最新九年级数学四点共圆例题讲解

最新九年级数学四点共圆例题讲解
最新九年级数学四点共圆例题讲解

精品文档

九年级数学四点共圆例题讲解

知识点、重点、难点

四点共圆是圆的基本内容,它广泛应用于解与圆有关的问题.与圆有关的问题变化多,解法灵活,综合性强,题型广泛,因而历来是数学竞赛的热点内容。

在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆的有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。因此,掌握四点共圆的方法很重要。

、、、===OCOB四个点到定点DO 判定四点共圆最基本的方法是圆的定义:如果A的距离相等,即BOAC、、、D四点共圆.,那么ACB OD 由此,我们立即可以得出

1.如果两个直角三角形具有公共斜边,那么这两个直角三角形的四个顶点共圆。

将上述判定推广到一般情况,得:

2.如果四边形的对角互补,那么这个四边形的四个顶点共圆。

3.如果四边形的外角等于它的内对角,那么这个四边形的四个顶点共圆。

4.如果两个三角形有公共底边,且在公共底边同侧又有相等的顶角,那么这两个三角形的四个顶点共圆。

运用这些判定四点共圆的方法,立即可以推出:

正方形、矩形、等腰梯形的四个顶点共圆。

其实,在与圆有关的定理中,一些定理的逆定理也是成立的,它们为我们提供了另一些证明四点共圆的方法.这就是:

、、、D四点共圆。B =CE·ED,则AC· 1.相交弦定理的逆定理:若两线段AB和CD相交

于E,且AEEB、、、BPD,则APA,且·PB =PC 2.割线定理的逆定理:若相交于点P的两线段PB·PD上各有一点A、C

、D四点共圆。C

3.托勒密定理的逆定理:若四边形ABCD中,AB·CD+BC·DA=

AC·BD,则ABCD是圆内接四边形。

另外,证多点共圆往往是以四点共圆为基础实现的一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际是同一个圆。

例题精讲

、、、、、、、、、、F四点共圆,上。已知PPDAC1例:如图,P为△ABC内一点,DEEF分别在BCECAAB、、、

F四点共圆。D 四点共圆,求证:BP

、、、、、=

BDPDFC证明连PD四点共圆,所以∠PE.由于PFP、、、= .于是∠BDPPEC =.又由于AE ∠PAFPF四点共圆,所以∠PEC∠、、、PB∠AFP,故四点共圆。DF

、、、、的对称点共CDDA,证明:点ACBD互相垂直,垂足为EE关于ABBC的对角线:设凸四边形例2ABCD 圆。

精品文档.

精品文档

1、、、、AB在DABC的对称点变为CD 证明以E为相似中心作相似变换,相似比为E,此变换把E关于AB

2、、、、、S(如图).只需证明RBCPQRSCD是圆内接四边形。DA上的射影P Q、、、、P都是圆内接四边形(每个四边形都有一组对角为直角),由EPBQEEQCR及由于四边形ESAPERDS、Q共圆有∠EPQ =

B、、R共圆有∠ERQ=∠ECQ,于是∠EPQ+∠ERQ = ∠EBQ+∠ECQ=90°E∠EBQ.由、Q.C 同理可得∠EPS+∠ERS =90°.从而有∠SPQ+∠QRS =180°,故PQRS是圆内接四边形。

例3:梯形ABCD的两条对角线相交于点K,分别以梯形的两腰为直径各作一圆,点K位于这两个圆之外,证明:由点K向这两个圆所作的切线长度相等。

、、、AMB.与相应二圆的第二个交点分别为M由于∠的两腰为AB和CD,并设ACNBDABCD 证明如图,设梯形、、、四点共圆,MCNB = 90°.从而∠BMC =∠BNC=90°,故∠CND是半圆上的圆周角,所以∠AM B=∠CND、、、.·KD·KAN = DKNA四点共圆,因此.又∠ACB =∠KAD,所以∠MNK =∠KAD.于是MKM因此∠MNK=∠ACB K向两已知圆所引的切线相等。由切割线定理得、、.

=ACOA,求证:DHAC⊥BD垂直于直径EF,例4:如图,ABHB为半圆O上的任意两点,、、,所⊥OAEF、ABBHOB.由于BD 在BD上取一点A',使A'D = AC,则ACDA'是矩形。连结A'H ⊥证法一、B于是D,∠BHO=90°.以∠BDO =、、、、∠=ABH四点共圆。故∠A'DA'HAHB ∠HDB.由于∠=∠AA'B = 90H°,所以O四点共圆,所以∠HOB =. AC,故DH = A'H.所以DH=DA'∠而OA = OB,所以∠OBA=OAB,于是∠DHA'=∠DOAB,因此∠DHA'=∠OBA.

、、、=HBD),则∠AOC=∠H作HG⊥DH,与圆O'为点证法二设圆O'D交于BG(H如图O四点所共的圆,过.

