探索三角形全等的条件教案

合集下载

4.3探索三角形全等的条件(教案)

4.3探索三角形全等的条件(教案)
(二)解三角形全等的基本概念。全等三角形是指两个三角形在形状和大小上完全相同。它是解决几何问题、理解图形关系的基础。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用SSS和SAS条件判断两个三角形全等,并说明全等三角形在几何证明中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形全等在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
4.通过实际操作,学会使用直尺和圆规绘制全等三角形;
5.能够运用全等三角形的性质解决实际问题。
本节课将结合实际案例,引导学生探索三角形全等的条件,培养他们的观察、分析和解决问题的能力。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生的空间想象能力,通过观察和思考全等三角形的特征,提高他们对几何图形的认知和理解;
-学生在识别全等条件时,可能会混淆SSS和SAS,特别是在实际题目中,需要教师在教学过程中通过具体例题进行反复讲解和练习。
-学生在应用全等条件时,可能会忽视角度的重要性,误认为只有边长相等即可判断全等,需要教师强调角度的必要性。
-难点2:全等三角形的证明过程
-学生在证明过程中可能会出现逻辑错误,如错误地假设两个三角形的其他边或角相等,而未基于给定的全等条件进行推理。
3.重点难点解析:在讲授过程中,我会特别强调SSS和SAS这两个全等条件。对于难点部分,我会通过具体例题和比较来帮助大家理解如何识别和应用这些条件。

探索三角形全等的条件优秀教案

探索三角形全等的条件优秀教案

探究三角形全等的条件【教课目的】使学生掌握并初步学会应用三角形全等的判断——边角边公义【教课要点】1.指导学生剖析问题,找寻判断三角形全等的条件。

2.三角形全等证明的书写格式【教课难点】1.指导学生剖析问题,找寻判断三角形全等的条件。

2.三角形全等证明的书写格式【教课方法】多媒体教课法及实践操作法【教课器具】折纸三角形【教课过程】一、复习发问1.如何的两个三角形是全等三角形?2.全等三角形的性质?3.指出图中各对全等三角形的对应边和对应角,并说明经过如何的变换能使它们完整重合:图( 1)中:△ ABD≌△ ACE,AB与 AC是对应边;图( 2)中:△ ABC≌△ AED,AD与 AC是对应边。

二、新课三角形全等的判断1.全等三角形拥有“对应边相等、对应角相等”的性质。

那么,如何才能判断两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?能否需要已知“三条边相等和三个角对应相等”?此刻我们用图形变换的方法研究下边的问题:如图 2, AC.BD订交于 O,AO、BO、 CO、DO的长度如图所标,△ ABO和△ CDO能否能完整重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO假如把△ OAB绕着 O点顺时针方向旋转,由于OA=OC,所以能够使 OA与 OC重合;又由于∠AOB=∠ COD, OB =OD,所以点 B 与点 D重合。

