全等三角形的性质和判定教案教学内容

合集下载

全等三角的性质和判定教案

全等三角的性质和判定教案

全等三角形的性质与判定教案教学目标:1. 知识与技能:学生能够理解并掌握全等三角形的定义及基本性质。

学生能够识别并应用全等三角形的判定方法,包括SSS、SAS、ASA、AAS等。

2. 过程与方法:通过观察、操作、讨论等教学活动,培养学生的空间想象能力和逻辑推理能力。

引导学生通过合作学习,共同探讨和解决问题,提升团队协作能力。

3. 情感态度与价值观:激发学生对数学的兴趣和好奇心,培养严谨的数学思维。

培养学生勇于探索、敢于质疑的科学精神。

教学重点:全等三角形的定义和基本性质。

全等三角形的判定方法(SSS、SAS、ASA、AAS)。

教学难点:正确理解和应用全等三角形的判定方法。

在实际问题中准确识别和应用全等三角形的性质。

教学准备:多媒体课件、教学用具(如直尺、圆规、三角形纸片)、学生练习册。

教学过程:一、导入新课1. 生活实例引入:展示生活中常见的全等现象,如书本封面、地砖等,引导学生观察并思考。

2. 提问:这些图形有什么共同点?引出全等三角形的概念。

二、讲授新课1. 全等三角形的定义:两个能够完全重合的三角形称为全等三角形。

2. 全等三角形的性质:对应边相等。

对应角相等。

对应边上的高、中线、角平分线、垂直平分线等对应相等。

3. 全等三角形的判定方法:SSS(边边边):三边对应相等的两个三角形全等。

SAS(边角边):两边及它们之间的夹角对应相等的两个三角形全等。

ASA(角边角):两角及它们的夹边对应相等的两个三角形全等。

AAS(角角边):两角及其中一角的对边对应相等的两个三角形全等。

4. 例题讲解:通过例题演示如何应用全等三角形的判定方法。

三、巩固练习1. 基础练习:学生独立完成一些简单的判定题,检验对全等三角形判定方法的理解。

2. 小组合作:分组讨论一些稍复杂的实际问题,引导学生利用全等三角形的性质解决问题。

四、课堂小结1. 回顾知识点:总结全等三角形的定义、性质和判定方法。

2. 强调难点:强调在判定全等三角形时需要注意的细节和易错点。

八年级数学上册《全等三角形的判定SAS》教案、教学设计

八年级数学上册《全等三角形的判定SAS》教案、教学设计
3.教师对学生的讨论进行点评,强调关键点,并解答学生的疑问。
(四)课堂练习
1.教师出示几道具有代表性的习题,要求学生独立完成。
a.判断以下两个三角形是否全等,并说明理由。
b.运用SAS判定方法,证明以下两个三角形全等。
c.运用全等三角形的性质和判定方法解决实际问题。
2.教师对学生的解答进行点评,针对错误进行讲解,帮助学生掌握正确的方法。
3.采用小组合作、讨论交流等形式,培养学生合作解决问题的能力,提高学生的数学表达和逻辑推理能力。
4.通过解决实际问题,让学生体会数学与生活的紧密联系,培养学生的数学应用意识。
(三)情感态度与价值观
在本章节的学习中,学生将形成以下情感态度与价值观:
1.培养学生对数学学科的兴趣,激发学生主动探索、积极思考的学习热情。
因此,在教学过程中,教师应关注学生的个体差异,针对不同学生的需求进行分层教学,注重培养学生的几何直观和逻辑思维能力,提高学生对全等三角形判定方法的掌握和应用。
三、教学重难点和教学设想
(一)教学重点
1.全等三角形的定义及判定方法SAS的理解与应用。
2.对应边和对应角的识别,以及如何运用SAS判定等三角形。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结全等三角形的判定方法SAS及其应用。
2.学生分享自己在学习本节课过程中的收获和感悟,以及遇到的困难和问题。
3.教师针对学生的总结,进行补充和强调,确保学生对本节课的知识点有全面、深入的理解。
4.教师布置课后作业,要求学生完成相关的练习题,巩固所学知识。
八年级数学上册《全等三角形的判定SAS》教案、教学设计
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定方法SAS(边角边)。