OA,GD = OB = ∠DGH . ,故DH = AC因此Rt△OAC≌Rt△GDH、、、,利用正弦定义及正弦定理,AOCRt△B的斜边为HOAO四点共圆,且直径为OB证法三因为D.而DHAC.,OBOA??. ,所以DH = AC得OB,∠AOC=∠DBHOA由于=

DBH?AOCsin?sin

、为直径的N,以为直径的圆与AB边的高线CC'及其延长线交于MAC例5:如图,已知锐角三角形ABC,以AB、、、、证:NQMP圆与AC边的高线BB'及其延长线交于P四点共圆。Q,

同理=MH×HN.在以ABC的垂心为H,则A'AB为直径的圆上,从而AH×HA'上的高为证明设BCAA',△、四点共圆。、QH×HQ,故MN、P=PHAH×HA'=×HQ.于是MH×HN P

2∽△ACC',有AC'·AB·=中,AM' AC'·AB,AP= AB'AC.又△ABB'△△说明另证:在RtABM和RtACP22、、因AC对称,故AM=ANAP=AQ.,.但,即.于是=AB'·ACAM= APAM =APM 关于NAB对称,PQ关于、、、在以Q此MANP为圆心的圆上。、、推出×=×=×=×也可由MHHNBHHB'CHHC'PHHQMNPQ四点共圆。、

精品文档.

精品文档

OOH、、垂心分别是和、P,△PAB与△PCD例6:如图,ABCD是圆内接四边形,AD的外心、BC的延长线交于121HOOHH、、,求证:、21212四点共圆。

BP HOH以所外心,是△PCD的.+∠ABP = 90°又证明因为垂是△PAB的心,所以因为

12111CDP?PC?O??PC?CDP??COP?CDP?O?、、、四点共圆,C,所以.因为A90°.而DB =90°22222PCOH?PB??OHHO三点共线。显所以∠CDP=∠ABP,所以、P、、、P,所以三点共线.同理可证212221POPH11?POPHPO?PHHOOH然△PAB、、、,因此,即,故四点共圆。≌△PCD 12212121POPH

22

:两个等圆彼此相交,从它们的对称中心引出两条射线交圆周于不在同一条直线上的四个点,试证:这四个点例7 必在同一个圆周上。

BABAABAB位于第、、证明如图,设过两圆的对称中心O的二条射线为,、位于第一个圆周上,而22211121二个圆周上。

OBBOAABOOBBABB.和O关于点、的对称点,根据相交弦定理有·设点、=和·分别是点4114323232OAOABAABBOOAOBOBOAOB因为,故、=,·=、,从而·、=四点必在同一个圆周上。222231211141

DDCC的弦、、…、中的定弦,作⊙例8:如图,AB为定⊙OO2112

DMC、DCDC的切线,两点,过平分于AB分别作⊙20001i,对其中每一(i=,2,…,)O都被弦iiiii20002000P,求证:切线交于i

PP、、、P必在同一个圆周上,并指出圆心是什么点。200012

精品文档.

精品文档

ODOCCMMD?AMMBMDC.,平分于,因为所以均被AB…,.证明连结对每一个、(ii = 1,2,2000)iiiiiiiiiii

、DPC、PO、CDOPCDMPD、C知于点以,所又故、,⊙分别切且点四共圆,过通O的中iiiiiiiiiiiii CMMD?PMMOAMMB?PMMOP、P、、PP、、、必在同四点共圆,即,所以O故.AB2000iiiiii1iiiii2i

、B为定点,所以圆心即为△OAB的外心。AO一个圆周上。因为、

精品文档.

人教版九年级数学上册圆知识点归纳及练习含答案完整版

人教版九年级数学上册圆知识点归纳及练习含 答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

圆 24.1.1圆 知识点一圆的定义 圆的定义:第一种:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。固定的端点O叫作圆心,线段OA叫作半径。第二种:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合。 比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。 知识点二圆的相关概念 (1)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。 (2)弧:圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。 (3)等圆:等够重合的两个圆叫做等圆。 (4)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。 弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。 24.1.2垂直于弦的直径 知识点一圆的对称性 圆是轴对称图形,任何一条直径所在直线都是它的对称轴。 知识点二垂径定理 (1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。如图所示,直径为CD,AB是弦,且CD⊥AB, A B AM=BM 垂足为M AC=BC AD=BD D 垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 如上图所示,直径CD与非直径弦AB相交于点M, CD⊥ABAM=BMAC=BC AD=BD 注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。 24.1.3弧、弦、圆心角 知识点弦、弧、圆心角的关系(1)弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 (2)在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。 (3)注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,两个圆心角相同,但此时弧、弦不一定相等。

人教版初三数学圆的测试题及答案

九年级圆测试题 一、选择题(每题3分,共30分) 1.如图,直角三角形A BC 中,∠C =90°,A C =2,A B =4,分别以A C 、BC 为直径作半圆,则图中阴影的面积为 ( ) A 2π- 3 B 4π-4 3 C 5π-4 D 2π-23 2.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶ 2∶3 C 3∶2∶1 D 3∶2∶1 3.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定 4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90° 5.在Rt △A BC 中,已知A B =6,A C =8,∠A =90°,如果把此直角三角形绕直线A C 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线A B 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶12 6.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216° 7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352 =+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含 8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对 9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么

林初中2017届中考数学压轴题专项汇编:专题20简单的四点共圆(附答案)

专题20 简单的四点共圆 破解策略 如果同一平面内的四个点在同一个圆上,则称之为四个点共圆·一般简称为”四点共圆”.四点共圆常用的判定方法有: 1.若四个点到一个定点的距离相等,则这四个点共圆. 如图,若OA=OB=OC=OD,则A,B,C,D四点在以点O为圆心、OA为半径的 圆上. D 【答案】(1)略;(2)AB,CD相交成90°时,MN取最大值,最大值是2. 【提示】(1)如图,连结OP,取其中点O',显然点M,N在以OP为直径的⊙O'上,连结NO'并延长,交⊙O'于点Q,连结QM,则∠QMN=90°,QN=OP=2,而∠MQN=180°-∠BOC=60°,所以可求得MN的长为定值. (2)由(1)知,四边形PMON内接于⊙O',且直径OP=2,而MN为⊙O'的一条弦,故MN为⊙O'的直径时,其长取最大值,最大值为2,此时∠MON=90°. 2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,若∠A+∠C=180°(或∠B+∠D=180°)则A,B,C,D四点在同一个圆上.

