【教案】 整式的乘法——单项式与单项式相乘
八年级数学上册14.1整式的乘法14.1.4整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版

八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版一. 教材分析新人教版八年级数学上册第14.1节整式的乘法,主要介绍了单项式乘以单项式的运算方法。
这是初中数学中基础而重要的一部分,对于学生来说,这部分内容既是复习和巩固之前学过的知识,又是学习更复杂数学运算的基础。
二. 学情分析学生在学习这一节之前,已经学习了有理数的乘法、乘方以及单项式的概念。
他们对这些基础知识有一定的理解和掌握,但可能对于如何将乘法应用到单项式上,以及如何处理符号等问题会感到困惑。
因此,在教学过程中,我需要针对学生的这些特点进行引导和解释。
三. 说教学目标1.知识与技能目标:使学生掌握单项式乘以单项式的运算方法,能够正确地进行计算。
2.过程与方法目标:通过实例演示和练习,培养学生独立解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索的精神。
四. 说教学重难点1.教学重点:单项式乘以单项式的运算方法。
2.教学难点:如何处理符号问题,以及如何将乘法应用到单项式上。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导法、实践法等多种教学方法。
通过实例讲解,引导学生自己探索和发现规律,再通过练习巩固所学知识。
同时,我会利用黑板、粉笔等教学手段,清晰地展示运算过程,帮助学生理解和记忆。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何进行单项式的乘法运算。
2.讲解:讲解单项式乘以单项式的运算规则,并通过示例进行演示。
3.练习:学生进行练习,教师引导学生思考和解决问题。
4.总结:对本节课的内容进行总结,强调重点和难点。
5.作业布置:布置相关的练习题,巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出重点。
我会用不同的颜色标注出运算规则和注意事项,帮助学生理解和记忆。
八. 说教学评价教学评价主要通过学生的练习情况和课堂表现来进行。
七年级数学下册整式乘法《单项式与单项式相乘》教案(沪科版)

《单项式与单项式相乘》教学目标:1.使学生理解并掌握单项式与单项式相乘法则,能够熟练地进行单项式的乘法计算;2.注意培养学生归纳、概括能力,以及运算能力.教学重点、难点:重点:掌握单项式与单项式相乘的法则.难点:分清单项式与单项式相乘中,幂的运算法则.教学过程:一、复习旧知,作好铺垫回忆:什么是单项式?什么叫单项式的系数?什么叫单项式的次数?同底数幂乘法法则二、设计情境,问题导入我们已经学习了单项式和幂的运算性质,在这个基础上我们学习整式的乘法运算.先来学最简单的整式乘法,即单项式与单项式相乘(给出课题)如:长方形的长为5a,宽为2a.想一想:如何求出长方形的面积.S=2a·5a你能求出答案吗?三、合作探究、归纳法则在上述算式中①每个单项式是由几个因式构成的,这些因式都是什么?2a·5a =(2·a)·(5·a)②根据乘法交换律2a·5a=2·5·a·a③根据乘法结合律2a·5a =(2·5)·(a·a)④根据有理数乘法和同底数幂的乘法法则得出结论2a·5a =10a2按以上的分析,写出2x2y·3xy2的计算步骤2x2y·3xy2=2·3·x2·x·y·y2=(2·3)·(x2·x)·(y·y 2)=6x3y3通过以上两题,归纳出单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘的积作为积的因式,其余字母连同它的指数不变,也作为积的因式.运算步骤是:①系数相乘为积的系数;②同底数幂相乘,作为积的因式;③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;单项式与单项式相乘的法则,对于三个以上的单项式相乘也适用.四、尝试练习,逐步掌握计算以下各题:(1)4n2·5n3;(2) 4a2x2·(-3a 3bx);(3)(-5a2b3)·(-3a);解:(1) 4n2·5n3=(4·5)·(n2·n3)=20n5;(2)4a2x2·(-3a3bx)=4a2x2·(-3)a3bx=[4·(-3)]·(a2·a3)·(x2·x)·b=(-12)·a5·x3·b=-12a5bx3.(3)(-5a2b3)·(-3a)=[(-5)·(-3)]·(a2·a)·b3=15a3b3;练习:计算以下各题:(1)(-5amb)·(-2b2);(2)(-3ab)(-a2c)·6ab2.五、反馈小结、深化理解单项式与单项式相乘的法则;单项式与单项式相乘的实质是乘法的交换律与结合律以及幂的运算性质.。