浙教版七年级数学下册14全等三角形教案

浙教版七年级数学下册14全等三角形教案

浙教版七年级数学下册14全等三角形教案一、教学内容本节课的教学内容选自浙教版七年级数学下册第14章“全等三角形”。

本章主要内容包括全等三角形的概念、全等三角形的性质、全等三角形的判定方法以及全等三角形在几何中的应用。

本节课将重点讲解全等三角形的概念和性质,并通过实例让学生掌握全等三角形的判定方法。

二、教学目标1. 理解全等三角形的概念,掌握全等三角形的性质;2. 学会使用SSS、SAS、ASA、AAS四种判定方法判断两个三角形是否全等;3. 能够运用全等三角形的性质解决实际问题。

三、教学难点与重点重点:全等三角形的概念和性质,全等三角形的判定方法。

难点:全等三角形的判定方法的运用和实际问题的解决。

四、教具与学具准备教具:黑板、粉笔、三角板、多媒体设备。

学具:笔记本、尺子、圆规、三角板、剪刀。

五、教学过程1. 实践情景引入:教师展示一个剪过的三角形,让学生观察并思考:如何通过剪切和拼接,将这个三角形变成另一个三角形?2. 概念讲解:3. 判定方法讲解:教师引导学生思考:如何判断两个三角形是否全等?学生通过观察和讨论,可以得出SSS(三边相等)、SAS(两边和夹角相等)、ASA (两角和一边相等)、AAS(两角和一边对应相等)四种判定方法。

教师对每种判定方法进行讲解,并通过实例进行演示。

4. 随堂练习:教师给出几个判定全等三角形的实例,让学生独立判断并说明理由。

教师选取部分学生的答案进行点评和讲解。

5. 例题讲解:教师给出一个应用全等三角形的例题,引导学生运用全等三角形的性质和判定方法进行解答。

教师引导学生思考:如何运用全等三角形的性质和判定方法?如何找到合适的判定方法?如何说明理由?6. 作业布置:教师布置几个关于全等三角形的练习题,让学生课后独立完成。

六、板书设计板书设计如下:全等三角形概念:两个三角形完全相同性质:1. 对应边相等2. 对应角相等3. 对应边和对应角都相等判定方法:1. SSS(三边相等)2. SAS(两边和夹角相等)3. ASA(两角和一边相等)4. AAS(两角和一边对应相等)七、作业设计1. 判断题:(1)两个三角形如果三边相等,那么它们一定全等。

4.2-4.5全等三角形的性质与判定判定(教案)

4.2-4.5全等三角形的性质与判定判定(教案)
在学生小组讨论环节,我发现有些学生过于依赖教材,缺乏独立思考。针对这一问题,我将在下一节课中引导学生从不同角度思考问题,培养他们的创新意识和解决问题的能力。
同时,我也注意到,本节课的实践活动和例题较为单一,未能涵盖所有判定方法。在今后的教学中,我将增加更多类型的实践题目,让学生全面掌握全等三角形的判定方法。
举例:通过多媒体教学、实物演示等方法,帮助学生建立空间观念,提高抽象思维能力。
(4)几何直观与逻辑推理能力:学生在解题过程中,需要运用几何直观和逻辑推理能力。
举例:引导学生通过观察、分析、归纳,培养几何直观;在讲解过程中,强调逻辑推理的重要性,提高学生推理能力。
四、教学流程
(一)导入新课(用时5分钟)
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法(SSS、SAS、ASA、AAS、HL)和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示全等三角形的基本原理。
五、教学反思
在今天这节课中,我们探讨了全等三角形的性质与判定。整体来看,学生的学习效果还是不错的,但我也发现了一些需要改进的地方。
首先,关于全等三角形的定义和性质,大多数学生能够理解并掌握。但在实际应用时,部分学生仍然会混淆对应角和对应边。在接下来的教学中,我需要加强对这一知识点的巩固,通过更多实际例题和练习,帮助学生更好地运用全等三角形的性质。
1.加强对全等三角形性质的理解和应用;
2.提高学生选择合适判定方法的能力;
3.培养学生的口头表达和独立思考能力;