D 【答案】(1)略;(2)AD ;(3)AD=DE·tanα. 【提示】(1)证A,D,B,E四点共圆,从而∠AED=∠ABD=45°,所以AD=DE. (2)同(1),可得A,D,B,E四点共圆,∠AED=∠ABD=30°,所以AD DE =tan30°, 即AD= 3 DE. 3.若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,∠CDE为外角,若∠B=∠CDE,则A,B,C,D四点在同一个圆上. 【答案】略 4.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆. 如图,点A,D在线段BC的同侧,若∠A=∠D,则A,B,C,D四点在同一个圆上.

人教版九年级数学上册圆

初中数学试卷 金戈铁骑整理制作 圆 章节测试 时间:40分钟 满分:120分 姓名: 得分: 一、选择题(本大题共9小题,共54分) 1. 如图,圆锥的底面半径为2,母线长为6,则侧面积为( ) A. 4π B. 6π C. 12π D. 16π 2. 一个扇形的弧长是10πcm ,面积是60πcm 2,则此扇形的圆心角的度数是( ) A. 300° B. 150° C. 120° D. 75° 3. 下列圆的内接正多边形中,一条边所对的圆心角最大的图形是( ) A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形 4. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上位于AB 异侧的两点.下列四个角中,一定与∠ACD 互余的角是( ) A. ∠ADC B. ∠ABD C. ∠BAC D. ∠BAD 5. 如图,在⊙O 中,AB 是直径,AC 是弦,连接OC ,若∠ACO =30°,则∠BOC 的度数是( ) A. 30° B. 45° C. 55° D. 60°

6.如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12, OM:MD=5:8,则⊙O的周长为() A. 26π B. 13π C. D. 7.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的 对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是() A. B. 2- C. 2- D. 4- 8.如图,在半径为4的⊙O中,CD是直径,AB是弦,且CD⊥AB,垂足为点E,∠AOB=90°, 则阴影部分的面积是() A. 4π-4 B. 2π-4 C. 4π D. 2π

初中数学圆 经典练习题(含答案)

圆的相关练习题(含答案) 1、已知:弦AB 把圆周分成1:5的两部分,这弦AB 所对应的圆心角的度数为 。 2、如图:在⊙O 中,∠AOB 的度数为1200,则 的长是圆周的 。 3、已知:⊙O 中的半径为4cm ,弦AB 所对的劣弧为圆的3 1,则弦AB 的长为 cm , AB 的弦心距为 cm 。 4、如图,在⊙O 中,AB ∥CD , 的度数为450,则∠COD 的度数为 。 5、如图,在三角形ABC 中,∠A=700,⊙O 截△ABC 的三边所得的弦长相等,则 ∠BOC=( )。 A .140° B .135° C .130° D .125° (第2题图) (第4题图) (第5题图) 6、下列语句中,正确的有( ) (1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦; (3)长度相等的两条弧是等弧; (4) 圆是轴对称图形,任何一条直径都是对称轴 A .0个 B .1个 C .2个 D .3个 7、已知:在直径是10的⊙O 中, 的度数是60°,求弦AB 的弦心距。 8、已知:如图,⊙O 中,AB 是直径,CO ⊥AB ,D 是CO 的中点,DE ∥AB , 求证:

600 9. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么? 10. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm ,求油面的最大深度。 11. 如图所示,AB 是圆O 的直径,以OA 为直径的圆C 与圆O 的弦AD 相交于点E 。你认为图中有哪些相等的线段?为什么? 答案:1.60度 2. 3 2 3. 1 3 4 4.90度 5.D 6.A 7.2.5 8.提示:连接OE ,求出角COE 的度数为60度即可 9.略 10.100毫米 11.AC=OC , OA=OB , AE=ED B