这样△ ABO与△ CDO就完整重合。

(附注:别的,还能够图 1(1)中的△ ACE绕着点 A 逆时针方向旋转∠ CAB的度数,也将与△ ABD重合。

图 1( 2 )中的△ ABC绕着点 A 旋转,使 AB与 AE重合,再把△ ADE沿着 AE( AB)翻折 180°。

两个三角形也可重合)由此,我们获得启迪:判断两个三角形全等,不需要三条边对应相等和三个角对应相等。

并且,从上边的例子能够惹起我们猜想:假如两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等。

探索三角形全等的条件教案

探索三角形全等的条件教案

探索三角形全等的条件教案一、教学目标1.了解三角形全等的定义和性质;2.掌握三角形全等的判定方法;3.能够应用三角形全等的条件解决实际问题。

二、教学重点1.三角形全等的定义和性质;2.三角形全等的判定方法。

三、教学难点1.三角形全等的判定方法;2.应用三角形全等的条件解决实际问题。

四、教学过程1. 导入新知识教师可以通过提问的方式引导学生回忆三角形的定义和性质,然后引出三角形全等的概念。

2. 学习三角形全等的定义和性质教师可以通过讲解和演示的方式,让学生了解三角形全等的定义和性质。

例如:•定义:如果两个三角形的三条边分别相等,则这两个三角形全等。

•性质:全等的三角形的对应角度相等,对应边也相等。

3. 学习三角形全等的判定方法教师可以通过讲解和演示的方式,让学生掌握三角形全等的判定方法。

例如:•SSS判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。

•SAS判定法:如果两个三角形的两条边和夹角分别相等,则这两个三角形全等。

•ASA判定法:如果两个三角形的两个角和夹边分别相等,则这两个三角形全等。

•RHS判定法:如果两个三角形的一条直角边和另外一条边分别相等,则这两个三角形全等。

4. 应用三角形全等的条件解决实际问题教师可以通过实例的方式,让学生应用三角形全等的条件解决实际问题。

例如:•已知两个三角形的两个角和夹边分别相等,求这两个三角形的其他角和边是否相等。

•已知两个三角形的一条边和两个角分别相等,求这两个三角形的其他角和边是否相等。

5. 总结归纳教师可以通过提问的方式,让学生总结归纳三角形全等的定义、性质和判定方法。

五、教学评价教师可以通过课堂练习、小组讨论、个人作业等方式,对学生的掌握情况进行评价。

六、教学反思教师可以对本节课的教学过程进行反思,总结教学经验,为今后的教学提供参考。

《探索三角形全等的条件》教案

《探索三角形全等的条件》教案

探索三角形全等的条件一、教学内容《探索三角形全等的条件》是北师大版初中数学七年级下册第四章第三节的内容。

本节共三课时,我所授的第一课时的内容包括(1)经历探索三角形全等的条件归纳总结出“边边边”定理(2)“边边边”定理的运用,(3)三角形的稳定性及应用。

二、教学目标由于学生是初一的孩子,对几何的认识还很限,这是第一次系统的学习三角形,所以根据学生已有的认知基础,以及教学内容的地位和作用,我拟定以下教学目标:(1)知识目标:经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用,了解三角形的稳定性及其应用。

(2)能力目标:在探索三角形全等条件的过程中,让学生体验分类的思想有条理地思考、分析、表达、解决问题的能力,逐步培养学生推理意识和能力。

(3)情感目标:鼓励学生敢于实践,勇于发现,大胆探索,合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣。

三、教学重点:经历探索三角形全等条件的过程。

掌握三角形全等的“边边边”条件并初步学会运用。

四、教学难点:对三角形全等条件的分析和探索。

五、教学媒体:课件。

六、教具学具:自制三角形和四边形模型、学具纸。

七、教学过程:1.找一找:回顾全等三角形相关的知识。

2.想一想:画三角形与已知三角形全等的条件。

3.做一做(1)只给出一个条件.(教师使用多媒体演示引导,学生观察思考在只给出一个条件下作出的三角形是否全等)a.一条边b.一个角(2)两个条件。

(学生在学具纸上按要求动手做图,组内交流相同条件下作出的图形是否全等,然后汇报得出的结论,教师再使用多媒体演示和总结)a.一个角和一条边(一内角30°和一边长3cm的三角形)b.两个内角(一内角30°和一内角50°的三角形)c.两条边(两条边长分别是4cm,6cm)d.学生探索汇报后教师小结上述的情况得到的几个三角形不一定全等(3)三个条件。

学生先讨论给出三个条件画三角形,有哪几种情况?三个内角相等、三条边相等、两条边和一个角相等、两个内角和一条边相等a.比一比三个内角(学生30°,60°,90°的三角尺,先组内交流同等条件下的三角尺比一比是否全等,后与教师同等条件下的三角尺比一比是否全等。

八年级数学教案:探索三角形全等的条件 ( 全8课时 )

八年级数学教案:探索三角形全等的条件 ( 全8课时 )