全等三角形数学教案

全等三角形数学教案

全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。

2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。

3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。

二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。

2. 教学难点:准确判断两个三角形是否全等。

三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。

然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。

(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。

2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。

(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。

以此来帮助他们理解和掌握全等三角形的定义和性质。

(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。

(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。

四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。

同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。

八年级数学下册《直角三角形全等的判定》教案、教学设计

八年级数学下册《直角三角形全等的判定》教案、教学设计
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中常见的直角三角形应用,如楼梯、桥梁等,引导学生观察和思考直角三角形的特征及其在全等判定中的应用。
2.提问:“同学们,我们已经学过全等三角形的判定方法,那么直角三角形有哪些特殊的地方呢?如何判断两个直角三角形全等?”通过问题引导学生回顾旧知,为新课的学习做好铺垫。
3.引入本节课的教学目标,让学生明确学习直角三角形全等判定的意义和作用。
(二)讲授新知
1.通过具体的直角三角形例子,讲解SAS、ASA、AAS和HL四种判定方法,让学生理解并掌握这四种方法的含义和应用。
- SAS:已知两个直角三角形的两边和夹角相等,可以判定这两个三角形全等。
- ASA:已知两个直角三角形的夹角和两边相等,可以判定这两个三角形全等。
三、教学重难点和教学设想
(一)教学重难点
1.重点:直角三角形全等的判定方法(SAS、ASA、AAS和HL)的掌握和应用。
2.难点:
-理解并灵活运用不同的全等判定方法解决实际问题。
-在复杂几何图形中识别直角三角形全等的条件,并运用全等性质进行推理。
-将全等三角形的判定与几何图形的性质相结合,解决综合性的几何问题。
- AAS:已知两个直角三角形的两个角和一边相等,可以判定这两个三角形全等。
- HL:已知两个直角三角形的斜边和直角边相等,可以判定这两个三角形全等。
2.结合具体例题,逐一演示这四种判定方法的应用,让学生在实际操作中理解和掌握。
3.强调直角三角形全等判定中的关键步骤和注意事项,如正确识别对应边、对应角等。
4.小组合作题:布置一道需要小组合作完成的题目,要求学生在小组内部分工合作,共同探究解决问题的策略,提高学生的团队协作能力。

12.2三角形全等的判定SAS(教案)

12.2三角形全等的判定SAS(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解SAS全等判定的基本概念。SAS是指两个三角形中有两边和它们之间的夹角分别相等,那么这两个三角形全等。它是解决几何问题的重要工具,帮助我们确定两个三角形的完全一致性。
2.案例分析:接下来,我们来看一个具体的案例。假设在两个三角形中,我们已知两边长度相等,以及它们之间的夹角也相等,通过SAS判定,我们可以确定这两个三角形是全等的。
2.掌握运用SAS判定两个三角形全等的具体步骤。
3.能够运用直尺和圆规作出符合条件的全等三角形。
4.解决实际问题,如运用SAS判定方法判断两个三角形是否全等,并解释其在现实生活中的应用。
5.通过例题和练习,加深对SAS判定全等三角形方法的理解,培养几何逻辑思维和解决问题的能力。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
-掌握SAS全等判定的步骤:学生应学会如何通过以下步骤应用SAS判定全等:a)确认两个三角形中有两边相等;b)确认这两边的夹角相等;c)确认第三边也相等。
-应用SAS全等判定解决具体问题:学生应能够将SAS全等判定应用于解决实际几何问题,如计算未知长度或角度等。
-举例解释:如在三角形ABC和三角形DEF中,若AB=DE,AC=DF,且∠BAC=∠EDF,则根据SAS全等判定,三角形ABC和三角形DEF全等。
3.重点难点解析:在讲授过程中,我会特别强调SAS判定中“边角边”的顺序和角的定位。对于难点部分,我会通过举例和比较来帮助大家理解,例如,讲解为何SSA不能判定全等,而SAS可以。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。学生们用直尺和圆规尝试作出符合SAS全等条件的两个三角形。