人教版九年级数学上册圆单元测试题及答案

九年级数学第二十四章圆测试题(A) 时间:45分钟分数:100分 一、选择题(每小题3分,共33分) 1 .若O O所在平面内一点P到O O上的点的最大距离为10, A . 14 B . 6 C . 14 或6 D. 7 或3 2. 如图24—A —1 , O O的直径为10,圆心O到弦AB的距离 A . 4 B . 6 C . 7 I 3. 已知点O ABC的外心,若/ A=80 A . 40 4. 如图 A . 20° B . 80 24—A — 2, B . C. 160° △ ABC内接于O 最小距离为 OM的长为 4则此圆的半径为( 3,则弦AB 的长是 D . 8 ,则/ BOC的度数为( D. 120° 若/ A=40 °,则/ OBC的度数为( O 图24—A — 4 图24—A — 3 小明同学设计了一个测量圆直径的工具, 垂直,在测直径时,把O点靠在圆周上, A . 12个单位 B . 10个单位 6. 如图 A . 80° 7. 如图 PB于点 A . 5 24—A —4, AB为O O的直径,点 B. 50° C. 40 ° 24—A —5, P 为O O 外一点, 5 .如图24—A —3, 标有刻度的尺子OA、OB在O点钉在一起, 读得刻度OE=8个单位,OF=6个单位,则圆的直径为( D . 15个单位 ,则/ A等于() 并使它们保持 ) PA 、 C、D,若PA=5,则△ PCD的周长为( B . 7 C . 8 D . 10 C . 1个单位 C 在O O 上,若/ B=60 ° D . 30° PB分别切O O于A、B, ) CD切O O于点E,分别交PA、 &若粮仓顶部是圆锥形,且这个圆锥的底面直径为 毡,则这块油毡的面积是() 4m,母线长为3m,为防雨需在粮仓顶部铺上油 A . 6m2 C . 12m22 D . 12二 m 9.如图24—A —6,两个同心圆,大圆的弦AB 点P,且 CD=13 , PC=4,则两圆组成的圆环的面积是( A. 16 n B . 36 n 10 .已知在△ ABC中, 10 A . 3 11.如图 C、D E、 C. 52 n AB=AC=13 , 与小圆相切于点P,大圆的弦CD经过) D. 81 n BC=10,那么△ ABC的内切圆的半径为( 12 B . 5 24—A —7,两个半径都是4cm的圆外切于点C, 一只蚂蚁由点A开始依A、B、 F、C、G A的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这 C. 2 径上不断爬行,直到行走2006 n cm后才停下来, A . D 点 B . E 点 C . F 点D 二、填空题(每小题3分,共30分) 12 .如图24—A —8,在O O中,弦AB等于O 则蚂蚁停的那一个点为( .G点 O的半径,0C丄AB交O O于点C,则 8段路 )

四点共圆的判定与性质

四点共圆的判定与性质 一、四点共圆的判定 (一)判定方法 1、若四个点到一个定点的距离相等,则这四个点共圆。 2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。 3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。 4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。 5、同斜边的直角三角形的顶点共圆。 6、若AB、CD 两线段相交于P 点,且PA×PB=PC×PD,则A、B、C、D 四点共圆(相交弦定理的逆定理)。 7、若AB、CD 两线段延长后相交于P。且PA×PB=PC×PD,则A、B、C、D 四点共圆(割线定理)。 8、若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆(托勒密定理的逆定理。 (二)证明 1、若四个点到一个定点的距离相等,则这四个点共圆。 若可以判断出OA=OB=OC=OD,则A、B、C、D 四点在以O 为圆心OA 为半径的圆上。 2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。 若∠A+∠C=180 °或∠B+∠D=180 °,则点A、B、C、D 四点共圆。

3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。 若∠B=∠CDE,则A、B、C、D 四点共圆证法同上。 4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这 两个点和这条线的两个端点共圆。 若∠A=∠D 或∠ABD=∠ACD,则A、B、C、D 四点共圆。 6、若AB、CD 两线段相交于P 点,且PA×PB=PC×PD,则A、B、C、D 四点共圆(相交弦定理的逆定理)。

初三数学圆经典例题

一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法: 求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆: 锐角三角形的外心在,直角三角形的外心在 ,钝角三角形的外心在。 考点5 点和圆的位置关系设圆的半径为r,点到圆心的距离为d,

则点与圆的位置关系有三种。 ①点在圆外?d >r ;②点在圆上?d=r ;③点在圆? d <r ; 【典型例题】 例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。 例2.已知,如图,CD 是直径,?=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。 例3 ⊙O 平面一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。 例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少? 例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长. 例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数. A B D C O · E