合吗?(2)重新利用这张长方形剪一个直角三角形,要使得全班同学剪下的都能够重合,你有什么办法?(3)剪下直角三角形,验证是否能够重合,并能得出什么结论?5.如图,△ABC 与△DEF 、△MNP 能完全重合吗?(1)直觉猜想哪两个三角形能完全重合? (2)再用工具测量,验证猜想是否正确.6.按下列作法,用直尺和圆规作△ABC ,使∠A =∠α,AB =a ,AC =b .作法:1.作∠MAN =∠α.2.在射线AM 、AN 上分别作线段AB =a ,AC =b . 3.连接BC .△ABC 就是所求作的三角形.图形:你作的三角形与其他同学作的三角形能完全重合吗? 三.交流展示通过上面几个活动你对三角形全等所需要的条件有什么看45︒31.5CB A60︒3DEF1.5P45︒31.5MN课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(3)教学目标1.掌握三角形全等的条件“ASA”;会利用“ASA”进行有条理的简单的推理;2.通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心.教学重点掌握三角形全等的条件“ASA”,并能利用它们判定三角形是否全等.教学难点探索三角形全等的条件“ASA”的过程及应用教学方法教具准备教学课件教学过程个案补充一.自主先学:(1)要证明两个三角形全等,需要几个条件?(2)上节课我们学习了哪些条件可以构成全等(3)请你们猜想,构成全等还有哪些条件组合?二.探究交流1.调皮的小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?2.粗心的小明不小心将一块三角形模具打碎了,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?3.请你和小明一起画:用圆规和直尺画△ABC,使AB=a,∠A=∠α,∠B=∠β.(1)作AB=a.(2)在AB的同一侧分别作∠MAB=∠α,∠NBA=∠β,AM、BN相交于点C.(3)△ABC就是所求作的三角形.以上三个问题回答完毕了,你有什么发现?基本事实两角及其夹边分别相等的两个三角形全等(ASA)三.交流展示1.说一说图中有几对全等三角形?你能找出它们并说出理由吗?2.如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么(以填空方式回答)?四.拓展提高:已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE//AC,DF//AB.求证:BE=DF,DE=CF.五.小结与反思:这节课你学到了什么?哪些三个条件的组合是你还想去探索求证的?课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(4)1.掌握三角形全等的条件“AAS”,会用“AAS”进行有条理的简单的推理;教学目标2.学会根据题目的条件选择适当的定理进行全等的证明.教学重点掌握三角形全等的条件“AAS”,并能利用它们判定三角形是否全等.教学难点在解题时选择适当定理应用.教学方法教具准备教学课件教学过程个案补充一. 自主先学:1.回忆上节课内容,用自己的语言表达出来!2.解决下面的问题,你有什么发现吗?已知:如图,∠A=∠D,∠ACB=∠DBC,求证:AB=DC.二.探究交流探索新知一已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.基本推论:两角及其中一角的对边分别相等的两个三角形全等.简称“角角边”或“AAS”.在△ABC与△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).三.交流展示1.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.四.拓展提高:4.已知:如图,△ABC ≌△A 'B 'C ',AD 和A 'D '分别是△ABC 和△A 'B 'C '中∠A 和∠A’的角平分线.求证:AD =A 'D '.五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期A 'B ' D 'C 'AB DC AB DC A 'B'D 'C '教学课题 1.3 探索三角形全等的条件(5)教学目标1.会用“角边角”“角角边”证明两个三角形全等,进而证明线段或角相等;2.渗透综合、分析等思想方法,从而提高学生演绎推理的条理性和逻辑性.教学重点用“角边角”“角角边”定理证明两个三角形全等,进而证明线段或角相等教学难点角边角”“角角边”定理的灵活应用教学方法教具准备教学课件教学过程个案补充一.自主先学:如图,已知AD平分∠BAC,要使△ABD≌△ACD,(1)根据“SAS”需添加条件________;(2)根据“ASA”需添加条件________;(3)根据“AAS”需添加条件________.二.探究交流1.如图,∠A=∠B,∠1=∠2,EA=EB,你能证明AC=BD吗?2.如图,点C、F在AD上,且AF=DC,∠B=∠E,∠A=∠D,你能证明AB=DE吗?三.交流展示例1: 已知:如图,点A、B、C、D在一条直线上,EA∥FB,EC∥FD,EA=FB.求证:AB=CD.例2;已知:如图,AB=AC,点D、E分别在AB、AC上,∠B =∠C.求证:DB=EC变式一已知:∠1=∠2,∠B=∠C,AB=AC.求证:AD=AE,∠D=∠E.变式二已知:∠1=∠2,∠B=∠C,AB=AC,D、A、E在一条直线上.求证:AD=AE,∠D=∠E.四.拓展提高:1.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.2.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F.