信号与系统第三章课件
信号与系统第三章PPT课件

.
它们都是傅里叶级数收敛的充分条件。相当广泛的 信号都能满足Dirichlet条件,因而用傅里叶级数表 示周期信号具有相当的普遍适用性。
几个不满足Dirichlet条件的信号
.
三.Gibbs现象 满足 Dirichlet 条件的信号,其傅里叶级数是如
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
.
傅立叶分析方法的历史
古巴比伦人 “三角函数和” 描述周期性过程、预测天体运
动
1748年 欧拉 振动弦的形状是振荡模的线性组合
1753年 D·伯努利 弦的实际运动可用标准振荡模的线性组合来表示
1759年 拉格朗日 不能用三角级数来表示具有间断点的函数
x[k]h[nk]
x[k]h[n k]
k
.
对时域的任何一个信号 x ( t ) 或者 x ( n ) ,若能将其
表示为下列形式: x(t) a 1 es1 t a 2 es2 t a 3 es3 t
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t
利用齐次性与可加性,有
k
例: y(t)x(t3) ❖ 系统输入为 x(t) ej2t
系统 H(s) ? y(t) ?
H(s) h(t)estdt
❖ 系统输入为 x(t)cos(4t)cos(7t)
系统 y(t) ?
.
*问题:究竟有多大范围的信号可以用复指数信号的 线性组合来表示?
.
3.3 连续时间周期信号的傅里叶级数表示
第k次谐波 e jk 0t 的周期为
信号与系统(奥本海默)课件3

1通信科学与工程系四用微分和差分方程描述的因果LTI 系统1. 线性常系数微分方程()()()t bx t ay dt t dy =+给出了系统的隐含特性,要得到明确表达式,需求解方程,并且还需一个或多个附加条件。
对于因果线性时不变系统,附加条件的形式特殊简单。
2通信科学与工程系一般的N 阶线性常系数微分方程:()()∑∑===M k kk kNk k k k dt t x d b dt t y d a 00()()∑==M k kkk dtt x d b a t y 001当N=0时,输出是输入及其导数的明确函数:当N>0时,输出是输入的隐含形式,需要求解。
四用微分和差分方程描述的因果LTI 系统3通信科学与工程系求解该微分方程,通常是求出通解和一个特解,则。
()p y t ()h y t ()()()p h y t y t y t =+四用微分和差分方程描述的因果LTI 系统()p y t ()x t 特解是与输入同类型的函数.()h y t 0()0k Nk k k d y t a dt==∑通解是齐次方程的解,即的解。
0Nkk k a λ==∑欲求得齐次解,可根据齐次方程建立一个特征方程:求出其特征根。
4通信科学与工程系若t ≤ t 0时x (t )=0,则t ≤ t 0 时y (t )=0,初始松弛条件1(),k Nth k k y t C e λ==∑其中是待定的常数。
k C 当特征根均为单阶根时,可得出齐次解的形式为:四用微分和差分方程描述的因果LTI 系统()()()010100====--N N dt t y d dt t dy t y 可采用如下初始条件:5通信科学与工程系()()()t x t y dtt dy =+2()()t u Ke t x t 3=例2.14:考虑输入为时,系统的解。
()()()t y t y t y h p +=5KY =()3,05t p Ky t e t =>方程的解由特解和齐次解组成:()tp Ye t y 3=求解特解:令t > 0时,根据方程可得33332t t t Ye Ye Ke +=受迫响应自然响应四用微分和差分方程描述的因果LTI 系统6通信科学与工程系()()02=+t y dtt dy 求解齐次解:根据方程,得特征方程为()23,05t t Ky t Ce e t -=+>0/5C K =+5KC =-()[]()t u e e K t y t t 235--=20λ+=2λ=-()2th y t Ce -=齐次解四用微分和差分方程描述的因果LTI 系统根据初始条件确定C :考虑因果LTI 系统,如果t<0 时x (t )=0,则t<0 时y (t )=0. 将t = 0, y (0) = 0代入有7通信科学与工程系2. 线性常系数差分方程一般的线性常系数差分方程可表示为:与微分方程一样,它的解法也可以通过求出一个特解和齐次解来进行,其过程与解微分方程类似。
信号与线性系统分析第三章