整式的乘法 教学设计

整式的乘法【第一课时】【教学目标】知识与技能:1.会进行单项式与单项式的乘法运算。
2.灵活运用单项式相乘的运算法则。
过程与方法:1.经历探索乘法运算法则的过程,体会乘法分配律的作用和转化思想。
2.感受运算法则和相应的几何模型之间的联系,发展数形结合的思想。
情感、态度与价值观:在学习中获得成就感,增强学好数学的能力和信心。
【教学重难点】重点:熟练地进行单项式的乘法运算。
难点:单项式的乘方与乘法的混合运算。
【教学过程】一、情景引入教师引导学生复习整式的有关概念整式的乘法实际上就是单项式×单项式、单项式×多项式、多项式×多项式。
二、探索法则与应用1.组织讨论:完成课本“试着做做”的题目,引导学生分组讨论单项式×单项式的法则(组织学生积极讨论,教师应积极参与学生的讨论过程,并对不主动参与的同学进行指导。
)2.在学生发言的基础上,教师总结单项式的乘法法则并板书法则:系数与系数相同字母与相同字母单独存在的字母以上3点的处理办法,让学生归纳解题步骤。
(学生刚接触,故要求学生按步骤解题,且提醒学生不能漏项。
)3.例题讲解例1:计算:(1)4x·3xy ; (2)(-2x )·(-3x 2y ); (3)解:(1)(2)(3)例2:计算:(1); (2)解:(1) (2)(强调法则的运用)4.练习:课本“练习”第1题,学生口答,讲解错误的理由;第2题,学生板书,发现问题及时纠正,可让学生辨析、指出错误,巩固法则。
三、课堂总结指导学生总结本节课的知识点、学习过程等的自我评价。
2321abc b c 32⎛⎫⋅- ⎪⎝⎭y12χy χ)(χ3)(43χy 4χ2=⋅⋅⋅⨯=⋅[]y 3226χy )χ(χ3)(2)(y)3χ(2χ)(=⋅⋅⋅-⨯-=-⋅-23324321211abc (b c)a (b b )(c c)ab c .32323⎡⎤⎛⎫⋅-=⨯-⋅⋅⋅⋅⋅=- ⎪⎢⎥⎝⎭⎣⎦-⋅⋅2212ab 3a bc 2221ab (5abc)2⎛⎫-⋅- ⎪⎝⎭2212a ab 3a bc 2-⋅⋅c )c b ()a a a (321)2(22⋅⋅⋅⋅⋅⋅⎥⎦⎤⎢⎣⎡⨯⨯-=cb 3a 34-=221ab (5abc)2⎛⎫-⋅- ⎪⎝⎭)5abc ()b (a 212222-⋅⎪⎭⎫ ⎝⎛-=)5abc (b a 4142-⋅=c )b b ()a a ()5(4142⋅⋅⋅⋅⋅⎥⎦⎤⎢⎣⎡-⨯=c b a 4553-=(可畅所欲言,包括学习心得和困惑,互相帮助,互相促进。
单项式与单项式相乘》教案

单项式与单项式相乘》教案课题14.1.4《整式的乘法--单项式乘以单项式》知识与技能:经历探究单项式与单项式相乘的运算法则的过程,会进行整式相乘的运算。
情感价值观:培养学生转化思想和解决问题的能力,使学生养成良好的研究惯。
教学重点:单项式与单项式相乘的运算法则的探索。
教学难点:灵活运用法则进行计算和化简。
教学方法:创设情境-主体探究-合作交流-应用提高。
媒体资源:多媒体投影。
教学过程:思考回答】设计意图:引入课题,复巩固同底数幂、幂的乘方、积的乘方三个法则及不同点。
提出问题引入新课思考探索。
回顾知识】引入课题,复巩固同底数幂、幂的乘方、积的乘方三个法则及不同点。
提出问题引入新课思考探索。
探索】单项式乘1、单项式乘以单项式的运算法则:以单项式为例,探究单项式与单项式相乘的运算法则,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例题】计算:1)(-5a2b)(-3a);2)(2x)3(-5xy2)。
(注意规范书写)练巩固】计算:1)3x25x3;2)4y(-2xy2);3)(3x2y)3•(-4x);4)(-2a)3(-3a)2.巩固提高】1.(-2x2y)·(1/3xy2)2.(-3/2ab)·(-2a)·(-2/3a2b2)3.(2×105)2·(4×103)4.(-4xy)·(-x2y2)·(1/2y3)5.(-1/2ab2c)2·(-1/3ab3c2)3·(12a3b) 6.(-ab3)·(-a2b)37.(-2xn+1yn)·(-3xy)·(-1/2x2z)8.-6m2n·(x-y)3·1/3mn2·(y-x)2单项式乘法的运算法则很简单,就是将两个单项式的系数相乘,相同字母的指数相加,然后将结果写成一个新的单项式。
