滤波电容旁路电容和去耦电容的作用和选择

合集下载

电容器知识详解

电容器知识详解
i = (V / R)e - (t / CR)
话说电容之二:电容的选择
通常,应该如何为我们的电路选择一颗合适的电容呢?笔者认为,应基于以
下几点考虑:
1、静电容量;
2、额定耐压;
3、容值误差;
话说电容之一:电容的作用
作为无源元件之一的电容,其作用不外乎以下几种:
1、应用于电源电路,实现旁路、去藕、滤波和储能的作用。下面分类详述之:
1)旁路
旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。 就像小型可充电电池样,旁路电容能够被充电,并向器件进行放电。 为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地
4、直流偏压下的电容变化量;
5、噪声等级;
6、电容的类型;
7、电容的规格。
那么,是否有捷径可寻呢?其实,电容作为器件的外围元件,几乎每个器件的 Datasheet 或者 Solutions,都比较明确地指明了外围元件的选择参数,也就是说,据此可以获得基本的器件选择要求,然后再进一步完善细化之。其实选用电容时不仅仅是只看容量和封装,具体要看产品所使用环境,特殊的电路必须用特殊的电容。
管脚。 这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大电流毛刺时的电压降。
2)去藕
去藕,又称解藕。 从电路来说, 总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大, 驱动电路要把电容充电、放电, 才能完成信号的跳变,在上升沿比较陡峭的时候, 电流比较大, 这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是所谓的“耦合”。

去耦电容、旁路电容、滤波电容的选择和区别

去耦电容、旁路电容、滤波电容的选择和区别

区别去耦电容去除在期间切换时从⾼高配到配电⽹网中的RF能量量储能作⽤用,供局部化的直流电源,减少跨板浪涌电流在VCC 引脚通常并联⼀一个去耦电容,电容同交隔直将交流分量量从这个电容接地有源器器件在开关时产⽣生的⾼高频开关噪声江燕电源线传播,去耦电容就是提供⼀一个局部的直流给有源器器件,减少开关噪声在板上的传播并且能将噪声引导到地。

如果主要是为了了增加电源和地的交流耦合,减少交流信号对电源的影响,就可以称为去耦电容;旁路路电容从元件或电缆中转移出不不想要的共模 RF 能量量。

这主要是通过产⽣生 AC 旁路路消除⽆无意的能量量进⼊入敏敏感的部分,另外还可以提供基带滤波功能(带宽受限)。

在电路路中,如果电容起的主要作⽤用是给交流信号提供低阻抗的通路路,就称为旁路路电容;电⼦子电路路中,去耦电容和旁路路电容都是起到抗⼲干扰的作⽤用,电容所处的位置不不同,称呼就不不⼀一样了了。

对于同⼀一个电路路来说,旁路路(bypass)电容是把输⼊入信号中的⾼高频噪声作为滤除对象,把前级携带的⾼高频杂波滤除,⽽而去耦 (decoupling)电容也称退耦电容,是把输出信号的⼲干扰作为滤除对象。

滤波电容选择经过整流桥以后的是脉动直流,波动⽅方位很⼤大,后⾯面⼀一般⽤用⼤大⼩小两个电容⼤大电容⽤用来稳定输出,因为电容两端电压不不能突变,可以使输出平滑,⼩小电容⽤用来滤除⾼高频⼲干扰,使输出电压纯净,电容越⼩小,谐振频率越⾼高,可滤除的⼲干扰频率越⾼高容量量的选择⼤大电容,负载越重,吸收电流的能⼒力力越强,这个⼤大电容的容量量就要越⼤大⼩小电容,凭经验,⼀一般104 即可1、电容对地滤波,需要⼀一个较⼩小的电容并联对地,对⾼高频信号提供了了⼀一个对地通路路。