求证:EF+AE=CF.五.小结与反思:课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(6)教学目标1.掌握“边边边”定理.理解三角形的稳定性和它在生产、生活中的应用;教会学生如何利用尺规来完成“已知三边画三角形”,如何添加辅助线构造全等三角形;2.培养学生观察、操作、分析、综合、抽象、概括和发散思维的能力;感悟转化的数学思想方法.教学重点探究三角形全等的方法及运用“边边边”条件证明两个三角形全等.教学难点边边边”定理的应用和转化意识的形成及辅助线的添加.教学方法教具准备教学课件教学过程个案补充一.自主先学:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,小明该怎么办呢?二.探究交流实践探索一:已知三条线段a、b、c,以这三条线段为边画一个三角形,并把你画好的三角形剪下,和其他同学进行比较,看剪下的三角形是否能完全重合.通过以上的操作你发现了什么?实践探索二:教师出示三角形、四边形木架,让学生动手拉动木架的两边.教师提出问题:(1)演示实验说明了什么?教师总结:三角形的这个性质叫做三角形的稳定性.(2)你能举出生活中利用三角形稳定性的例子吗?三.交流展示1.下列图形中,哪两个三角形全等?2.如图,C 点是线段BF 的中点,AB =DF ,AC =DC .△ABC 和△DFC 全等吗?变式1若将上题中的△DFC 向左移动(如图),若AB =DF ,AC =DE ,BE =CF ,问:△ABC ≌△DFE 吗 ?变式2若继续将上题中的△DFC 向左移动(如图),若AB =DC ,AC =DB ,问:△ABC ≌ △DCB 吗 ?3.已知:如图, 在△ABC 中,AB =AC ,求证:∠B =∠C .四.拓展提高:1.已知:如图,AB =CD ,AD =CB ,求证:∠B =∠D .117667119942.如图,AC 、BD 相交于点O ,且AB =DC ,AC =DB .求证:∠A =∠D .五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期CDOAB教学课题 1.3 探索三角形全等的条件(7)教学目标1.会作一个角的角平分线,能证明作法的正确性,并在经历“观察——操作——证明”的活动过程中养成善于分析、乐于探究和理性思考的良好习惯;2.会过一点作已知直线的垂线,能证明作法的正确性,体会与“作一个角的角平分线”作法的联系,在比较中探究作法;3.能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.教学重点能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.”.教学难点几何图形信息转化为尺规操作教学方法教具准备教学课件教学过程个案补充一. 自主先学:工人师傅常常利用角尺平分一个角.如图(1),在∠AOB的两边OA、OB上分别任取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.请同学们说明这样画角平分线的道理.二.探究交流1.说请按序..说出木工师傅的“操作”过程.2.作与写用直尺和圆规在图(2)中按序..将木工师傅的“操作”过程作出来,并写出作法.3.证请证明你的作法是正确的.4.用用直尺和圆规完成以下作图:(1)在图(3)中把∠MON四等分.图(1)(2)在图(4)中作出平角∠AOB 的平分线.说明:过直线上一点作这条直线的垂线就是作以这点为顶点的平角的角平分线.1.观察思考.在图(2)作图的基础上,作过C 、D 的直线l (如图(5)),观察图中射线OM 与直线l 的位置关系,并说明理由.2.问题变式.你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(6),经过直线AB 外一点P 作AB 的垂线PQ ). 3.比较分析.引导学生比较新旧两个问题之间的联系,寻求解决新问题的策略. 4.作图与证明.1 以点P 为圆心,适当的长为半径作弧,使它与AB 交于C 、D .2 分别以点C 、D 为圆心,大于12CD 的长为半径作弧,两弧交于点Q .3 作直线PQ .∴直线PQ 就是经过直线AB 外一点P 的AB 的垂线(如图(7)). (2)证明略.5.归纳总结.图(2)O BA 图(4)NOM图(3)(图7)QDC BAPMDCBOA图(5)l图(6)BAP课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(8)教学目标 1.利用尺规作图,掌握已知斜边、直角边画直角三角形的画图方法; 2.经历操作、实验、观察、归纳,证明斜边、直角边(HL )定理;3.用HL 及其他三角形全等的判定方法进行证明和计算,发展演绎推理的能力. 教学重点 斜边、直角边”定理的证明和应用. 教学难点 斜边、直角边”定理的证明和应用.教学方法教具准备教学课件教 学 过 程个案补充一.自主先学:1.判定两个三角形全等的方法: 、 、 、___ .2.如图,在Rt △ABC 中,直角边是 、 , 斜边是___ 3.如何将一个等腰三角形变成两个全等的直角三角形? 4.如图,在Rt △ABC 、Rt △DEF 中,∠B =∠E =90°, (1)若∠A =∠D ,AB =DE 则△ABC ≌△DE ( ) (2)若∠A =∠D ,BC =EF ,则△ABC ≌△DEF ( ) (3)若AB =DE ,BC =EF ,则△ABC ≌△DEF ( ).上面的每一小题,都只添加了两个条件,就使两个直角三角形全等,你还能添加哪两个不同的条件使这两个直角三角形全等?二.探究交流探索活动一. (1)交流、操作.用直尺和圆规作Rt △ABC ,使∠C =90°,CB =a ,AB =c .(2)思考、交流.①△ABC 就是所求作的三角形吗?BADE C F。

