2011年成人高考专升本高等数学公式总结汇总

合集下载

成人高考专升本高等数学公式大全

成人高考专升本高等数学公式大全

成人高考专升本高等数学公式大全1.代数基本公式:-平方差公式:$a^2-b^2=(a+b)(a-b)$-三角恒等式:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$- 正弦余弦定理:$\sin^2 A + \cos^2 A = 1$- 二项式定理:$(a + b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$2.函数与极限公式:-导数的四则运算:- $(u \pm v)' = u' \pm v'$- $(uv)' = u'v + uv'$- $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$- 泰勒公式:$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2!} + \cdots$-常用极限:- $\lim_{x \to 0}\frac{\sin x}{x} = 1$- $\lim_{x \to \infty}(1 + \frac{1}{x})^x = e$- $\lim_{x \to \infty}(1 + \frac{k}{x})^x = e^k$- $\lim_{n \to \infty}(1 + \frac{x}{n})^n = e^x$3.微分公式:-求导法则:-$(c)'=0$- $(x^n)' = nx^{n-1}$-$(e^x)'=e^x$- $(\ln x)' = \frac{1}{x}$-高阶导数:-$(f(x)g(x))''=f''(x)g(x)+2f'(x)g'(x)+f(x)g''(x)$-$(f(g(x)))''=f''(g(x))(g'(x))^2+f'(g(x))g''(x)$-微分运算法则:- $\frac{d(u \pm v)}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$ - $\frac{d(kv)}{dx} = k\frac{dv}{dx}$- $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$- $\frac{d(\frac{u}{v})}{dx} = \frac{v\frac{du}{dx} -u\frac{dv}{dx}}{v^2}$4.积分公式:-不定积分法则:- $\int k \,dx = kx + C$- $\int x^n \,dx = \frac{x^{n+1}}{n+1} + C, (n \neq -1)$- $\int e^x \,dx = e^x + C$- $\int \frac{1}{x} \,dx = \ln ,x, + C$-定积分法则:- $\int_a^b kf(x) \,dx = k\int_a^b f(x) \,dx$- $\int_a^b [f(x) + g(x)] \,dx = \int_a^b f(x) \,dx +\int_a^b g(x) \,dx$- $\int_a^b (f(x) - g(x)) \,dx = \int_a^b f(x) \,dx -\int_a^b g(x) \,dx$5.级数公式:-等比级数求和:$S_n = \frac{a(1-q^n)}{1-q}$,其中 $S_n$ 是前n 项和,a 是首项,q 是公比。

成人高考专升本《高等数学二》公式大全

成人高考专升本《高等数学二》公式大全

成人高考专升本《高等数学二》公式大全1.函数的导数公式:1)常数函数求导:(C)'=02)幂函数求导:(x^n)' = nx^(n-1), 其中n为常数3)指数函数求导:(a^x)' = a^x * ln(a), 其中a>0且a≠14)对数函数求导:(log_a(x))' = 1 / (x * ln(a)), 其中a>0且a≠15)三角函数求导:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x)6)反三角函数求导:(arcsin(x))' = 1 / sqrt(1 - x^2), (arccos(x))' = -1 / sqrt(1 - x^2), (arctan(x))' = 1 / (1 + x^2)2.高等数学中的极限公式:1)常数函数极限:lim(C) = C, 其中C为常数2)多项式函数极限:lim(a_n*x^n + a_(n-1)*x^(n-1) + ... +a_1*x + a_0) = a_n*x^n, 其中n为正整数,a_n为非零常数3)指数函数极限:lim(a^x) = 1, 其中a>0且a≠14)对数函数极限:lim(log_a(x)) = log_a(1) = 0, 其中a>0且a≠15)三角函数极限:lim(sin(x) / x) = 1, lim((1 - cos(x)) / x) = 0, 当x趋近于0时3.定积分公式:1)换元积分法:∫f(g(x)) * g'(x)dx = ∫f(u)du, 其中u = g(x) 2)分部积分法:∫u * dv = u * v - ∫v * du3)凑微分法:∫f(x)dx = ∫f(x) *1dx = ∫f(x) *[g'(x)/g'(x)]dx = ∫(f(x) * g'(x))/g'(x)dx4.微分方程公式:1)一阶线性微分方程:dy/dx + P(x)y = Q(x), y = e^(-∫P(x)dx) * ∫[Q(x) * e^(∫P(x)dx)]dx2)一阶齐次线性微分方程:dy/dx = f(y/x), 令v = y/x, 可得dv = [(f(v) - v)/x]dx5.级数公式:1)等比数列前n项和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比2)调和级数:∑(1/n)是发散级数3)幂级数展开:e^x = ∑(x^n)/n!, sin(x) = ∑[(-1)^n *(x^(2n+1))/(2n+1)!], cos(x) = ∑[(-1)^n * (x^(2n))/(2n)!]。