2、电源滤波中电容对地脚要尽可能靠近地。

3、理理论上说电源滤波⽤用电容越⼤大越好,⼀一般⼤大电容滤低频波,⼩小电容滤⾼高频波。

4、可靠的做法是将⼀一⼤大⼀一⼩小两个电容并联,⼀一般要求相差两个数量量级以上,以获得更更⼤大的滤波频段.滤波电容电源和地直接连接去耦电容1.为本集成电路路蓄能电容2.滤除该期间产⽣生的⾼高频噪声,切断其通过供电回路路进⾏行行传播的通路路3.防⽌止电源携带的噪声对电路路构成⼲干扰滤波电容的选⽤用原则在电源设计中,滤波电容的选取原则是: C≥2.5T/R其中: C 为滤波电容,单位为UF; T 为频率, 单位为Hz,R 为负载电阻,单位为Ω当然,这只是⼀一般的选⽤用原则,在实际的应⽤用中,如条件(空间和成本)允许,都选取C≥5T/R.PCB制版电容的选择⼀一般的10PF 左右的电容⽤用来滤除⾼高频的⼲干扰信号,0.1UF 左右的⽤用来滤除低频的纹波⼲干扰,还可以起到稳压的作⽤用。

旁路电容和去耦电容

旁路电容和去耦电容

旁路电容和去耦电容一、引言旁路电容和去耦电容是电子电路中常见的两种电容器应用。

它们在不同的场景下起到了重要的作用。

本文将从定义、原理、应用以及选型等方面对旁路电容和去耦电容进行详细介绍。

二、旁路电容1. 定义旁路电容,又称旁路电容器,是指将电容器连接在电路中,以提供低阻抗路径来滤除高频噪声的装置。

其作用是将高频信号引到地,使其不进入到灵敏的电路中,从而保证电路的正常工作。

2. 原理旁路电容的原理是利用电容器的阻抗与频率成反比的特性。

在高频信号下,电容器的阻抗较小,相当于一个短路,因此高频信号会优先通过电容器,而不会进入到灵敏的电路中。

而在低频信号下,电容器的阻抗较大,相当于一个开路,所以低频信号可以绕过电容器,进入到灵敏的电路中。

3. 应用旁路电容广泛应用于各种电子设备中,特别是在功放电路、滤波电路和信号处理电路中。

它可以有效地滤除电源中的高频噪声,提高电路的抗干扰能力,保证信号的准确传输。

此外,旁路电容还可以用于电源线路的滤波,降低电源波动对设备的影响。

4. 选型旁路电容的选型需要考虑电容值、耐压、耐温度等因素。

一般来说,电容值越大,对高频信号的旁路作用越好;耐压越高,适用范围越广;耐温度越高,适应环境的能力越强。

因此,在选型时需要根据具体的应用场景来选择合适的旁路电容。

三、去耦电容1. 定义去耦电容,又称绕行电容,是指将电容器连接在电路中,以提供低阻抗路径来平衡电压的装置。

其作用是将电源中的纹波电压补偿掉,保证电路的稳定工作。

2. 原理去耦电容的原理是利用电容器的阻抗与频率成反比的特性。

在电源中存在纹波电压时,电容器的阻抗较小,相当于一个短路,因此纹波电压会优先通过电容器,而不会进入到电路中。

而在直流信号下,电容器的阻抗较大,相当于一个开路,所以直流信号可以绕过电容器,进入到电路中。

3. 应用去耦电容广泛应用于各种电子设备中,特别是在功放电路、放大器电路和稳压电路中。

它可以有效地补偿电源中的纹波电压,提高电路的稳定性,保证信号的可靠传输。

去耦电容与旁路电容的区别

去耦电容与旁路电容的区别

去耦电容与旁路电容的区别在布线时,模拟器件贺数字器件都需要这些类型的电容,都需要靠近其电源引脚处连接一个电容,此电容值通常为0.1uF。

系统供电电源处需要另一类电容,通常此电容值为10uF。

电容取值范围为推荐值的1/10至10倍之间。

但引脚必须较短,且要尽量靠近器件或供电电源。

在电路板上加旁路或去耦电容,以及这些电容在板上的设置,对于数字和模拟设计来说都属于基本常识,但有趣的是,其原因却有所不同。

在模拟布线设计中,旁路电容通常用于旁路电源上的高频信号,如果不加旁路电容,这些高频信号可能通过电源引脚进入敏感的模拟芯片。

一般来说,这些高频信号的频率超出模拟器件抑制高频信号的能力。

如果在模拟电路中不使用旁路电容的话,就可能在信号路径上引入噪声,更严重的情况甚至会引起振动。

对于控制器和处理器这样的数字器件,同样需要取耦电容,但原因不同。

这些电容的一个功能是用作“微型”电荷库。

在数字电路中,执行门状态的切换通常需要很大的电流。

由于开关时芯片上产生开关瞬态电流并流经电路板,有额外的“备用”电荷是有利的。

如果执行开关动作时没有足够的电荷,会造成电源电压发生很大变化。

电压变化太大,会导致数字信号电平进入不确定状态,并很可能引起数字器件中的状态机错误运行。

基于多种原因,在供电电源处或有源器件的电源引脚处施加旁路(或去耦)电容是好的做法。

一般来说,容量为uf级的电容,像电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰。

工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。

尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与模拟或现实环境接口的电路设计。

滤波电容旁路电容和去耦电容的作用和选择

滤波电容旁路电容和去耦电容的作用和选择

滤波电容百科名片储能电容的安装数字电路的电源线与回流线(地线)之间总要连接很多的电容器通常称为滤波电容。

目录简介选择作用编辑本段简介一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。

因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言n-35g的主滤波电容)。

