人教版九年级数学下册相似三角形的判定(2)(12PPT)

合集下载

新人教版九年级下册数学课件:平行线分线段成比例

新人教版九年级下册数学课件:平行线分线段成比例
27.2 27.2.1 第1课时
一、相似三角形
相似三角形 相似三角形的判定
平行线分线段成比例
∽ △A′B′C′. 1.记法:△ABC与△A′B′C′相似,记作△ABC 2.判定:在△ABC 与△A′B′C′中,如果∠A= ∠A′ ,∠B= ∠B′ ,∠C= ∠C′ ,且
AB AB
=
BC BC
【导学探究】 1.由DE∥BC可得,△ADE∽
2.由△ADE∽△ABC 可得
△ABC
DE
,△ADG∽
△ABH .
AD = AB
AD = AB BCຫໍສະໝຸດ .由△ADG∽△ABH 可得
AG
AH

.
解:因为 DE∥BC, 所以△ADE∽△ABC,△ADG∽△ABH, 所以 所以
AD DE AD AG = , = , AB BC AB AH DE AG = , BC AH
(A) (C)
AD 1 = AB 2 AD 1 = EC 2
)B
(B) (D)
AE 1 = EC 2 DE 1 = BC 2
2.(2017 临沂)已知 AB∥CD,AD 与 BC 相交于点 O.若
BO 2 = ,AD=10,则 AO= OC 3
4
.
3.(2017长春)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和D,E,F.若 6. AB∶BC=1∶2,DE=3,则EF的长为
OE 2.由 l1∥l2 得 = OD
解:(2)因为 l1∥l2,所以
OB OA
OE OB = , OD OA
.
因为 OD=30,OE=12,OB=10, 所以 OA=
OB OD 10 30 = =25, OE 12

第12讲相似三角形的判定复习课件(共46张PPT)

第12讲相似三角形的判定复习课件(共46张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
4.如图4-12-5,AB是半圆O的直径, D,E是半圆上任意两点,连结AD,DE,AE 与BD相交于点C,要使△ADC与△ABD类似, 可以添加一个条件.下列添加的条件其中错误
的是 A.∠ACD=∠DAB B.AD=DE C.AD2=BD·CD D.AD·AB=AC·BD
大师导航 归类探究 自主招生交流平台 思维训练
第四章 类似三角形
第12讲 类似三角形的判定
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
部分数学符号的来历 数学运算中经常使用符号,如+,-,×,÷,=,>, <,∽,≌,(), 等,你知道它们都是谁首先使用,何时 被人们公认的吗? 加减号“+”“-”:1489 年德国数学家魏德曼在他的著 作中首先使用了这两个符号,但正式为大家公认是从 1514 年荷 兰数学家荷伊克开始.乘号“×”:英国数学家奥屈特于 1631 年提出用“×”表示相乘;另一乘号“·”是数学家赫锐奥特首 创的.除号“÷”:最初这个符号是作为减号在欧洲大陆流行, 奥屈特用“∶”表示除或比,也有人用分数线表示比,后来有 人把二者结合起来就变成了“÷”.瑞士的数学家拉哈的著作中 正式把“÷”作为除号.等号“=”:最初是 1540 年由英国牛
D.147
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ∵∠C=∠E,∠ADC=∠BDE, ∴△ADC∽△BDE,∴DDEC=ABDD, 又∵AD∶DE=3∶5,AE=8, ∴AD=3,DE=5, ∵BD=4,∴D5C=34,∴DC=145.
∵AC⊥BC,∴∠ACB=90°,
又∵BE是∠ABC的平分线, ∴FG=FC,
例2答图

