect insight into the complementary structural features of the target.Three-dimensional quantitative structure-activity rela-tionships (3D-QSAR)were introduced more than 25years ago with the aim of finding statistical correlation between three-dimensional descriptors,whose arrangement in space gives rise to molecular interaction fields (MIFs),and biological activity.3D-QSAR constitutes a trait d ’union between classic QSAR and pharmacophore modeling,since,at least in its most popular implementations such as GRID/GOLPE [1,2]and CoMFA/CoMSIA [3],it requires a consistent 3D alignment of all molecules,which basically corresponds to a pharmacophoric hypothesis.While a number of open-source tools aimed at structure-based design have been developed throughout the years by the academic community (AMBER,CHARMM,GROMACS,AutoDock,DOCK to cite but a few),commercial closed-source pack-ages have largely dominated the scene of 3D-QSAR modeling so far [2,4,5].Herein we describe Open3DQSAR,a free,open-source tool aimed at pharmacophore exploration by high-throughput chemometric analysis of MIFs [6].Recently we proposed a GRID/GOLPE [1,2]“consensus 3D-QSAR ”approach complementing binding affinity and functional potency to gain insight into the differencesPart of this work was presented at the “Model(l)ing´09”meeting in Erlangen,Germany (7-11September 2009).This paper is dedicated to the memory of Warren Lyford DeLano.Electronic supplementary material The online version of this article (doi:10.1007/s00894-010-0684-x)contains supplementary material,which is available to authorized users.P.Tosco (*)Department of Drug Science,University of Torino,Via Pietro Giuria 9,10125Torino,Italye-mail:paolo.tosco@unito.itT.BalleDepartment of Medicinal Chemistry,The Faculty of Pharmaceutical Sciences,University of Copenhagen,2Universitetsparken,2100Copenhagen,DenmarkJ Mol Model (2011)17:201–208DOI 10.1007/s00894-010-0684-xbetween a good binder and a good agonist across a series of ligands with affinity to theα4β2nicotinic receptor[7].The choice of the most favorable superposition pattern was based on the identification of a model yielding good and balanced fit of the GRID MIFs to both pIC50and pEC50data.This model provided valuable hints on the putative pharmaco-phoric motifs which influence the degree of agonism,and thus also on the activation mechanism ofα4β2receptors.The need for fast,automated exploration of a large number of different superposition schemes prompted us to develop a scriptable PLS engine implementing parallelized algorithms for variable selection and model validation.Open3DQSAR was written in C to achieve maximum performance;along with pre-built binaries for mainstream operating systems (native32/64-bit Windows,Linux,Solaris,Mac OS X),fully commented source code is released under a no-fee license. Much effort has been put in developing Open3DQSAR’s code in a modular fashion:basically,an input-parsing main function calls a number of computational subroutines.This arrangement is intended to facilitate the implementation of new features onto the original core,so that users are enabled to customize Open3DQSAR to their specific needs.Moreover, while Open3DQSAR has the capacity to work as a standalone application,it has been structured as a versatile application programming interface(API)whose functions may be called by external programs.This means that Open3DQSAR’s computational core may constitute an ideal starting point to code a full-featured pharmacophore explorer relying on 3D-QSAR modeling for scoring and evaluation of the results. MethodsOpen3DQSAR’s workflow is controlled by a single input file(see Fig.1for an example);the main output is constituted by a human-readable plain ASCII text,from which relevant numeric information can be easily extracted with shell tools such as grep,sed,awk.In addition to text output,a number of additional files are generated to store data and to export the results of computations for further analysis and visualization with third party software.A sample input file (Online Resource1)and its respective text output(Online Resource2)can be found in the Electronic Supplementary Material;moreover,full documentation and examples are available at the URL .The first step to generate a3D-QSAR model out of a dataset is gathering MIF information for all compounds. MIFs can be imported from a number of different sources, namely:–GRIDKONT binary files generated by GRID[1];–CoMFA/CoMSIA fields[3](exported from SYBYL[4] with the aid of a small SPL script);–Quantum-mechanical(QM)electron density/electro-static potential fields generated with a variety of QM programs such as GAMESS[8],GAUSSIAN[9], JAGUAR[10],MOLDEN[11],TURBOMOLE[12];–Plain text files in free format generated with any custom application.There is also the opportunity to load3D coordinates of a dataset and compute basic force-field-based