整式乘法优秀教案

整式乘法【教课安排】6 课时。
【第一课时】【教课内容】单项式乘以单项式。
【教课目的】1.经历研究单项式与单项式的乘法,会进行单项式×单项式的运算。
2.在研究运算法例的过程中领会乘法互换律和联合律的作用和转变的思想。
3.在发展推理能力和有条理的表达能力的同时,领会学习数学的兴趣,培育学习数学的信心。
【教课重难点】1.单项式×单项式的运算法例的研究。
2.灵巧运用法例进行计算和化简。
【教课过程】一、复习旧知。
1.回想幂的运算性质①同底数幂的运算性质。
②幂的乘方的运算性质。
③积的乘方的运算性质。
22.计算:① a 3 a 42② 3 xy 22二、研究新知。
1.填空:(ab )c =( ac ) b ; a m a n =a m a n =a m + n ( m ,n 都是正整数);(a m )n = a mn ( m ,n 都是正整数);(ab )n = a n b n (n 都是正整数)。
2.计算: a 2-2a 2=-a 2,a 2·2a 3=2a 5,(-2a 3) 2=4a 6;1 2 2 1 (2+1) (1+2) 3 3x发问:经过上边的活动,你是如何计算的?你发现了什么规律?2.概括单乘单法例:单项式与单项式相乘,把它们的系数、同样字母分别相乘,关于只在后一个单项式里含有的字母,则连同它的指数作为积的一个因式。
三、自学检测。
1.计算:① 3x2·5x 3;② 4y ·(-2xy 2)③( 3x 2y )3·(-4x )④-6x 2 y ·( 3 1 2 ) 2) · ·(a-b 3xy b-a点拨精讲:先乘方再算单项式与单项式的乘法, (a-b )看作一个整体,一般状况选择偶数次幂变形符号简单调些。
4m-n 2 1 3 m +n的和为一个单项式,则这两个单项式的积是 _____。
2.已知单项式 -3x y 与 2x y四、合作研究。
整式的乘法(1)教案

6整式的乘法(1)-----单项式与单项式相乘教学目标:知识与能力:使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算。
方法与过程:经历探索单项式乘法的过程,在具体情境中了解单项式乘法的意义,理解单项式乘法法则。
情感态度与价值观:理解单项式乘法运算的算理,发展学生有条理的思考能力和语言表达能力。
教学重点:单项式与单项式相乘的法则及其应用。
教学难点:理解单项式与单项式相乘的运算法则及其探索过程。
教学方法:通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索,教学环节的设计与展开,都以问题的解决为中心。
本节三个课时的内容环环相扣,每课时新知识的学习既是对前一节课所学知识的应用,也为后一节学习奠定基础,所以在教学时注意引导学生发现各知识点之间的联系,善于应用转化的思想,化未知未已知,形成较完整的知识结构。
教学过程:一、复习回顾:问题一:在下列代数式中,哪些是单项式? (1)32-x ; (2)ab ; (3)542ab ; (4)y -; (5)73262+-x x ; (6)x2答案:单项式有:(1)(2)(3)(4)问题二:大家在前面学习了哪三种幂的乘法运算?请分别说出它们的法则及字母公式。
1、 同底数幂的乘法,底数不变,指数相加。
nm nma a a +=⋅(m,n 都是正整数)2、 幂的乘方,底数不变,指数相乘。
mn nmaa =)((m,n 都是正整数)3、 积的乘方,等于各个因式乘方的积。
nnnb a ab =)((n 是正整数) 二、讲授新课:(一) 创设问题情境,引入新课为支持北京申办2008年奥运会,一位画家设计了一幅长为6000米,名为 “奥运龙”的宣传画。
受他的启发京京用两张同样大小的纸,精心制作了两幅画。
如下图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上,下方各留有x 81的空白。
问题一:两幅画面的长、宽各是多少?答:第一幅画面长mx 米,宽x 米;第二幅画面长mx 米,宽x 43米。
11.1 整式的乘法(第4课时 单项式与单项式、整式相乘)(教学课件)-24-25学年七年级数学上册

6 x5 y 6 .
概念归纳
思考—— 3 x5(4x7+2x)=3x5 ·4x7+3x5 ·2x=12x12+6x6这是单
项式乘整式,用到了哪些运算律与运算法则?