专升本成人高考高数常用公式

专升本成人高考高数常用公式

专升本成人高考高数常用公式在成人高考高数中,常用的公式有:1. 三角函数相关公式:- sin²θ + cos²θ = 1 (正弦、余弦平方和为1)- sin(α ± β) = sin α cos β ± cos α sin β (正弦的和差公式)- cos(α ± β) = cos α cos β ∓ sin α sin β (余弦的和差公式) - tan(α ± β) = (tan α ± tan β) / (1 ∓ tan α tan β) (正切的和差公式)- sin 2θ = 2 sin θ cos θ (正弦的倍角公式)- cos 2θ = cos²θ - sin²θ = 2 cos²θ - 1 = 1 - 2 sin²θ (余弦的倍角公式)2. 导数相关公式:- (x^n)' = nx^(n-1) (幂函数的导数)- (sin x)' = cos x (正弦函数的导数)- (cos x)' = -sin x (余弦函数的导数)- (tan x)' = sec²x (正切函数的导数)- (e^x)' = e^x (指数函数的导数)- (ln x)' = 1/x (自然对数函数的导数)3. 积分相关公式:- ∫(x^n) dx = x^(n+1) / (n+1) + C (幂函数的不定积分)- ∫sin x dx = -cos x + C (正弦函数的不定积分)- ∫cos x dx = sin x + C (余弦函数的不定积分)- ∫tan x dx = -ln|cos x| + C (正切函数的不定积分)- ∫e^x dx = e^x + C (指数函数的不定积分)- ∫(1/x) dx = ln|x| + C (自然对数函数的不定积分)以上是一些常用的高数公式,需要注意的是,公式可以根据需要进行组合和变形,因此熟练掌握和灵活运用是非常重要的。

成人高考专升本高等数学公式(含特殊三角函数值)

成人高考专升本高等数学公式(含特殊三角函数值)

高等数学公式导数公式:基本积分表:三角函数的有理式积分: 222212211cos 12sin udu dx x tg u uu x uu x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx xtgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec sec cscsinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxCctgx x xdx Ctgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cos sin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin2cos cos 2cos 2cos 2cos cos 2sin2cos2sin sin 2cos 2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R Cc Bb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

专升本数学公式大全及解析

专升本数学公式大全及解析

专升本数学公式大全及解析
很抱歉,由于文本输入长度限制,无法给出完整的专升本数学公式大全及解析。

以下是一些常见的数学公式及简要解析:
1. 一元二次方程公式:ax^2 + bx + c = 0
解析:可以使用求根公式或配方法等来求解一元二次方程的根。

2. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2
解析:平方差公式可以帮助我们快速展开平方求和。

3. 三角函数的和差公式:
- sin(A ± B) = sin A cos B ± cos A sin B
- cos(A ± B) = cos A cos B ∓ sin A sin B
解析:和差公式可以帮助我们计算三角函数的和差。

4. 概率公式:
- 事件的概率 P(A) = 事件 A 的发生次数 / 总的试验次数
- 与事件 A 相反的事件的概率 P(A') = 1 - P(A)
- 事件 A 和 B 同时发生的概率P(A ∩ B) = P(A) * P(B|A)
- 事件 A 和 B 至少发生一个的概率 P(A ∪ B) = P(A) + P(B) - P(A ∩ B)
解析:概率公式可以帮助我们计算事件发生的可能性。

这些只是数学公式的一小部分,数学是个广阔的学科,公式也非常多。

希望这些简要的公式介绍对你有所帮助。

如果你对特
定的数学公式或解析有更具体的需求,请告诉我,我将尽力为你提供更准确和详细的信息。

专升本高数公式大全总结

专升本高数公式大全总结

专升本高数公式大全总结以下是一些常用的高数公式总结:1. 导数公式:- 基本公式:$(c)^n = ncx^{n-1}$,其中c为常数,n为指数,x为变量。

- 基本函数的导数:$sinx' = cosx, cosx' = -sinx, tanx' = sec^2x, cotx' = -csc^2x, secx' = secxtanx, cscx' = -cscxcotx$。