MIFs inside Open3DQSAR,namely a steric field based on AMBER FF99Van der Waals parameters[13]and an electrostatic field based on a point charge model.The steric field is computed according to Lennard-Jones’6-12potential between the molecule’s n atoms and an sp3carbon probe (Eq.1),E VdW¼X n i¼1A i r12iÀB i r6i ;ð1Þwhile the electrostatic field is computed summing up Coulomb interactions between a positively charged probe and the molecule’s n atoms(Eq.2).E ele¼k X n i¼1q i r m i :ð2ÞOnce all MIFs of interest have been gathered,the dataset can be split into a training set and a test set,so that external validation may be carried out at a later stage.Then,standard data pre-treatment operations are usually accomplished in order to exclude at an early stage poorly informative variables, which only add noise or may even unfavorably condition the model.The following pre-treatment operations have been implemented in Open3DQSAR:–Zeroing(sets to zero grid values which are close to zero);–Max/min cut-off(sets to user-defined maximum/mini-mum threshold values the grid points lying above or below these boundaries,respectively);–Exclusion of grid points which exceed the cutoff in a specific MIF(e.g.,allows to exclude from the chemo-metric analysis the grid points which are very close to atom nuclei and therefore assume high steric energy values);–Standard deviation cut-off(removes variables having a standard deviation among different objects lower than a user-defined threshold,in order to improve the signal-to-noise ratio);–N-level variable elimination(removes variables assum-ing only a few different values across the different objects to prevent them from biasing the model).Different transformations are available for both X and Y blocks of variables(logarithms,multiplication by acoefficient,etc .),as well as scaling paradigms,such as autoscaling,custom scaling,and Block Unweighted Scaling [14],which has proven to be probably the most appropriate way to normalize multiple sets of field variables having different magnitudes.Once pre-treatment,transformations and scaling operations have been accomplished,a PLS model can be built extracting a user-defined number of principal components with the NIPALS algorithm [15].The predictivity of the obtained model can be challenged by cross-validation (leave-one-out,leave-two-out,leave-many-out)yielding q 2/standard deviation of error of predictions (SDEP)statistics,as well as against an external test set.The robustness of the correlation can be further assessed by progressive scrambling as described by Clark and Fox [16].It has been verified that the predictivity of a 3D-QSAR model can be significantly improved by appropriate variable clustering and selection procedures [17].Some of them have been implemented in Open3DQSAR,namely:–D-optimal design variable selection [17,18];–Smart region definition (SRD),as previously described by Pastor and co-workers [19].SRD groups variables on the basis of their original localization in three-dimensional space.This procedure reduces redundancy arising from the existence of multiple nearby descriptors which basically encode the same kind of information;–Fractional factorial design (FFD)variable selection,as originally described by Baroni et al .and implementedin GOLPE [17,20].FFD selection aims at selecting the variables which have the largest effect on predictivity,and can operate on both single variables or on groups identified by a previous SRD run;–UVE-PLS variable selection,as originally described by Centner and co-workers [21],as well as the modified iterative IVE-PLS methodology developed by Polanski and colleagues [22].These procedures remove the least informative variables,i.e .,those characterized by small PLS pseudo-coefficients.Open3DQSAR ’s implemen-tation of UVE/IVE-PLS has been further augmented including the possibility to use other cross-validation paradigms in addition to the leave-one-out scheme originally proposed by Centner,as recently suggested by Grohmann and Schindler [23].Additionally,the algorithms can operate on both single variables and SRD groups,just as for FFD selection.Apart from potentially improving the predictivity of a model,a very important consequence of variable selection is a diminished complexity of the resulting PLS pseudo-coefficient contour maps which significantly aids visual interpretation of 3D-QSAR models.All matrix calculations rely on double precision BLAS and LAPACK libraries,either their publicly available implementations [24,25]or their vendor-specific versions.Parallelization has been achieved using POSIX threads,an implementation of which is available for allmainstreamFig.1A sampleOpen3DQSAR input file showing a typical workflow consisting of model building,evaluation and refinementoperating systems.Benchmarks were performed on two models of different size,obtained from the