九年级数学四点共圆例题讲解

九年级数学四点共圆例题讲解 知识点、重点、难点 四点共圆就是圆得基本内容,它广泛应用于解与圆有关得问题.与圆有关得问题变化多,解法灵活,综合性强,题型广泛,因而历来就是数学竞赛得热点内容。 在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆得有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。因此,掌握四点共圆得方法很重要。 判定四点共圆最基本得方法就是圆得定义:如果A、B、C、D四个点到定点O得距离相等,即OA=OB=OC =OD,那么A、B、C、D四点共圆. 由此,我们立即可以得出 1、如果两个直角三角形具有公共斜边,那么这两个直角三角形得四个顶点共圆。 将上述判定推广到一般情况,得: 2、如果四边形得对角互补,那么这个四边形得四个顶点共圆。 3、如果四边形得外角等于它得内对角,那么这个四边形得四个顶点共圆。 4、如果两个三角形有公共底边,且在公共底边同侧又有相等得顶角,那么这两个三角形得四个顶点共圆。 运用这些判定四点共圆得方法,立即可以推出: 正方形、矩形、等腰梯形得四个顶点共圆。 其实,在与圆有关得定理中,一些定理得逆定理也就是成立得,它们为我们提供了另一些证明四点共圆得方法.这就就是: 1、相交弦定理得逆定理:若两线段AB与CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。 2.割线定理得逆定理:若相交于点P得两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、 C、D四点共圆。 3、托勒密定理得逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD就是圆内接四边形。 另外,证多点共圆往往就是以四点共圆为基础实现得一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际就是同一个圆。 例题精讲 例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。已知P、D、C、E四点共圆,P、E、A、F 四点共圆,求证:B、D、P、F四点共圆。 证明连PD、PE、PF.由于P、D、C、F四点共圆,所以∠BDP = ∠PEC.又由于A、E、P、F四点共圆,所以∠PEC =∠AFP.于就是∠BDP= ∠AFP,故B、D、P、F四点共圆。 例2:设凸四边形ABCD得对角线AC、BD互相垂直,垂足为E,证明:点E关于AB、BC、CD、DA得对称点共圆。 为1 2 ,此变换把E关于AB、BC、 证明以E为相似中心作相似变换,相似比 CD、DA得对称点变为E在AB、BC、CD、DA上得射影P、Q、R、S(如图)、只需证明PQRS就是圆内接四边形。 由于四边形ESAP、EPBQ、EQCR及ERDS都就是圆内接四边形(每个四边形都有一组对角为直角),由E、P、B、Q共圆有∠EPQ = ∠EBQ、由E、Q、C、R共圆有∠ERQ=∠ECQ,于就是∠EPQ+∠ERQ = ∠EBQ+∠ECQ=90°、同理可得∠EPS +∠ERS =90°、从而有∠SPQ+∠QRS =180°,故PQRS就是圆内接四边形。 例3:梯形ABCD得两条对角线相交于点K,分别以梯形得两腰为直径各作一圆,点K位于这两个圆之外,证明:由点K向这两个圆所作得切线长度相等。 证明如图,设梯形ABCD得两腰为AB与CD,并设AC、BD与相应二圆得第二个交点分别为M、N、由于∠AMB、∠CND就是半圆上得圆周角,所以∠AM B=∠CND = 90°.从而∠BMC =∠BNC=90°,故B、M、N、C四点共圆,因此∠MNK=∠ACB.又∠ACB =∠KAD,所以∠MNK =∠KAD、于就是M、N、D、A四点共圆,因此KM·KA = KN·KD、由切割线定理得K向两已知圆所引得切线相等。 例4:如图,A、B为半圆O上得任意两点,AC、BD垂直于直径EF,BH⊥OA,求证:DH=AC、证法一在BD上取一点A',使A'D = AC,则ACDA'就是矩形。连结A'H、AB、OB、由于BD⊥EF、BH⊥OA,所以∠BDO =∠B HO=90°、于就是D、B, H、O四点共圆,所以∠HOB =∠HDB、由于∠AHB =∠AA'B = 90°,所以A、H、A'、B四点共圆。故∠DA'H=∠OAB,因此∠DHA'=∠OBA、而OA = OB,所以∠OBA=∠OAB,于就是∠DHA'=∠D A'H、所以DH=DA',故DH =

(完整word)初三圆的典型例题.docx

圆典型例题精选 【例题 1 】如图所示, AB 是圆 O 的一条弦, OD AB ,垂足为 C ,交圆 O 于点 D ,点 E 在 圆 O 上.(1)若 AOD 52o ,求 DEB 的度数; E ( 2 )若 OC 3 , OA 5 ,求 AB 的长. O AC B D 【例题 2 】如图,线段 第 1 题图 AB 经过圆心 O ,交圆 O 于点 A,C ,点 D 在圆 O 上,连接 AD , BD , ∠ A= ∠ B=30 度. BD 是圆 O 的切线吗?请说明理由. 【例题 3 】已知 AB 为 ⊙ O 的直径, CD 是弦,且 AB ⊥ CD 于点 E .连接 AC 、 OC 、 BC . A ( 1 )请说明: ∠ ACO= ∠ BCD . ( 2 )若 EB=8cm , CD=24cm ,求 ⊙ O 的直径. O E C D B 【例题 4 】如图,梯形 ABCD 内接于 ⊙ O , BC ∥ AD , AC 与 BD 相交于点图E 9 ,在不添加任何辅助线的情况下: (1) 图中共有几对全等三角形,请把它们一一写出来,并选择其中 一对全等三角形进行证明. (2) 若 BD 平分 ∠ ADC ,请找出图中与 △ ABE 相似的所有三角形 (全等三角形除外) . 【例题 5 】如图,在 Rt △ ABC 中, ∠ C=90°, AC=5 ,BC=12 , ⊙ O 的半径为 3. ( 1 )若圆心 O 与 C 重合时, ⊙O 与 AB 有怎样的位置关系? ( 2 )若点 O 沿线段 CA 移动,当 OC 等于多少时, ⊙ O 与 AB 相切?

四点共圆(习题)

圆内接四边形与四点共圆 思路一:用圆的定义:到某定点的距离相等的所有点共圆。→若连在四边形的三边的中垂线相交于一点,那么这个四边形的四个顶点共圆。(这三边的中垂线的交点就是圆心)。 产生原因:圆的定义:圆可以看作是到定点的距离等于定长的点的集合。 基本模型: AO=BO=CO=DO ? A、B、C、D四点共圆(O为圆心) 思路二:从被证共圆的四点中选出三点作一个圆,然后证另一个点也在这个圆上,即可证明这四点共圆。→要证多点共圆,一般也可以根据题目条件先证四点共圆,再证其他点也在这个圆上。 思路三:运用有关性质和定理: ①对角互补,四点共圆:对角互补的四边形的四个顶点共圆。 产生原因:圆内接四边形的对角互补。 基本模型: ∠ + = 180 B)? A、B、C、D四点共圆 ∠D 180 = ∠ + ∠D A(或0 ②张角相等,四点共圆:线段同侧两点与这条线段两个端点连线的夹角相等,则这两个点和线段的两个端点共四个点共圆。 产生原因:在同圆或等圆中,同弧所对的圆周角相等。 方法指导:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角(即:张角)相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。