2. 积分公式:- 基本公式:$\int f'(x)dx = f(x) + C$,其中C为常数。

- 基本函数的不定积分:$\int sinxdx = -cosx + C, \int cosxdx = sinx + C, \int tanxdx = -ln|cosx| + C$。

3. 三角函数公式:- 正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,其中a、b、c为三角形的边长,A、B、C为对应角,R为外接圆半径。

- 余弦定理:$c^2=a^2+b^2-2abcosC$。

- 正弦二倍角公式:$sin2x=2sinxcosx$。

- 余弦二倍角公式:$cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x$。

4. 极限公式:- 基本公式:$\lim_{x\to c}f(x) = f(c)$,其中c为常数。

- 乘法法则:$\lim_{x\to c}[f(x)g(x)] = \lim_{x\to c}f(x) \cdot\lim_{x\to c}g(x)$。

- 除法法则:$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)}$,其中$\lim_{x\to c}g(x) \neq 0$。

5. 级数公式:- 等比数列求和公式:$S_n = \frac{a(1-q^n)}{1-q}$,其中S_n为前n项和,a为首项,q为公比。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式(全)常数项级数: 级数审敛法:绝对收敛与条件收敛: 幂级数:函数展开成幂级数: 一些函数展开成幂级数: 可降阶的高阶微分方程类型一:()()n y f x = 解法(多次积分法):(1)()()n duu y f x f x dx -=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dpp y f x p dx =⇒=⇒令一阶微分方程类型三:''(,')y f y y = 解法:'(,)dp dp dy dp p y p f y p dx dy dx dy =⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y )((一阶齐次线性)。

若不等于0,通解⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x Q e y dx x p dx x p )()()((一阶齐次非线性)。

一阶齐次非线性方程的通解是对应齐次方程的通解与它的一个特解之和。

三、线性微分方程类型一:''()'()0y P x y Q x y ++=(二阶线性齐次微分方程) 解法:找出方程的两个任意线性不相关特解:12(),()y x y x 则:1122()()()y x c y x c y x =+类型二:''()'()()y P x y Q x y f x ++=(二阶线性非齐次微分方程)解法:先找出对应的齐次微分方程的通解:31122()()()y x c y x c y x =+ 再找出非齐次方程的任意特解()p y x ,则:1122()()()()p y x y x c y x c y x =++ 类型三:'''0y py q ++=(二阶线性常系数齐次微分方程)解法(特征方程法):21,20p q λλλ++=⇒=(一)122121240x x p q y c e c e λλλλ∆=->⇒≠⇒=+(二)12120()x y c c x e λλλλ∆=⇒==⇒=+(三)12120,(cos sin )x i i y e c x c x αλαβλαβββ∆<⇒=+=-⇒=+导数公式:基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数的有理式积分:一些初等函数: 两个重要极限: ·和差角公式: ·和差化积公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ中值定理与导数应用: :空间解析几何和向量代数 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法: 柱面坐标和球面坐标: 曲线积分:。

成人高考专升本《高等数学二》公式大全

成人高考专升本《高等数学二》公式大全

第一章节公式1、数列极限的四则运算法则 如果,lim ,lim B y A x n n n n ==∞→∞→那么BA y x y x n n n n n n n -=-=-∞→∞→∞→lim lim )(lim B A y x y x n n n n n n n +=+=+∞→∞→∞→lim lim )(limBA y x y x n n n n n n n .(lim ).(lim ).(lim ==∞→∞→∞→) )0(lim lim lim ≠==∞→∞→∞→B B A y x y x n n n n n n n推广:上面法则可以推广到有限..多个数列的情况。