低频滤波电容主要用于是电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。

当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液的频繁极化而产生较大的热量。

而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

编辑本段选择滤波电容在开关电源中起著非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员十分关心的问题。

50赫兹工频电路中使用的普通电解电容器,其脉动电压频率仅为100赫兹,充放电时间是毫秒数量级。

为获得更小的脉动系数,所需的电容量高达数十万微法,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。

而开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数万赫兹,甚至是数十兆赫兹。

这时电容量并不是其主要指标,衡量高频铝电解电容优劣的标准是“阻抗- 频率”特性。

要求在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号具有良好的滤波作用。

普通的低频电解电容器在万赫兹左右便开始呈现感性,无法满足开关电源的使用要求。

而开关电源专用的高频铝电解电容器有四个端子,正极铝片的两端分别引出作为电容器的正极,负极铝片的两端也分别引出作为负极。

电流从四端电容的一个正端流入,经过电容内部,再从另一个正端流向负载;从负载返回的电流也从电容的一个负端流入,再从另一个负端流向电源负端。

滤波电容、去耦电容、旁路电容作用及区别

滤波电容、去耦电容、旁路电容作用及区别

滤波电容、去耦电容、旁路电容作用电容在减小同步开关噪声起重要作用,而电源完整性设计的重点也在如何合理地选择和放置这些电容上。

各种各样的电容种类繁杂,但无论再怎么分类,其基本原理都是利用电容对交变信号呈低阻状态。

交变电流的频率f越高,电容的阻抗就越低。

旁路电容起的主要作用是给交流信号提供低阻抗的通路;去耦电容的主要功能是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地,加入去耦电容后电压的纹波干扰会明显减小;滤波电容常用于滤波电路中。

对于理想的电容器来说,不考虑寄生电感和电阻的影响,那么在电容设计上就没有任何顾虑,电容的值越大越好。

但实际情况却相差很远,并不是电容越大对高速电路越有利,反而小电容才能被应用于高频。

滤波电容:滤波电容用在电源整流电路中,用来滤除交流成分。

使输出的直流更平滑。

去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。

旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。

1.去耦电容蓄能作用的理解(1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。

而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。

你可以把总电源看作水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。

实际水是来自于大楼顶上的水塔,水塔其实是一个buffer 的作用。

如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。

而去耦电容可以弥补此不足。

这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在Vcc引脚上通常并联一个去耦电容,这样交流分量就从这个电容接地。

(2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。

电阻,电容,电感的作用

电阻,电容,电感的作用

作为无源元件之一的电容,其作用不外乎以下几种:1、应用于电源电路,实现旁路、去藕、滤波和储能的作用,下面分类详述之:1)旁路旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。

就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。

为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。

这能够很好地防止输入值过大而导致的地电位抬高和噪声。

地弹是地连接处在通过大电流毛刺时的电压降。

2)去藕去藕,又称解藕。

从电路来说,总是可以区分为驱动的源和被驱动的负载。

如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。

这就是耦合。

去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。

将旁路电容和去藕电容结合起来将更容易理解。

旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。

高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10uF或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。