∠? A、B、C、D四点共圆 = CAB∠ CDB ③同斜边的两个直角三角形的四个顶点共圆,其斜边为圆的直径。 产生原因:直径所对的圆周角是直角。 ∠D = C? A、B、C、D四点共圆 = ∠ 90 ④外角等于内对角,四点共圆:有一个外角等于其内对角的四边形的四个顶点共圆。产生原因:圆内接四边形的外角等于内对角。 基本模型: ∠? A、B、C、D四点共圆 = ECD∠ B

人教版九年级数学圆教学计划

人教版九年级数学圆教学计划2019 圆是一种几何图形。根据定义,通常用圆规来画圆。同圆内圆的半径长度永远相同,圆有无数条半径和无数条直径。接下来我们一起看看人教版九年级数学圆教学计划。人教版九年级数学圆教学计划2019 教学目标: 1、理解圆的描述性定义,了解用集合的观点对圆的定义; 2、理解点和圆的位置关系和确定圆的条件; 3、培养学生通过动手实践发现问题的能力; 4、渗透“观察→分析→归纳→概括”的数学思想方法. 教学重点:点和圆的关系 教学难点:以点的集合定义圆所具备的两个条件 教学方法:自主探讨式 教学过程设计(总框架): 一、创设情境,开展学习活动 1、让学生画圆、描述、交流,得出圆的第一定义: 定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作⊙O,读作“圆O”. 2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义. 从旧知识中发现新问题

观察: 共性:这些点到O点的距离相等 想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形? (1) 圆上各点到定点(圆心O)的距离都等于定长(半径的长r); (2) 到定点距离等于定长的点都在圆上. 定义2:圆是到定点距离等于定长的点的集合. 3、点和圆的位置关系 问题三:点和圆的位置关系怎样?(学生自主完成得出结论) 如果圆的半径为r,点到圆心的距离为d,则: 点在圆上d=r; 点在圆内d 点在圆外d>r. “数”“形” 二、例题分析,变式练习 练习:已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________. 例1 求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上. 已知(略) 求证(略)

初三圆的典型例题

圆典型例题精选 【例题1】如图所示,AB 是圆O 的一条弦,OD AB ⊥,垂足为C ,交圆O 于点D ,点E 在圆O 上.(1)若52AOD ∠=,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长. 【例题2】如图,线段AB 经过圆心O ,交圆O 于点A,C ,点D 在圆O 上,连接AD ,BD , ∠A=∠B=30度.BD 是圆O 的切线吗?请说明理由. 【例题3】已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)请说明:∠ACO=∠BCD . (2)若EB=8cm ,CD=24cm ,求⊙O 的直径. 【例题4】如图,梯形ABCD 内接于⊙O , BC ∥AD ,AC 与BD 相交于点E ,在不添加 任何辅助线的情况下: (1) 图中共有几对全等三角形,请把它们一一写出来,并选择其中 一对全等三角形进行证明. (2) 若BD 平分∠ADC ,请找出图中与△ABE 相似的所有三角形 (全等三角形除外). 【例题5】如图,在Rt △ABC 中,∠C=90°,AC=5,BC=12,⊙O 的半径为3. (1)若圆心O 与C 重合时,⊙O 与AB 有怎样的位置关系? (2)若点O 沿线段CA 移动,当OC 等于多少时,⊙O 与AB 相切? E B D C A O 第 1 题图 图9 E D B A O C

【例题6】推理运算:如图,AB 为圆○直径,CD 为弦,且CD AB ⊥,垂足为H .OCD ∠的平分线CE 交圆○于E ,连结OE . (1)请说明:E 为弧ADB 的中点; (2)如果圆○的半径为1,3CD =,①求O 到弦AC 的距离;②填空:此时圆周上存在 个点到直线AC 的距离为 12 . 【例题7】已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,与AC ?交于点E ,请说明:△DEC 为等腰三角形. 【例题8】如图,已知⊙O 是△ABC 的外接圆,AB 为直径,若PA ⊥AB ,PO 过AC 的中点M .试说明:PC 是⊙O 的切线. 【例题9】已知:如图,AB 是⊙O 的切线,切点为A ,OB 交⊙O 于C 且C 为OB 中点,过C 点的弦CD 使∠ACD =45°,弧AD 的长为2 2 π, 求弦AD 、AC 的长. 【例题10】如图所示,ABC △是直角三角形,90ABC ∠=,以AB 为直径的圆○交AC 于点 E ,点D 是BC 边的中点,连结DE . (1)请说明:DE 与圆○相切; (2)若圆O 的半径为3,3DE =,求AE . A B O C P M 图4 A B C D ·O 45° A B D E O C H B D C E A O

四点共圆例题及答案

证明四点共圆的基本方法 证明四点共圆有下述一些基本方法: 方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆. 方法2 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。) 方法3 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆. 方法4 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理) 方法5 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆. 上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明. 例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H 四点共圆. 证明菱形ABCD的对角线AC和 BD相交于点O,连接OE、OF、OG、OH. ∵AC和BD 互相垂直, ∴在Rt△AOB、Rt△BOC、Rt△COD、 Rt△DOA中,E、F、G、H,分别是AB、 BC、CD、DA的中点,

即E、F、G、H四点共圆. (2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆. 例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC. 求证:B、E、F、C四点共圆. 证明∵DE⊥AB,DF⊥AC, ∴∠AED+∠AFD=180°, 即A、E、D、F四点共圆, ∠AEF=∠ADF. 又∵AD⊥BC,∠ADF+∠CDF=90°, ∠CDF+∠FCD=90°, ∠ADF=∠FCD. ∴∠AEF=∠FCD, ∠BEF+∠FCB=180°, 即B、E、F、C四点共圆. (3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆. 【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数. 解∵四边形ABCD内接于圆,