系统描述 分析方法
连续系统 微分方程 卷积积分 变换域(傅氏、s) 系统函数
离散系统 差分方程 卷积和 变换域(离散傅氏、z) 系统函数
第 2页
§2.1 LTI离散系统的响应
• 差分与差分方程 —前向差分、后向差分以及差分方程
• 差分方程解 —数值解、经典解,以及不同特征根对应的齐 次解和不同激励对应的特解
yzi (-2) = y(-2)
-----------
yzi (n) = ?
----------------yzi (-n) = y(-n)
第 13 页
零输入举例
例1:系统方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知激励f(k)=2k , k≥0;初始状态 y(–1)=0, y(–2)=1/2 求系统的零输入响应
解:yzi(k)零输入响应满足:
yzi(k) + 3yzi(k –1)+ 2yzi(k –2)= 0
yzi(–1)= y(–1)= 0 yzi(–2) = y(–2) = 1/2 递推求 yzi(0)、 yzi(1) yzi(k)= – 3yzi(k –1) –2yzi(k –2)
yzi(0)= –3yzi(–1) –2yzi(–2)= –1
yzs(0)、yzs(1)、---yzs(n)=? 借助微分方程
n
若其特征根均为单根: yzk (k ) Czsjkj y p (k ) j 1
第 16 页
零状态举例
例1:系统方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知激励f(k)=2k , k≥0;求系统的零状态响应 解:零状态响应yzs(k) 满足
《信号与系统》第三章习演示课件

k0 k 1
yt1 8 cos2t
3
Problem Solution
H j
2
1
3 0 3
图2
Chapter 3
Problem Solຫໍສະໝຸດ tion例 已知图1所示连续时间系统中输入信号 xt ,t2k k 两个子系统的频率响应 H1 和j H分2 别j如 图2和图3
所示。试求该系统的输出信号 y 。t
ak 0 k18
Chapter 3
Problem Solution
3.34 Consider a continuous-time LTI system hte4t Find the Fourier series representation of the output yt
for each of the following inputs :
sin 0t
c o s0 t L H j0 c o s 0 t H j0 s i n 0 t L H j0 s i n 0 t H j0
Chapter 3
Problem Solution
Consider an LTI system S with impulse response ht sint
(a)xttn n
(bx)t1ntn n
(c) xt is the periodic wave depicted in Figure P3.34
1/ 2 1 xt
-2 -1
0
1
2
t
Chapter 3
Problem Solution
例 研究图1所示的连续时间系统,其中 h1 t sin3tt, H1 j 和 H2 j的波形如图2所示。
信号与系统第三章

设 f (t) 2 a 2, b 1 则有
dy(t) 2 y(t) 2 dt
已知初始值 y(0) 4 求 t 0时系统的响应 y(t)
解:第一步,由方程可知系统的特征方程为 2 0
2 由此可得系统的齐次解为
2
处理教研室
第三章 连续信号与系统的时域分析
教学重点:
1、常微分方程的建立及其解的基本特点; 2、阶跃响应和冲激响应的概念; 3、卷积及其在系统分析中的应用。
2020/6/7
信号
3
处理教研室
应用实例:汽车点火系统
汽车点火系统主要由电源(蓄电池和发电机)、电阻、 点火开关、点火线圈、分压器等组成。
系数 a,b都是常量。系统的阶数就是其数学模型——
微分方程的阶数。
而 n 阶常系数线性微分方程的一般形式为
an
dn y(t) dt n
an1
dn1 y(t) dt n1
L
a1
dy(t) dt
a0
y (t )
bm
dm f (t) dt m
bm1
dm1 f (t) dt m1
L
b1
df (t) dt
b0
即yf’(0+) = yf’(0-) = 0,yf(0+) = yf(0-) = 0
对t>0时,有 yf”(t) + 3yf’(t) + 2yf(t) = 6
不难求得其齐次解为Cf1e-t + Cf2e-2t,其特解为常数3,
于是有
yf(t)=Cf1e-t + Cf2e-2t + 3
代入初始值求得
信号与线性系统分析--第三章