这应该是他们的本质区别。

3)滤波从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。

但实际上超过1uF 的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。

有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。

电容的作用就是通高阻低,通高频阻低频。

电容越大低频越容易通过,电容越大高频越容易通过。

旁路电容和去耦电容作用和区别

旁路电容和去耦电容作用和区别

旁路电容和去耦电容作用和区别1. 引言在电子电路设计和高频电路中,旁路电容和去耦电容扮演着重要的角色。

它们被广泛应用于各种电子设备和电路中,起到稳定电压、抑制噪声和滤波的作用。

本文将介绍旁路电容和去耦电容的作用及其区别。

2. 旁路电容的作用旁路电容的作用是将高频信号从某些部件或节点旁路过去,以确保信号的稳定性和纯净性。

它通常与电源或地连接,将高频信号绕过感性元件,如电感或电源。

旁路电容可以消除感性元件对高频信号的阻抗,从而提高系统的性能。

旁路电容可以起到以下几个方面的作用: - 滤波作用:旁路电容能够对高频信号进行滤波,将噪声和干扰滤除,提高电路的信噪比。

- 提供稳定的电源:旁路电容能够提供电源电压的稳定性,减少电源噪声对电路的影响,保证电路正常工作。

- 改善信号传输:在传输线上,旁路电容可以抑制信号的反射和损耗,提高信号的传输效率和质量。

3. 旁路电容的选择和应用旁路电容的选择应根据具体的应用需求和电路特性进行。

重要的参数包括容值、耐压和温度系数等。

在电源旁路应用中,一般选择电解电容或固态电容,容值较大、耐压较高的电容。

而在高频应用中,通常选择钽电容或多层陶瓷电容,容值较小、频率响应较好的电容。

在实际应用中,旁路电容常被用于电源滤波、放大器的电源旁路、RF射频模块的旁路等场合。

4. 去耦电容的作用去耦电容是将电路中直流(DC)和交流(AC)分离的一种电容器。

它的作用是将直流信号绕开交流信号,保证电路中直流电压的稳定性,提供纯净的直流电源。

去耦电容通常被放置在集成电路(IC)的电源引脚处,将IC芯片的供电电压稳定到指定值,同时滤除电源中的噪声和纹波。

5. 去耦电容的选择和应用去耦电容的选择应根据芯片的需求和电源情况进行。

通常,去耦电容的容值要求较大,能够滤除更多的噪声和纹波。

常见的电容材料包括电解电容、陶瓷电容和铝电解电容等。

在高速数字电路中,去耦电容的选择要考虑芯片的工作频率和功耗等因素。

较高频率的应用需要选择具有较低等效串联电感和更低ESR(等效系列电阻)的陶瓷电容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滤波电容
百科名片
储能电容的安装数字电路的电源线与回流线(地线)之间总要连接很多的电容器通常称为滤波电容。

目录
简介选择作用
编辑本段简介
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。

因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言
n-35g的主滤波电容
)。

低频滤波电容主要用于是电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。

当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液的频繁极化而产生较大的热量。

而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

编辑本段选择
滤波电容在开关电源中起著非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员十分关心的问题。

50赫兹工频电路中使用的普通电解电容器,其脉动电压频率仅为100赫兹,充放电时间是毫秒数量级。

为获得更小的脉动系数,所需的电容量高达数十万微法,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。


开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数万赫兹,甚至是数十兆赫兹。

这时电容量并不是其主要指标,衡量高频铝电解电容优劣的标准是“阻抗- 频率”特性。

要求在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号具有良好的滤波作用。

普通的低频电解电容器在万赫兹左右便开始呈现感性,无法满足开关电源的使用要求。

而开关电源专用的高频铝电解电容器有四个端子,正极铝片的两端分别引出作为电容器的正极,负极铝片的两端也分别引出作为负极。

电流从四端电容的一个正端流入,经过电容内部,再从另一个正端流向负载;从负载返回的电流也从电容的一个负端流入,再从另一个负端流向电源负端。

在电源设计中,滤波电容的选取原则是:
C≥2.5T/R
其中:C为滤波电容,单位为UF;
T为频率,单位为Hz
R为负载电阻,单位为Ω
当然,这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R。