人教版九年级数学上册教案《圆》

《圆》 圆是常见的几何图形, 是平面几何中基本的图形之一,它具有独特的性质。本章是在学生在小学学过的圆的知识的基础上,系统研究圆的概念和性质,点与圆、 直线与圆的位置关系、正多边形和圆的关系,以及圆的弧长与面积的计算等问题。 本小节是圆这一章的第一节课,主要是研究圆的概念及其相关概念,本节内容是继续研究圆的性质的基础。教材一开始是让学生观察生活中有关圆的形象的物体,结合小学学过的有关圆的知识,通过用圆规画圆的方法导入圆的定义的。圆的定义方法有两种,一种是描述性定义,一种是集合性定义。圆的描述性定义,要让学生用自己的语言尝试表述,教师可以引导学生通过观察画加深理解;圆的集合定义,应通过观察、体会画圆的过程,引导学生从圆和点两个方面去思考得出圆的集合定义。得出圆的定义后,接着介绍圆心、半径、弦、直径、弧、半圆、等圆、等弧等相关性质。教材中的例1是证明四点共圆,只要证明矩形的四个顶点到对角线的交点距离相等即可,进一步让学生体会圆的集合定义的应用。 【知识与能力目标】 1.理解圆、弧、弦、圆心角、圆周角的概念; 2.了解等圆、等弧的概念。

【过程与方法目标】 从感受圆在生活中大量存在到圆的概念的形成过程中,让学生体会圆的不同定义方法,感受圆和实际生活的联系。 【情感态度价值观目标】 在探索圆的概念的过程中让学生体会数学知识无处不在,感受生活中处处有数学。 【教学重点】 对圆的两种定义的理解。 【教学难点】 对圆的集合定义的理解。 多媒体课件、教具等。 一、创设情境,引入新课 问题1 观察下列图形,你能从中找出它们的共同特征吗? 追问:你能再举出一些生活中类似的实例吗? 设计意图:让学生观察图形,感受圆和实际生活的密切联系,为学习圆的相关概念打下基础,同时还可以激发学生的学习热情。 二、探索新知,形成概念 问题2 观察下列画圆的过程,你能由此说出圆的形成过程吗?

(完整)初三数学有关圆的经典例题

初三数学 有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE = == = 32322 2 ∵,∴∠,OA OAD AD OA == =132 cos cos ∠OAE AE OA = = 22 ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形; ()22 求的值AD BC 分 析 : ()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;

(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF ∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC 2 2 122=== 解:(1)证明,作直径DE 交AB 于F ,交圆于E ∵为的中点,∴⊥,D AB AB DE AF FB ? = 又∵AD=DC ∴∥,DF BC DF BC = 12 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA ∴ ,即·AD DE DF AD AD DE DF ==2 ∵,DE R DF BC ==21 2 ∴·,故AD BC R AD BC R 2 2 == 例3. 如图,在⊙O 中,AB=2CD ,那么( ) A A B CD B AB CD ..?>? ?

新人教版九年级数学《圆》单元测试题

O B A 第4题图 D C O 第5题图 C B A O 第6题图 C B A 第8题图 O E D C B A ⑤OP 平分AB. 圆测试题 一、选择题: 1、下列命题:①直径是弦;②弦是直径;③半圆是弧;④弧是半圆.其中真命题有( )。 A 、1个 B 、2个 C 、3个 D 、4个 2、如图4,⊙O 的直径AB 垂直于弦CD 于点P ,且点P 是半径OB 的中点,CD =6cm ,则直径AB 的长是( )。 A 、错误!未找到引用源。cm B 、4错误!未找到引用源。cm C 、2错误!未找到引用源。cm D 、4cm 3、如 图5,点A 、B 、C 在⊙O 上, AO ∥BC ,∠OAC =20°, 则 ∠AOB 的度数是( )。 A 、10° B 、20° C 、40° D 、70° 4、如图6,△ABC 三顶点在⊙O 上,∠C =45°,AB =4,则⊙O 的半径是( )。 A 、错误!未找到引用源。 B 、2错误!未找到引用源。 C 、4错误!未找到引用源。 D 、2 5、如图8,AB 是⊙O 的直径,⊙O 过BC 的中点D ,DE ⊥AC 于E ,连结AD ,则下列结论正确的个数是 。 ①AD ⊥BC ;②∠EDA =∠B ;③OA =AC ;④DE 是⊙O 的切线。 A 、1个 B 、2个 C 、3个 D 、4个 6、从⊙O 外一点P 向⊙O 作两条切线PA 、PB ,切点分别为A 、B.下列结论:①PA =PB ;②OP 平分∠APB ;③AB 垂直平分OP ; ④△AOP ≌△BOP ; 其中正确结论的个数是 。 A 、5 B 、4 C 、 3 D 、2 7、若两圆的半径之比为 1∶2,当两圆相切时,圆心距为6cm ,

人教版初中数学圆的经典测试题附答案

人教版初中数学圆的经典测试题附答案 一、选择题 1.如图,在矩形ABCD 中,6AB =,对角线10AC =,O e 内切于ABC ?,则图中阴影部分的面积是( ) A .24π- B .242π- C .243π- D .244π- 【答案】D 【解析】 【分析】 先根据勾股定理求出BC ,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设 O e 的半径为r ,利用面积法求出r=2,再利用三角形ABC 的面积减去圆O 的面积得到阴 影的面积. 【详解】 ∵四边形ABCD 是矩形, ∴∠B=90°, ∵6AB =,10AC =, ∴BC=8, 连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC , 设O e 的半径为r , ∵O e 内切于ABC ?, ∴OH=OE=OF=r , ∵11 ()22 ABC S AB BC AB AC BC r =?=++?V , ∴ 11 68(6108)22r ??=++?, 解得r=2, ∴O e 的半径为2, ∴21 68-2 224-4ABC O S S S ππ=-=???=V e 阴影, 故选:D .