same 36-object dataset [7]using a coarse (1.0000Åstep size,11088variables)or fine (0.3333Åstep size,272285variables)grid mesh.The FFD selection was carried out using LMO CV (5groups,100runs)extracting 5principal components,using SRD groups rather than single variables,including 20%dummy variables,with a 1.0combination/variable ratio.The version of Open3DQSAR used for benchmarks was built for a 64-bit Core2architecture with Sun Studio Compiler for Linux version 12Update 1and linked against the Sun Performance Library.The benchmarks were obtained on a 2.40GHz Dual Quad Core Intel Xeon E5530workstation equipped with 24GB 1066MHz ECC DDR3RAM.Program testing was carried out taking advantage of the ShareGrid distributed platform [26].Some algorithms described by other authors have been imple-mented in Open3DQSAR to accomplish tricubic interpola-tion [27],to compute Student's t distribution [28],to generate high quality random numbers [29]and to perform an efficient quicksort [30].Calling Open3DQSAR C functions from an external program is very straightforward;basically,input data from any source is loaded into a ModelData structure (see the open3dqsar.h header included in the source code for details),a pointer to which is passed to the computational routines together with other relevant parameters,as exem-plified in Fig.2.Results and discussionIn the development of Open3DQSAR much focus has been put on achieving high computational efficiency.For this purpose,the most demanding computational tasks,namely cross-validation and variable selection procedures,have been parallelized to take advantage of multi-processor machines.In Fig.3two benchmarks are reported showing Open-3DQSAR ’s performance in carrying out FFD variable selection on two models of distinctly different size (11088and 272285variables,respectively)using an increasing number of CPU cores.While in the case of the smaller model the increase of performance is almost linear with the increasing number of CPU cores,as expected moving to the larger model the competition among CPU cores to access RAM reduces the performance gain when attempting to distribute the workload over more than six -pared to the performance of Open3DQSAR on a single CPU,the Linux version of GOLPE 4.5[2]was about 25-30%slower for the same variable selection procedure;we are perfectly aware that such a comparison is unfair,since GOLPE has a 32-bit architecture and probably has not been optimized for the instruction sets of modern CPUs.Rather,what we wish to stress is the possibility to introduce a change of perspective in ligand-based drug design using Open3DQSAR as a high-throughput tool to evaluate the quality of a number of pharmacophoric hypotheses by challenging their performance in fittingexperimentalFig.2C code snippet showing how to call Open3DQSAR ’s API functions from an external programbiological activities.As already mentioned,we successfully pursued this strategy in a recent work of ours [7],and we chose the same dataset and experimental design as a validation suite for Open3DQSAR.The software perfectly reproduced the results previously obtained with GOLPE [2]for calculations not involving random numbers.For procedures such as leave-many-out cross-validation (LMO CV)and related variable selection procedures,which rely on random number generation,minor differ-ences were observed.In particular,we rebuilt with Open3DQSAR the models based on the 29possible different alignments of a series of ligands with affinity for the α4β2nicotinic receptor [7],and for each of them we calculated SDEP for both pIC 50and pEC 50using an external test set.In addition to serving as a testbed for Open3DQSAR,the attempt to reproduce our previous results confirmed the robustness of our “consensus ”scoring approach:in fact,in spite of the randomness involved in the LMO CV which is at the basis of the FFD variable selection,the correlation is very satisfactory (r 2=0.88,Fig.4).The model showing the best predictive performance with respect to both pIC 50and pEC 50,which is consequently more likely to represent a good guess of the binding mode in the α4β2nicotinic receptor,is the same as the one formerly identified using GOLPE (Fig.4).The same consideration holds true also for the least predictive models,while as expected the models scoring half-way,which are characterized by SDEP values very close to each other,show a slightly higher variability.Increasing the number of LMO CV runs as well as the number of models evaluated during the FFD variable selection would obviously further improve the correlation,since the impact of the random group composition in building the LMO CV groups would then be minimized.The whole test suite was run overnight in a completely automated fashion by means of a trivial shell script on the same dual quad-core workstation used for the benchmarks reported in Fig.3.On