全等三角形的性质和判定教案

全等三角形的性质和判定教案

全等三角形的性质和判定教案中小学个性化课外辅导专家卓尔教育教师教学辅导教案编号:授课教师日期时间学生年级科目课题全等三角形的性质和判定教学目标1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素.2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.教学重难点三角形判定的应用课前检查上次作业完成情况:优□良□中□差□建议:___________________________________________________教学过程【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.中小学个性化课外辅导专家要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;中小学个性化课外辅导专家(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()中小学个性化课外辅导专家A. B.C.D.举一反三:【变式】如图,在5个条形方格图中,图中由实线围成的图形与①全等的有______________.类型二、全等三角形的对应边,对应角2、如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角. 【总结升华】全等三角形对应角所对的边是对应边;中小学个性化课外辅导专家 全等三角形对应边所对的角是对应角.举一反三:【变式】如图,△ABD ≌△ACE ,AB =AC ,写出图中的对应边和对应角.类型三、全等三角形性质3、已知:如图所示,Rt △EBC 中,∠EBC =90°,∠E =35°.以B 为中心,将Rt △EBC 绕点B逆时针旋转90°得到△ABD ,求∠ADB 的度数.4、如图,把△ABC 绕C 点顺时针旋转35°,得到△A B C '',A B ''交AC 于点D ,则AB D '∠= °.中小学个性化课外辅导专家举一反三:【变式】如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,A点落在A'位置,若∠的度数是____________.AC A B''⊥,则BAC三角形的性质:1._____的两个图形叫做全等形.2.把两个全等的三角形重合到一起,_____叫做对应顶点;叫做对应边;_____叫做对应角.记两个三角形全等时,通常把表示_____的字母写在_____上.3.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.4.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.图1-1中小学个性化课外辅导专家5.如图1-1所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____(2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.图1-2图1-3 6.如图1-2,已知△ABE≌△DCE,AE=2 cm,BE =1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.7.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形二、选择题8.已知:如图1-3,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD9.下列命题中,真命题的个数是()中小学个性化课外辅导专家①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4B.3C.2D.110.如图1-4,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.6 B.5C.4D.无法确定图1-4 图1-5 图1-611.如图1-5,△ABC≌△AEF,若∠ABC和∠AEF 是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC 12.如图1-6,△ABC≌ΔADE,若∠B=80°,∠C =30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°中小学个性化课外辅导专家、三、解答题13.已知:如图1-7所示,以B为中心,将Rt△EBC 绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.图1-7图1-8图1-9综合、运用、诊断一、填空题14.如图1-8,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.15.已知:如图1-9,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;中小学个性化课外辅导专家(2)求证:AB∥DE.拓展、探究、思考16.如图1-10,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.图1-10三角形全等的条件一、填空题1.判断_____的_____ 叫做证明三角形全等.2.全等三角形判定方法1——“边边边”(即______)指的是________________________________________________ ________________________________.3.由全等三角形判定方法1——“边边边”可以得出:当三角形的三边长度一定时,这个三角形的_____也就确定了.中小学个性化课外辅导专家4.已知:如图2-1,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______, 只要证______≌______证明:∵ M 为PQ 的中点(已知), 图2-1∴______=______ 在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知∴______≌______( ). ∴ ∠PRM =______(______). 即RM .5.已知:如图2-2,AB =DE ,AC =DF ,BE =CF . 求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______. 证明:∵BE =CF ( ), ∴BC =______. 在△ABC和△DEF中,图2-2中小学个性化课外辅导专家⎪⎩⎪⎨⎧===______,______,______,AC BC AB∴______≌______( ). ∴ ∠A =∠D (______).6.如图2-3,CE =DE ,EA =EB ,CA =DB , 求证:△ABC ≌△BAD . 证明:∵CE =DE ,EA =EB ,∴______+______=______+______,图2-3即______=______. 在△ABC 和△BAD 中, =______(已知),⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知∴△ABC ≌△BAD ( ).综合、运用、诊断一、解答题7.已知:如图2-4,AD =BC .AC =BD .试证明:中小学个性化课外辅导专家∠CAD=∠DBC.图2-4图2-59.“三月三,放风筝”.图2-6是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.图2-6三角形全等的判定1、如图(1):AD⊥BC,垂足为D,BD=CD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的性质和判定教案卓尔教育教师教学辅导教案编号:授课教师日期时间学生年级科目课题全等三角形的性质和判定教学目标1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素.2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.教学重难点三角形判定的应用课前检查上次作业完成情况:优□良□中□差□建议:___________________________________________________教学过程【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.举一反三:【变式】如图,在5个条形方格图中,图中由实线围成的图形与①全等的有______________.类型二、全等三角形的对应边,对应角2、如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.【总结升华】全等三角形对应角所对的边是对应边;全等三角形对应边所对的角是对应角.举一反三:【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.类型三、全等三角形性质3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.'',A B''交AC于点D,则4、如图,把△ABC绕C点顺时针旋转35°,得到△A B C∠=°.AB D'举一反三:【变式】如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,A点落在A'位置,若AC A B''∠的度数是____________.⊥,则BAC三角形的性质:1._____的两个图形叫做全等形.2.把两个全等的三角形重合到一起,_____叫做对应顶点;叫做对应边;_____叫做对应角.记两个三角形全等时,通常把表示_____的字母写在_____上.3.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.4.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.图1-15.如图1-1所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____(2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.图1-2图1-36.如图1-2,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.7.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形二、选择题8.已知:如图1-3,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD9.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4B.3C.2D.110.如图1-4,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.6 B.5C.4D.无法确定图1-4 图1-5 图1-611.如图1-5,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC12.如图1-6,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°、三、解答题13.已知:如图1-7所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.图1-7图1-8图1-9综合、运用、诊断一、填空题14.如图1-8,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.15.已知:如图1-9,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F 的度数与DH 的长; (2)求证:AB ∥DE .拓展、探究、思考16.如图1-10,AB ⊥BC ,ΔABE ≌ΔECD .判断AE 与DE 的关系,并证明你的结论.图1-10三角形全等的条件一、填空题1.判断_____的_____ 叫做证明三角形全等.2.全等三角形判定方法1——“边边边”(即______)指的是________________________________________________________________________________.3.由全等三角形判定方法1——“边边边”可以得出:当三角形的三边长度一定时,这个三角形的_____也就确定了.4.已知:如图2-1,△RPQ 中,RP =RQ ,M 为PQ 的中点. 求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______, 只要证______≌______证明:∵ M 为PQ 的中点(已知), 图2-1 ∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知∴______≌______( ).∴ ∠PRM =______(______). 即RM .5.已知:如图2-2,AB =DE ,AC =DF ,BE =CF . 求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______. 证明:∵BE =CF ( ), ∴BC =______.在△ABC 和△DEF 中, 图2-2⎪⎩⎪⎨⎧===______,______,______,AC BC AB ∴______≌______( ).∴ ∠A =∠D (______).6.如图2-3,CE =DE ,EA =EB ,CA =DB , 求证:△ABC ≌△BAD .证明:∵CE =DE ,EA =EB ,∴______+______=______+______,图2-3即______=______. 在△ABC 和△BAD 中, =______(已知),⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知 ∴△ABC ≌△BAD ( ).综合、运用、诊断一、解答题7.已知:如图2-4,AD =BC .AC =BD .试证明:∠CAD =∠DBC .图2-4图2-59.“三月三,放风筝”.图2-6是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.图2-6三角形全等的判定1、如图(1):AD ⊥BC ,垂足为D ,BD=CD 。