第三章 离散系统的时域分析
本章概述
离散时间域的方程求解
连续时间域 时间函数 微分方程 卷积积分 离散时间域 离散序列 差分方程 卷积求和
求解方法
迭代法 经典法 卷积法
连续时间信号、连续时间系统
连续时间信号
f(t)是连续变化的t的函数,除若干不连续点之外 对于任意时间值都可以给出确定的函数值。函数 的波形一般具有平滑曲线的形状,一般也称模拟 信号
f (n) .... f (1) (n 1) f (0) (n) f (1) (n 1) ...
i
f (i) (n i)
f(k ) f(2) f(-1) f(1) f(0) … 1 2 i f(i) … k
可推出:离散系统的零状态响应
y zs (n)
m
f (m) (n m)
单位阶跃序列
与阶跃函数的不同?
延时的单位阶跃序列
用单位样值序列来表示
u( n) ( n) ( n 1) ( n 2) ( n 3) (n k )
k 0
( n) u(n) u( n 1)
题目中 y0 y1 0 ,是激励加上以后的,不是初始状 态,需迭代求出 y 1, y 2 。
n 1 y1 3 y0 2 y 1 2u 1 2 u 0
0
0 0 2 y1 2 1 1
1 y 1 2
n0
y0 3 y 1 2 y 2 2 u 0 2 u 1
0 1
0 3 y 1 2 y 2 1
y 2 5 4
将初始状态代入方程求系数
信号与系统第三章课件

(n 0)
1 1 Fn An an 2 bn 2 2 2 bn n n arctg a ( n 0) n F0 a0 A0 (n 0)
f (t )
Fn
n T 1 2
Fn e jn 0t
f (t )e jn0t dt
n 1,2,
2 bn f (t ) sin n 0 tdt n 1,2, 《信号与系统》SIGNALS AND SYSTEMS T T
ZB
2 0 为基波频率,n0为谐波频率,an和bn为傅里叶系数, T
[]dt表示从任意起始点 开始,取一个周期 为积分区间。 T
f (t )
...
0
T 4 T 2
...
T
t
4. 奇谐函数: f (t ) f (t T ) ,则 只含奇次谐波。
2
f (t )
...
T 2
T
...
0
《信号与系统》SIGNALS AND SYSTEMS
T 2
t
ZB
3.1.2 指数型傅里叶级数
由欧拉公式
sin n0t 1 jn0t 1 e e jn0t , cosn0t e jn0t e jn0t 2j 2
3.3.1 周期信号的单边频谱和双边频谱
单边幅度频谱( n ~ n0 ) A 单边频谱 单边相位频谱( n ~ n0 ) 双边幅度频谱(Fn ~ n0 ) 双边频谱 双边相位频谱( n ~ n0 )
jn0t
抽样函数
sin x Sa ( x ) x
1. 偶函数
信号与系统第3章 傅里叶变换