单项式乘整式,用单项式乘整式的每一项,再把所得的积相加。
课本例题
例11. 计算
1 2 ⋅ 32 − 2 2
解: 1 2 ⋅ 32 − 2 2
)
A. a2+2 a
B. a2+6 a
C. a2-6 a
D. a2+4 a -2
4. 已知单项式2 x3 y2与-5 x2 y2的积为 mxny4,那么 m - n = -15
.
5. 数学课上,老师讲了单项式与多项式相乘,回到家,小丽拿出课堂笔记复
习,突然发现一道题:-3 x2(2 x -□+1)=-6 x3+3 x2 y -3 x2,“□”的
= 2 ⋅ 32 + 2 ⋅ −22
= 63 2 − 42 3
1
− 2 ⋅ −3 + 9 + 1
3
3
2
1
2 2
− ⋅ −12
4
3
1
2 2
解: 2
− ⋅ −12
4
3
1
2 2
= ⋅ −12 + − ⋅ −12
4
3
1. [2024怀化期中]计算2( a3)2·3 a2的结果是(
A. 5 a7
B. 5 a8
C. 6 a7
D. 6 a8
D
)
2. 计算(7.2×103)×(2.5×104)的结果用科学记数法表示正确的是( D
A. 180 000 000
14.1.4 整式的乘法 (第1课时)单项式与单项式、多项式相乘 教案 2022-2023学年人教

14.1.4 整式的乘法(第1课时)单项式与单项式、多项式相乘一、教学目标1.了解单项式与单项式相乘的方法;2.熟练掌握多项式与单项式相乘的方法;3.能够运用乘法法则解决实际问题;4.培养学生分析问题和解决问题的能力。
二、教学重点1.单项式与单项式相乘的方法;2.多项式与单项式相乘的方法。
三、教学难点学生能够熟练掌握多项式与单项式相乘的方法。
四、教学准备1.PowerPoint课件;2.教学黑板。
五、教学过程第一步:导入新课(1)教师通过引入一道简单的实际问题引起学生的兴趣,例如:现有3个盒子,每个盒子里都有4个苹果,那么一共有多少个苹果?(2)教师引导学生讨论解决此类问题的方法,发现可以通过整式的乘法进行简单的解决。
第二步:引入知识点(1)教师通过PPT展示单项式与单项式相乘的实例,引导学生发现整式相乘的特点。
(2)教师讲解单项式与单项式相乘的方法,如下所示: - 同底数幂相乘,底数相乘,指数相加; - 不同底数幂相乘,直接相乘。
第三步:练习与讲解(1)教师出示一道练习题:计算 (2a^2b^3)(3ab^2),并引导学生完成计算过程。
•步骤1:先求底数的乘积2 × 3 = 6;•步骤2:再求指数的和 2 + 1 = 3 和 3 + 2 = 5;•步骤3:将计算结果组合起来,得到 (2a^2b^3)(3ab^2) = 6a^3b^5。
(2)教师讲解多项式与单项式相乘的方法,如下所示: - 多项式与单项式相乘,将多项式的每一项与单项式相乘,然后合并同类项。
第四步:练习与讲解(1)教师出示一道练习题:计算 (4x^2 + 3xy)(2x - y),并引导学生完成计算过程。
•步骤1:将 (4x^2)(2x) 和 (4x^2)(-y) 相乘,得到 8x^3 和 -4x^2y;•步骤2:将 (3xy)(2x) 和 (3xy)(-y) 相乘,得到 6x^2y 和 -3xy^2;•步骤3:将结果合并,得到 (4x^2 + 3xy)(2x - y) = 8x^3 - 4x^2y +6x^2y - 3xy^2 = 8x^3 + 2x^2y - 3xy^2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单项式与单项式相乘
教学内容:人教版八年级上册14.1.4整式的乘法
教学目标:
1、让学生通过适当的尝试,获得直接的经验,体验单项式与单项式的乘法运算规律,总结运算法则;
2、使学生能正确区别各单项式中的系数,同底数幂和不同底数幂的因式;
3、让学生感知单项式法则对两个以上单项式相乘同样成立,知道单项式乘法的结果仍是单项式。
教学重点:对单项式运算法则的理解和应用。
教学难点:尝试与探究单项式与单项式的乘法运算规律。
教学方法:讲授法
教学用具:多媒体课件、黑板
课时安排:一课时
教学过程:
一、复习回顾:(查漏补缺和复习并指名学生回答)
1、指出下列名称的公式及运算法则
同底数幂相乘:幂的乘方:积的乘方:
2、只要认真,你就能全部判断正确,看谁一遍做对。
(1)632.m m m =(2)725)(a
a =(3)632)(a
b ab =(4)1055m
m m =+(5)523)()(x x x -=--3、单项式中的数字因数叫做这个单项式的__系数__。
二、创设情境,导入新课:
问题:光的速度约为5
103⨯千米/秒,太阳光照射到地球上需要的时间大约是2105⨯秒,你知道地球与太阳的距离约是多少千米吗?