探索三角形全等的条件优秀教案

探索三角形全等的条件优秀教案

探索三角形全等的条件
(二)分组讨论,揭示新知(做一做)
1.按三角形“边”、“角”
元素进行分类:
活动一:
(1)提出问题:(给出下列
条件,能画出全等的三角形吗?)
一个条件:一边、一角。

(2)分析问题:
学生画图有一边长为3厘米
的三角形,进行观察,各小组比
较组内三角形是否全等。

再画有一角为30°的三角
形,然后比较。

(最后PPT演示)
(3)解决问题:
小组讨论,得出结论。

(只
满足一个角或一条边对应相等的
两个三角形不一定全等)
活动二
(1)提出问题:(给出下列
条件,能画出全等的三角形吗?)
两个条件:两边、两角、一
边一角。

(2)分析问题:
学生画图,观察,比较各小
组的三角形是否全等。

(3)解决问题:
小组讨论,得出结论。

(只
满足两条边或两个角或一条边和
一个角对应相等的两个三角形不
一定全等)
活动三:(议一议)
(1)提出问题:
画图。

画图、剪纸、
交流、探索。

讨论、归纳。

1.让学生体验
分类的思想,通过画
图、观察、比较这些
动手实践的活动中
进行推理、交流,在
条件由少到多的过
程中逐步自主探索
出最后结论。

2.老师巡视,
指导有困难的同学。

3.通过分组讨
论进行合作交流的
过程中,激活学生思
维,感受反例的作
用,培养学生的合作
精神和表达能力。

数学全等三角形教案8篇

数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:探索三角形全等的条件
三、巩固提高
(三)补例如图:
AB=AC
BD=CD
△ABD与△ACD全等吗?为什么?学生独立思
考后合作探

加深对SSS
的应用
四、拓展应用(四)举例说明三角形的稳定性在生产和生
活中的应用
学生畅所欲

培养学生的
创新精神,增
强学生的合
作意识。

五、收获体会
六、布置作业(五)本节课的收获:
1、经历探索三角形全等的条件—SSS的过程。

2、了解三角形稳定性及其在生产和生活中的广泛应用。

3、会用SSS判断两个三角形是否全等?
4、已知三边长,会用直尺和圆规作三角形。

相关文档
最新文档