P
f
2 (t) 1 T1
t0 T1 t0
f
2 (t)d t
a0 2
1 2
n1
(an
2
bn 2 )
2
Fn _____ 帕塞瓦尔定理
n
结论:周期信号的平均功率等于傅里叶级数展开 式中基波分量及各谐波分量有效值的平方 和,即时域和频域的能量守恒。
五. 周期信f号(t)的频c0 谱 (c三n c角os函(n数1t形 式n )) n1
(1) 偶函数 f (t) f (t)
4
an T1
T1
2 0
f (t) cos(n1t)dt
Fn
Fn
an 2
bn 0
傅里叶级数中不会含有正弦项, 只可能含有直流项和余弦项。
(2) 奇函数 f (t) f (t)
a0 0 , an 0
bn
4 T1
T1
2 0
f (t) sin(n1t)d t
e j n1t
T1 n 2
画频谱图:
c0
a0
E
T1
an
2E
T1
Sa
n1
2
, n
1,2,
cn an
1)令 m
2
得
2
m
即在
2
m,m为整数处有零点。
2)
2
2
T1
T1
零点间谱线个数
3) c n值为正,相位为0,值为负,相位为π
4)谱线间隔为 1 带宽
2
T1
,第一个过零点带宽定义为信号的
1 3
s in31t
1 4
sin41t
E
1 n1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x t 1 e j4 t 1 e j4 t 1 e j7 t 1 e j7 t
2
2
2
2
1 2
e
j12e
j4t
1 2
e
j12e
j 4 t
1 2
e
j 21e
j 7 t
1 2
e
j 21e
j7t
5
Chapter 3
Fourier Series
§3.3 Fourier Series Representation(傅立叶级数)
9
Chapter 3
Fourier Series
x t
ak e jk0t
k
yt ak H jk0 e jk0t k
§3.3.2 Determination of Fourier Series Representation
Chapter 3 Fourier Series Representations
of Periodic Signals
1
Chapter 3
Fourier Series
§3.2 The Response of LTI Systems to Complex Exponentials LTI 系统对复指数信号的响应
ak ak
7
Chapter 3
Fourier Series
xt
ak e jk0t a0
ak e jk0t ak e jk0t
k
k 1
x t a0 2 Re ake jk0t
a e jk0t k
k 1
1 ak Ake jk
x t a0 2
of Continuous-time Periodic Signals
§3.3.1 Linear Combinations (线性组合)
of Harmonically Related Complex Exponentials
xt T0 xt
k t e jk0 t
0
2
T0
——Fundamental frequency
Re
A e e jk jk0t k
k 1
2 ak Bk jCk
xt a0 2 Ak cosk0t k k 1
xt a0 2 Re Bk jCk e jk0t
k 1
xt a0 2
Bk
cos
k0t
Ck
sin
k0t
8
k 1
Chapter 3
Fourier Series
Chapter 3
Fourier Series
Example 3.2
3
x t
ak e jk 2 t
k 3
a0 1
, a1 1 / 4
a2 1 / 2 , a3 1 / 3
x t 1 1 e j2 t e j2 t 1 e j4 t e j4 t 1 e j6 t e j6 t
Example :
Consider an LTI system for which the input xt 1 1 cos2t
and
the impulse response
ht
etut
determine
the
2 output
yt
x t e j0t 1 e j2 t e j2 t 4
k 0,1,2,
xt ake jk0t ——Fourier Series k
ak ——Fourier Series Coefficients
Spectral Coefficients (频谱系数)
a0
Constant Component
a1
Fundamental Component
a2
Second Harmonic Component 6
zkn H
zk
z
n k
xn
a
k
z
n k
k
yn ak H zk zkn
k
e j t H j e j t
Fourier Analysis
e j n H e j e j n
Fourier Analysis
4
Chapter 3
Fourier Series
Example 3.1
Consider an LTI system : ht t 3 yt xt 3
Eigenfunction 特征函数
zn
H z zn
3
Chapter 3
Fourier Series
Continuous-time system
eskt H sk eskt
akeskt ak H sk eskt
k
k
xt
yt
Discrete-time system
Particularly
1. Continuous-time system
yt est ht ht e st
h
e st d
e st h es d
est ht yt e stes
与时间无关
Defining
H s h t estdt ——Eigenvalue (特征值)
Eigenfunction 特征函数
4
2
3
xt 1 1 cos 2t cos4t 2 cos6t
2
3
Consider a real periodic signal xt xt
ak e jk0t
ak e jk0t
a e jk0t k
a e jk0t k
k
k
k
k
real periodic xt
1 xt e j2 t y t e j2t3
H s h t estdt t 3 estdt e3s
S
x t e j2t H s
e j2t e j6e j2t e j2t3
s j2
2 xt cos 4t cos 7t yt cos 4t 3 cos 7t 3
H j et u t e j tdt ete j tdt
0
H j
e j 1t
j 1
0
1
j 1
0
yt H j0e j0 t 1 H j2 e j2 t 1 H j2 e j2 t
4
4
1 e j2t1Biblioteka e j 2tyt 1 4 4
1 j2 1 j2
e st
H sest
2
Chapter 3
Fourier Series
2. Discrete-time system
yn zn hn hn zn
z n hn yn
hkznk
k
zn hkzk k
与时间无关
Defining H z hnzn ——Eigenvalue (特征值) n