由于四端电容具有良好的高频特性,为减小电压的脉动分量以及抑制开关尖峰噪声提供了极为有利的手段。

高频铝电解电容器还有多芯的形式,即将铝箔分成较短的若干段,用多引出片并联连接以减小容抗中的阻抗成份。

并且采用低电阻率的材料作为引出端子,提高了电容器承受大电流的能力。

编辑本段作用
滤波电容用在电源整流电路中,用来滤除交流成分。

使输出的直流更平滑。

2.PCB板中的滤波电容去耦电容极性电容一般去什么值?使用什么尺寸的封装?去耦电容一般使用0.1uF电容,0805或者0603封装;极性电容使用钽电解电容,10uF/10V,3216封装;滤波电容使用1000uF/25V电容,RB.2/.4封装比较多。

电容的电压主要是与使用的电源电压有关,有1倍以上的余量就行。

旁路电容
旁路电容
可将混有高频电流和低频电流的交流电中的高频成分旁路掉的电容,称做“旁路电容”。

对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling,也称退耦)电容是把输出信号的干扰作为滤除对象。

目录
定义
电源去耦电容电路有两个作用
旁路电容和去耦电容的区别和作用
编辑本段定义
可将混有高频电流和低频电流的交流信号中的高频成分旁路滤掉的电容,称做“旁路电容”。

例如当混有高频和低频的信号经过放大器被放大时,要求通过某一级时只允许低频信号输入到下一级,而不需要高频信号进入,则在该级的输入端加一个适当大小的接地电容,使较高频率的信号很容易通过此电容被旁路掉(这是因为电容对高频阻抗小),而低频信号由于电容对它的阻抗较大而被输送到下一级放大
对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling,也称退耦)电容是把输出信号的干扰作为滤除对象。

编辑本段电源去耦电容电路有两个作用
一方面是集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。

数字电路中典型的去耦电容值是0.1μF。

这个电容的分布电感的典型值是5nH。

0.1μF的去耦电容有5nH的分布电感,它的并行共振频率大约在7MHz 左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。

1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。

每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。

最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。

要使用钽电容或聚碳酸酯电容。

去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取0.01μF。

编辑本段旁路电容和去耦电容的区别和作用
旁路电容不是理论概念,而是一个经常使用的实用方法,电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件。

例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的电容,这就叫旁路电容。

一般来说,容量为uf级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰旁路是把前级或电源携带的高频杂波或信号滤除;去藕是为保正输出端的稳定输出(主要是针对器件的工作)而设的“小水塘”,在其他大电流工作时保证电源的波动范围不会影响该电路的工作;补充一点就是所谓的藕合:是在前后级间传递信号而不互相影响各级静态工作点的元件有源器件在
开关时产生的高频开关噪声将沿着电源线传播。

去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。

从电路来说,总是存在驱动的源和被驱动的负载。

如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的
正常工作。

这就是耦合。

去耦电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。

旁路电容实际也是去耦合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。

高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u 等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

一般设计的板子上IC 的每个电源管脚附近都会放置一个电容作去耦电容,以减小电源阻抗??那么此IC的某些高速信号是否会把此电容作为高频电流的旁路电容呢?
请大侠详细解释一下旁路电容和去耦电容。

我认为去耦电容和旁路电容没有本质的区别,电源系统的电容本来就有多种用途,从为去除电源的耦合噪声干扰的角度看,我们可以把电容称为去耦电容(Decoupling),如果从为高频信号提供交流回路的角度考虑,我们可以称为旁路电容(By-pass).而滤波电容则更多的出现在滤波器的电路设计里.电源管脚附近的电容主要是为了提供瞬间电流,保证电源/地的稳定,当然,对于高速信号来说,也有可能把它作为低阻抗回路,比如对于CMOS电路结构,在0->1的跳变信号传播时,回流主要从电源管脚流回,如果信号是以地平面作为参考层的话,在电源管脚的附近需要经过这个电容流入电源管脚.所以对于PDS(电源分布系统)的电容来说,称为去耦和旁路都没有关系,只要我们心中了解它们的真正作用就行了
(注:素材和资料部分来自网络,供参考。

请预览后才下载,期待你的好评与关注!)。

相关文档
最新文档