求证:△ABD ≌△ACD 。

2、已知AC =BD ,AE =CF ,BE =DF ,证明:AE ∥CF3、已知BE =CF ,AB =CD , ∠B =∠C .问AF =DE 吗?(图1)DCBAA CBDEFCD BEF14、已知EF∥BC,AF=CD,AB⊥BC,DE⊥EF,问⊿ABC≌⊿DEF吗?说明理由。

15、已知AD=AE,BD=CE,∠1=∠2,问⊿ABD≌⊿ACE吗?16、已知∠1=∠2,BC=AD,问⊿ABC≌⊿BAD吗?17、如图,D,E,F,B在一条直线上,AB=CD,∠B=∠D,BF=DE,问(1)AE=CF(2)AE∥CF。

18、如图(5):AB⊥BD,ED⊥BD,AB=CD,BC=DE。

求证:AC垂直CE三角形证明专项训练一1. 已知:如图 , 点A、C、B、D在同一条直线上 , AC=BD , AM=CN , BM=DN。

求证:AM∥CN , BM∥DN2. 已知:如图 , AB=AE , AC=AD , BC=DE , C , D在BE边上.求证:∠CAE=∠DAB.3. 已知:如图 , 四边形ABCD中, AB∥CD , AD∥BC.求证:△ABD≌△CDBAB CEDFAB CD E1 2A BC DO1 2CEFA BE(图5)D C BA4. 如图, AB, CD, EF交于O点, 且AC=BD, AC∥DB.求证:O是EF的中点.5. 已知:如图, AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.6. 已知:如图, ∠1=∠2 , AB⊥BC , AD⊥DC , 垂足分别为B、D .求证:AB=AD.三角形证明专项训练二1、如图,已知AB DC AC DB==,.求证:12∠=∠.2、如图,AB BD⊥于点B,ED BD⊥于点D,AE交BD于点C,且BC DC=.求证AB ED=.3、如图,在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△AB E≌Rt△CBF;(2)若∠CAE=30º,求∠ACF度数.AB CDE精品文档收集于网络,如有侵权请联系管理员删除4、如图,点C 是线段AB 的中点,CE=CD ,∠ACD=∠BCE,求证:AE=BD .5、如图,在△ABC 中,∠ACB=900,AC=BC ,CE⊥BE ,CE 与AB 相交于点F ,AD⊥CF 于点D ,且AD 平分∠FAC ,请写出图中两对..全等三角形,并选择其中一对加以证明。

相关文档
最新文档