例如,若{}na ,{}nb ,{}nc 有极限,则:n n n n n n n n n n c b a c b a ∞→∞→∞→∞→++=++lim lim lim )(lim特别地,如果C 是常数,那么CA a C a C n n n n n ==∞→∞→∞→lim .lim ).(lim2、函数极限的四算运则如果,)(lim ,)(lim B x g A x f ==那么B A x g x f x g x f ±=±=±)(lim )(lim )(lim )(limBA x g x f x g x f ⋅=⋅=⋅)(lim )(lim )(lim )(lim)0)(lim ()(lim )(lim )()(lim ≠===x g B B A x g x f x g x f推论设)(lim ),(lim ),......(lim ),(lim ),(lim 321x f x f x f x f x f n 都存在,k 为常数,n 为正整数,则有:)(lim ....)(lim )(lim )](....)()([lim 2111x f x f x f x f x f x f n n ±±±=±±)(lim )]([lim x f k x kf =nn x f x f )](lim [)]([lim =3、无穷小量的比较:.0lim ,0lim ,,==βαβα且穷小是同一过程中的两个无设);(,,0lim)1(βαβαβαo ==记作高阶的无穷小是比就说如果;),0(lim)2(同阶的无穷小是与就说如果βαβα≠=C C ;~;,1lim3βαβαβα记作是等价的无穷小量与则称如果)特殊地(= .),0,0(lim)4(阶的无穷小的是就说如果k k C C k βαβα>≠= .,lim)5(低阶的无穷小量是比则称如果βαβα∞= ,0时较:当常用等级无穷小量的比→x .21~cos 1,~1,~)1ln(,~arctan ,~tan ,~arcsin ,~sin 2x x x e x x x x x x x x x x x --+en e x e x x x n n x x x x x=+=+=+=∞→→→→)11(lim )1(lim .)11(lim .1sin lim 1000对数列有重要极限第二章节公式1.导数的定义:函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0f (x 0+Δx )-f (x 0)Δx =lim Δx →0ΔfΔx ,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0即f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx.2.导数的几何意义函数f (x )在x =x 0处的导数就是切线的斜率k ,即k =lim Δx →0f (x 0+Δx )-f (x 0)Δx=f ′(x 0).3.导函数(导数)当x 变化时,f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数),y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=lim Δx →0f (x +Δx )-f (x )Δx.4.几种常见函数的导数(1)c ′=0(c 为常数),(2)(x n)′=nx n -1(n ∈Z ),(3)(a x)′=a xlna(a >0,a ≠1), (e x)′=e x(4)(ln x )′=1x ,(log a x )′=1xlog a e=ax ln 1(a >0,a ≠1) (5)(sin x )′=cos x ,(6)(cos x )′=-sin x (7) x x 2cos 1)'(tan =, (8)xx 2sin 1)'(cot -= (9) )11(11)'(arcsin 2<<--=x xx , (10) )11(11)'(arccos 2<<---=x xx(11) 211)'(arctan x x +=, (12)211)'cot (x x arc +-= 5.函数的和、差、积、商的导数(u ±v )′=u ′±v ′,(uv )′=u ′v +uv ′⎝ ⎛⎭⎪⎫u v ′=u ′v -uv ′v 2,(ku )′=cu ′(k 为常数).(uvw )′=u ′vw +uv ′w + uvw ′ 微分公式:(1)为常数)c o cd ()(= 为任意实数))(a dx ax x d a a ()(21-=),1,0(ln 1)(log )3(≠>=a a dx a x d xadx x x d 1)(ln = )1,0(ln )(4≠>=a a adx a a d x x )(dxe e d x x =)(xdx x d cos )(sin )5(=xdx x d sin )(cos )6(-=(7) dx x x d 2cos 1)(tan =, (8)dx xx d 2sin 1)(cot -=(9) dx xx 211)'(arcsin -=, (10) dx xx 211)'(arccos --=(11) dx x x d 211)(arctan +=, (12) dx x x arc d 211)cot (+-=6.微分的四算运则d(u ±v )=d u ±d v , d(uv )=v du +udv)0()(2≠-=v v udvvdu v u d d(ku )=k du (k 为常数). 洛必达法则:在一定条件下通过分子分母分别求导,再求极限来确定未定式的值的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx Ctgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a xdx x a Ca x x a a x xdx a x Ca x x a a x xdx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xxxx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x三角函数公式: ·诱导公式:函数 角A sin cos tg ctg -α -sinα cosα -tgα -ctgα 90°-α cosα sinα ctgα tgα 90°+α cosα -sinα -ctgα -tgα 180°-α sinα -cosα -tgα -ctgα 180°+α -sinα -cosα tgα ctgα 270°-α -cosα -sinα ctgα tgα 270°+α -cosα sinα -ctgα -tgα 360°-α -sinα cosα -tgα -ctgα 360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgxarctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ban y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=baba dtt fab dxx f a b y k rmm k F A p F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功: 空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos P r P r )(P r ,cos P r )()()(2222222212121221221221c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB AB j z z y y x x M M d zyx z y xzy xzyxz y xzyxzyxzz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+⋅=-+-+-== (马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c zb y a x q p z q yp x c z b y a x ptz z nty y m t x x p n m s t p z z n y y m x x C B A DCz By Ax d c zb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dyF F y F F x dx y d F F dx dy y x F dy yvdx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zudy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v Fu Fv u G F J v u y x G v u y x F v u v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx yx x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

相关文档
最新文档