启发思考:在这里,
求距离,会遇到什么运算呢?导入新课:因式都是单项式,它们相乘,就是我们今天要学习的“单项式与单项式相乘”。
出示课题和教学目标。
三、探索研究:
(1)怎样计算(5103⨯)×(2
105⨯)?n m n m a a a +=⋅mn n m a a =)(n n n b a ab =)(
计算过程中用到哪些运算律及运算性质?
(2)如果将上式中的数字改为字母,
比如()25)(bc ac ⨯,怎样计算这个式子?
地球与太阳的距离约是:
87105.11015⨯=⨯(千米)()25)(bc ac ⨯是两个单项式5ac 与2bc 相乘,我们可以利用乘法交换律,结
合律及同底数幂的运算性质来计算:()2
5)(bc ac ⨯=(a ⋅b)⋅(25c c ⋅)=25+abc =7abc 。
例1、把下面的计算表示成更简单的结果。
)
3(4)1(2552bx a x a -⋅解:原式b
x x a a ))()](3(4[2532⋅⋅-⨯=b
x a 7512-=2、类似的,尝试把下面结果表达更简单些。
(鼓励学生大胆尝试)
)
2(3)2(322xyz y x -解:原式3
22))()](2(3[z y y x x ⋅⋅-⨯=3
336z y x -=3、解题规范格式训练
)
4)(5(232c b b a --解:○1原式c
b b a )()]4()5[(232⋅⋅-⨯-=c
b a 5220=○
2或)
4)(5(232c b b a --c
b b a )()]4()5[(232⋅⋅-⨯-=c
b a 5220=四、尝试总结归纳法则,可自学课本。
1、你能从这里总结出怎样进行单项式乘以单项式的法则吗?
2、单项式乘以单项式法则:单项式与单项式相乘,把它们的(系数)(相同的字母)分别相(乘),对于(只在一个单项式里含有的字母),则连同它的(指数)作为积的(一个因式)。
五、拓展、延伸(积极开动脑筋)
1、(1)、单项式乘以单项式,结果仍是一个(
单项式)(2)、单项式乘法法则对于三个以上的单项式相乘能否同样适用?
(3)、遇到积的乘方怎么办?应该先算什么?
2、计算:例
3、22
)3)(31)(2(xyz xy xy 解:原式)9)(31)(2(2222z y x xy xy =2
222))()(93
12(z y y y x x x ⋅⋅⋅⋅⨯⨯=2
546z y x =3、能力拓展:
(1)已知单项式2a 3y 2与-4a 2y 4的积为ma 5y n ,求m+n 的值。
(2)已知A=3ab,B=-5a 2c,求A 2
B 的值。
解:(1)由题意可知:
∵(2a 3y 2)⋅(-4a 2y 4))
)()](4(2[4223y y a a ⋅-⨯=6
58b a -=n
y ma 5=∴.
6,8=-=n m ∴.
268-=+-=+n
m (2)由题意可知:A 2B )
5()3(22c a ab -⋅=)
5(9222c a b a -⋅=
c
b a a 222))](5(9[⋅-⨯=c
b a 2445-=六、小结:谈谈收获
(1)求系数的积,应注意符号;
(2)相同字母因式相乘,是同底数幂的乘法,底数不变,指数相加;
○
1只在一个单项式里含有的字母,要连同它的指数写在积里,防止遗漏;○
2若某一单项式是乘方的形式时,要先乘方再算乘法(3)单项式乘以单项式的结果仍然是一个单项式,结果要把系数写在字母因式的前面;
(4)单项式乘法的法则对于三个以上的单项式相乘同样适用。
七、布置作业:1、必做题:100页1、2题
(鼓励学生当堂完成)
2、选做题:101页3题
八、板书设计:
单项式与单项式相乘1、回顾:
(1)同底数幂相乘:
(2)幂的乘方:
(3)积的乘方:2、例题讲解(例1及训练)3、单项式乘以单项式法则:单项式与单项式相乘,把它们的(系数)(相同的字母)分别相(乘),对于(只在一个单项式里含有的字母),则连同它的(指数)作为积的(一个因式)。
4、讲解例2及得出运算法则:有乘方的先做乘方,再做单项式相乘。
九、课后反思:
n
m n m a a a +=⋅mn n m a a =)(n n n b a ab =)(。