the contrary,in the original work the 58models (29for binding affinity and 29for functional potency)had to be manually loaded,pretreated,refined through variable selection and re-evaluated one by one in the graphical user interface of GOLPE;it is evident that such a procedure is error-prone and would have been impossible with larger datasets.In Fig.5the coefficient plots referring to the highest ranked alignment have been visualized in a number of different molecular visualiza-tion/modeling applications (i.e .,PyMOL [31],MOE [32],SYBYL [4],Maestro [33])to demonstrate the easeofFig.3Performance of Open3DQSAR as a function of the number of CPUs in carrying out a FFD variable selection on two models of different size (11088and 272285variables,respectively).Performance was evaluated as the inverse of computing time,and expressed as %gain with respect to single-CPU Open3DQSAR.The performance of GOLPE 4.5for Linux [2]in the same benchmarks is reported as areferenceFig.4Predictive performance of the 29models previously built in GOLPE [7]compared to those newly built in Open3DQSAR.Scoring was accomplished on the basis of the combined SDEP statistics obtained in predicting pIC 50and pEC 50for an external test set,after performing a FFD selection on the training setinterfacing Open3DQSAR with existing software.In Fig.6the recalculated vs.experimental pIC 50chart for the top scoring consensus 3D-QSAR model is reported as an example of the numerous plot files which Open-3DQSAR can generate for subsequent visualization in Gnuplot [34];this tool was chosen as the external plotting engine due to its popularity in the scientific community and to its free availability on all platforms under which Open3DQSAR currently runs.SummaryThe availability of a free,open-source 3D-QSAR engine fills a gap in the ligand-based design field,allowing medicinal chemists to have access to a well-established methodology which,after more than 20years from its first introduction,still plays a key role in computer-aided drug design [35].Open3DQSAR represents a versatile and customizable standalone platform where computational chemists can conveniently implement new procedures,algorithms and variable selection paradigms;at the same time,it can be regarded as a high-level PLS/variable selection API whose functions may be easilyincorporatedFig.6Calculated vs experimental binding affinity values visualized through Gnuplot [34]Fig.5PLS pseudo-coefficients visualized in different molecular visualization/modeling packages:(a)PyMOL [31];(b)Maestro [33];(c)MOE [32];(d)SYBYL [4]in external programs.The interoperability with the majority of existing molecular mechanics and quantum mechanics software packages should greatly facilitate the integration of3D-QSAR modeling with other methodologies and open the possibility to combine MIFs from different sources(e.g.,quantum-mechanically derived fields in combination with more traditional molecular mechanics-derived ones).Documentation and information on how to obtain Open3DQSAR can be found at the URL http:// .Acknowledgments Open3DQSAR would never have seen the light of day without the invaluable pioneering work of Prof.Gabriele Cruciani and colleagues in the field of chemometrics applied to MIFs. We have referred to their detailed published methodologies[14,17, 19,20]to code Open3DQSAR’s implementation of the Smart Region Definition and Fractional Factorial Design algorithms,a task which would have been extremely hard in the absence of such outstanding guidance.We are also indebted to the authors of the progressive scrambling,UVE-PLS and IVE-PLS methodologies,as well as to the authors of their later extensions[16,21-23].We gratefully acknowl-edge the ShareGrid management team for the computing power provided through the ShareGrid distributed platform.Finally,P.T. thanks Prof.Alberto Gasco and Prof.Roberta Fruttero(Universitàdegli Studi di Torino)for their warm support and encouragement throughout the development.Part of the work was carried out by P.T. at the University of Copenhagen under a visiting scientist grant from the Drug Research Academy.T.B.was supported by grants from the Carlsberg Foundation and the Lundbeck Foundation. References1.GRID version22C(2004)Molecular Discovery Ltd.,Oxford,England;/.Accessed24December 20092.GOLPE 4.5(1999)Multivariate Infometric Analysis S.r.l.,Perugia,Italy;/golpe.htm.Accessed24 December20093.Cramer RD III,Wold S(1988)Comparative MolecularField Analysis(CoMFA).Appl.No.237,491,filed Aug.26, 19884.SYBYL7.3(2009)Tripos International,St.Louis,MO,63144,USA;/.Accessed24December20095.Phase version 3.1(2009)Schrödinger,LLC,New York,NY;.Accessed24December20096.Tosco P,Balle T(2009)Open3DQSAR:a new open-sourcepharmacophore explorer based on chemometric analysis of molecular interaction fields.Proceedings of“Model(l)ing´09”, 