【点睛】 此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键. 2.在Rt△ABC中,∠ACB=90°.AC=8,BC=3,点D是BC边上动点,连接AD交以CD为直径的圆于点E,则线段BE长度的最小值为( ) A.1 B.3 2 C.3D. 5 2 【答案】A 【解析】 【分析】 根据直径所对的圆周角为直角可知∠CED=90°,则∠AEC=90°,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,根据直角三角形斜边上的中线等于斜边的一半可得 OE=1 2 AC=4,在Rt△OBC中,根据勾股定理可求得OB=5,即可得解. 【详解】 解:连接CE, ∵E点在以CD为直径的圆上, ∴∠CED=90°, ∴∠AEC=180°-∠CED=90°, ∴E点也在以AC为直径的圆上, 设以AC为直径的圆的圆心为O,若BE最短,则OB最短,∵AC=8, ∴OC=1 2 AC=4, ∵BC=3,∠ACB=90°, ∴22 OC BC ,

最新九年级数学四点共圆例题讲解

精品文档 九年级数学四点共圆例题讲解 知识点、重点、难点 四点共圆是圆的基本内容,它广泛应用于解与圆有关的问题.与圆有关的问题变化多,解法灵活,综合性强,题型广泛,因而历来是数学竞赛的热点内容。 在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆的有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。因此,掌握四点共圆的方法很重要。 、、、===OCOB四个点到定点DO 判定四点共圆最基本的方法是圆的定义:如果A的距离相等,即BOAC、、、D四点共圆.,那么ACB OD 由此,我们立即可以得出 1.如果两个直角三角形具有公共斜边,那么这两个直角三角形的四个顶点共圆。 将上述判定推广到一般情况,得: 2.如果四边形的对角互补,那么这个四边形的四个顶点共圆。 3.如果四边形的外角等于它的内对角,那么这个四边形的四个顶点共圆。 4.如果两个三角形有公共底边,且在公共底边同侧又有相等的顶角,那么这两个三角形的四个顶点共圆。 运用这些判定四点共圆的方法,立即可以推出: 正方形、矩形、等腰梯形的四个顶点共圆。 其实,在与圆有关的定理中,一些定理的逆定理也是成立的,它们为我们提供了另一些证明四点共圆的方法.这就是: 、、、D四点共圆。B =CE·ED,则AC· 1.相交弦定理的逆定理:若两线段AB和CD相交 于E,且AEEB、、、BPD,则APA,且·PB =PC 2.割线定理的逆定理:若相交于点P的两线段PB·PD上各有一点A、C 、D四点共圆。C 3.托勒密定理的逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD是圆内接四边形。 另外,证多点共圆往往是以四点共圆为基础实现的一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际是同一个圆。 例题精讲 、、、、、、、、、、F四点共圆,上。已知PPDAC1例:如图,P为△ABC内一点,DEEF分别在BCECAAB、、、

初三数学-有关圆的经典例题

初三数学有关圆的经典例题 1. 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB与AC有不同的位置关系。 解:由题意画图,分AB、AC在圆心O的同侧、异侧两种情况 讨论, 当AB、AC在圆心O的异侧时,如下图所示, 过O作OD⊥AB于D,过O作OE⊥AC于E, ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB、AC在圆心O同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC的顶点A、B在⊙O上,⊙O的半径为R,⊙O与AC交于D, (1)求证:△ABC是直角三角形; 分析: 则AF=FB,OD⊥AB,可证DF是△ABC的中位线;

(2)延长DO交⊙O于E,连接AE,由于∠DAE=90°,DE⊥AB,∴△ADF 解:(1)证明,作直径DE交AB于F,交圆于E 又∵AD=DC ∴AB⊥BC,∴△ABC是直角三角形。 (2)解:连结AE ∵DE是⊙O的直径 ∴∠DAE=90° 而AB⊥DE,∴△ADF∽△EDA 例3. 如图,在⊙O中,AB=2CD,那么() 分析: 解:解法(一),如图,过圆心O作半径OF⊥AB,垂足为E,

∵ 在△AFB中,有AF+FB>AB ∴选A。 解法(二),如图,作弦DE=CD,连结CE 在△CDE中,有CD+DE>CE ∴2CD>CE ∵AB=2CD,∴AB>CE ∴选A。 例 4. 求CD的长。 分析:连结BD,由AB=BC,可得DB平分∠ADC,延长 AB、DC交于E,易得△EBC∽△EDA,又可判定AD是⊙O 的直径,得∠ABD=90°,可证得△ABD≌△EBD,得DE=AD,利用△EBC∽△EDA,可先求出CE的长。 解:延长AB、DC交于E点,连结BD

相关文档
最新文档