6-11September2009,Erlangen,Germany;http://www.chemie.uni-erlangen.de/modeling09/Abs_M09_Posters/Tosco.pdf.Accessed24December20097.Tosco P,Ahring PK,Dyhring T,Peters D,Harpsøe K,Liljefors T,Balle T(2009)Complementary three-dimensional quantitative structure−activity relationship modeling of binding affinity and functional potency:a study onα4β2nicotinic ligands.J Med Chem52:2311–2316.doi:10.1021/jm801060h8.Schmidt MW,Baldridge KK,Boatz JA,Elbert ST,Gordon MS,Jensen JH,Koseki S,Matsunaga N,Nguyen KA,Su S,Windus TL,Dupuis M,Montgomery JA(1993)General atomic and molecular electronic structure system.J Comput Chem14:1347–1363.doi:10.1002/jcc.5401411129.Gaussian03,revision C.02(2004)Wallingford,CT,USA;http://.Accessed24December200910.Jaguar version7.6(2009)Schrödinger,LLC,New York,NY,USA;.Accessed24December2009 11.Schaftenaar G,Noordik JH(2000)Molden:a pre-and post-processingprogram for molecular and electronic structures.J Comput-Aided Mol Des14:123–134.doi:10.1023/A:100819380543612.TURBOMOLE V6.0(2009)a development of University ofKarlsruhe and Forschungszentrum Karlsruhe GmbH,1989-2007, TURBOMOLE GmbH,since2007;.Accessed24December200913.Wang JM,Cieplak P,Kollman PA(2000)How well does arestrained electrostatic potential(RESP)model perform in calculating conformational energies of organic and biological molecules?J Comput Chem21:1049–1074.doi:10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F14.Kastenholz MA,Pastor M,Cruciani G,Haaksma EEJ,Fox T(2000)GRID/CPCA:a new computational tool to design selective ligands.J Med Chem43:3033–3044.doi:10.1021/ jm000934y15.Wold S,Sjöström M,Eriksson L(2001)PLS-regression:a basictool of chemometrics.Chemometrics Intell Lab Syst58:109–130.doi:10.1016/S0169-7439(01)00155-116.Clark RD,Fox PC(2004)Statistical variation in progressivescrambling.J Comput-Aided Mol Des18:563–576.doi:10.1007/ s10822-004-4077-z17.Baroni M,Costantino G,Cruciani G,Riganelli D,Valigi R,Clementi S(1993)Generating Optimal Linear PLS Estimations (GOLPE):an advanced chemometric tool for handling3D-QSAR problems.Quant Struct-Act Relat12:9–20.doi:10.1002/ qsar.199********18.De Aguiar PF,Bourguignon B,Khots MS,Massart DL,Phan-Than-Luu R(1995)D-optimal designs.Chemometrics Intell Lab Syst30:199–210.doi:10.1016/0169-7439(94)00076-X19.Pastor M,Cruciani G,Clementi S(1997)Smart Region Definition:anew way to improve the predictive ability and interpretability of three-dimensional quantitative structure−activity relationships.J Med Chem40:1455–1464.doi:10.1021/jm960801620.Baroni M,Clementi S,Cruciani G,Costantino G,Riganelli D(1992)Predictive ability of regression models.Part II:selection of the best predictive PLS model.J Chemometr6:347–356.doi:10.1002/cem.118006060521.Centner V,Massart DL,de Noord OE,de Jong S,VandeginsteBM,Sterna C(1996)Elimination of uninformative variables for multivariate calibration.Anal Chem68:3851–3858.doi:10.1021/ ac960321m22.Gieleciak R,Polanski J(2007)Modeling robust QSAR. 2.Iterative variable elimination schemes for CoMSA:application for modeling benzoic acid p K a values.J Chem Inf Model47:547–556.doi:10.1021/ci600295z23.Grohmann R,Schindler T(2008)Toward robust QSPR models:synergistic utilization of robust regression and variable elimination.J Comput Chem29:847–860.doi:10.1002/jcc.2083124.Anderson E,Bai Z,Bischof C,Blackford S,Demmel J,DongarraJ,Du Croz J,Greenbaum A,Hammarling S,McKenney A, Sorensen D(1999)LAPACK Users’Guide.Society for Industrial and Applied Mathematics,Philadelphia25.Whaley RC,Petitet A(2005)Minimizing development andmaintenance costs in supporting persistently optimized BLAS.Softw-Pract Exp35:101–121.doi:10.1002/spe.62626.Anglano C,Canonico M,Guazzone M,Botta M,Rabellino S,Arena S,Girardi G(2008).Peer-to-peer desktop grids in the real world:the ShareGrid project.Proceedings of the8th IEEE International Symposium on Cluster Computing and the Grid (CCGRID'08),Lyon(France),May2008,IEEE Press.doi:10.1109/CCGRID.2008.2327.Lekien F,Marsden J(2005)Tricubic interpolation in three dimen-sions.Int J Numer Methods Eng63:455–471.doi:10.1002/nme.1296 28.Brown B,Lovato J,Russell K(2006)DCDFLIB;http://people./∼burkardt/f_src/dcdflib/dcdflib.html.Accessed24 December200929.Matsumoto M,Nishimura T(1998)Mersenne twister:a623-dimensionally equidistributed uniform pseudo-random number generator.ACM Trans Model Comput Simul8:3–30.doi:10.1145/ 272991.27299530.Stewart DE,Leyk Z(1994)Meschach Library version1.2b;http:///∼dstewart/meschach/.Accessed24Decem-ber200931.PyMOL(2009)DeLano Scientific LLC,Palo Alto,CA,USA;.Accessed24December200932.MOE version2009.10(2009)Chemical Computing Group Inc,Montreal,Quebec,Canada;.Accessed 24December200933.Maestro version9.0(2009)Schrödinger LLC,New York,NY,USA;.Accessed24December2009 34.Gnuplot version4.2(2009);/.Accessed24December200935.Cross S,Cruciani G(2009)Molecular fields in drug discovery:getting old or reaching maturity?Drug Disc Today.doi:10.1016/j.drudis.2008.12.006。