27.2.1相似三角形的判定(2)课件2024-2025学年人教版数学九年级下册

27.2.1相似三角形的判定(2)课件2024-2025学年人教版数学九年级下册

二、要熟悉该定理的几种基本图形
A
D
DA
B
E
BE
C
F
C
F
三、注意该定理在三角形中的应用
四、平行于三角形一边的直线和其他两边(或延 长线)相交,所构成的三角形与原三角形相似.
1、 如图 请尽可能多地找出下列图中的
相似三角形,并说明理由。
A
A
A
B
D
E
D
E
O
F
G
E
F
B
F
C
图1
DE∥BC ,DF∥AC
B 图2
DE∥FG//BC
CC
D
图3
AB∥EF∥CD,
如图,△ABC 中,DE∥BC,GF∥AB,
DE、GF交于点O,则图中与△ABC相 似的三角形共有多少个?请你写出来.
解: 与△ABC相似的三角形有3个: A
A
D E F
B
G H I
C
新知应用
如图所示,如果D,E,F分别在OA,OB,
OC上,且DF∥AC,EF∥BC.
求证:OD∶OA=OE∶OB
证明: ∵ DF∥AC,
OD OA
OF OC
.
EF∥BC,
OF OC
OE , OB
OD OE . OA OB
课堂小结
一、平行线分线段成比例定理:
三条平行线截两条直线,所得的对应线段成比例. (关键要能熟练地找出对应线段)
符号语言:
∵DE//BC,
∴△ABC∽△A’B’C’
思考
如图 DE//BC,△ADE与△ABC有什么关系?
方法一:过点E作EF//DB交BC 的延长线于F

人教版九年级下册数学27.2.3:相似三角形的应用 举例 测量(金字塔高度、河宽)问题 课件 (共12张PPT)

人教版九年级下册数学27.2.3:相似三角形的应用 举例 测量(金字塔高度、河宽)问题 课件 (共12张PPT)
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选

九年级数学人教版下册用三边关系判定三角形相似课件

九年级数学人教版下册用三边关系判定三角形相似课件
AB=4 cm,BC=6 cm,AC=8 cm, A′B′= 12 cm,B′C′= 18 cm,A′C′=24 cm. 解: ∵ A B = 4 1 , B C 6 1 , A C = 8 1 ,
A B 1 23B C 1 83A C 2 43 ∴AB= BC AC.
AB BC AC
∴△ABC ∽△A'B'C'.
解:设另外两条边长分别是x cm和y cm(x<y),由题意得
4 2= 5 x= 6 y或 5 2= 4 x= 6 y或 6 2= 4 x= 5 y, 解得xy= =352,或xy= =18552,或xy= =5343,
因此另外两条边长应当分别是 5 cm和3 cm或 8 cm和 1 2 cm
2
5
5
儿童有无抱负,这无关紧要,可成年人则不可胸无大志。
贫 心穷志是要一 坚切 ,是艺 意术 趣1职 要)业 乐,的 。母每亲。个网格中均有一个“格点三角形”(三角形的顶点在小
有志登山顶,无志站山脚。
有志者自有千方百计,无志者只感千难万难。
正方形的顶点上),是相似三角形的为( ) 志不立,天下无可成之事。
【点拨】设小正方形的边长为 1,则“帅”“相”“兵”所在位置的格
点构成的三角形的三边长分别 2,2 5,4 2.“车”“炮”之间的距
离为 1,“炮”②之间的距离为 5,“车”②之间的距离为 2 2,
∵ 5 =2 25 4
22=12,∴“马”应该落在②处.
【答案】B
7.如图,正方形网格中有三个三角形,其中相似的是( B ) A.A 与 B B.A 与 C C.B 与 C D.A,B,C 都相似
雄心壮志是茫茫黑夜中的北斗星。
解:由勾股定理知AC= ,BC=2,AB=

九年级数学《相似三角形判定(2)》课件

九年级数学《相似三角形判定(2)》课件
三边对应成比例,两 三角形相似.
两边对应成比例且夹角 相等,两三角形相似.
必做题;课本P54习题3、8题 选做题;判定定理二的证明,要求画 图,并写出已知、求证,并证明。
B
D
E
A
C
此时,AD 1 AB 3
∠A=∠A
AE 1 AC 3
如果一个三角形的两条边与 另一个三角形的两条边对应 成比例,并且夹角相等,那 么这两个三角形一定相似吗? 你会证明吗?请课后在作业 本上加以证明。
相似三角形的判定定理2:如果一个三角形的两 条边与另一个三角形的两条边对应成比例,并 且夹角相等,那么这两个三角形相似 。
A’B’=10cm, A’C’ = 8cm ,这两个三角形
一定相似吗?试着画画看。
CD
F
A
B E
例题:根据下列条件,判断△ABC与△A′B′C′ 是否相 似, 并说明理由:
(1)在△ABC中∠A=120°,AB=7㎝ AC=14㎝ ,在 △ A′B′C′中∠A´ =120°A′B′=3㎝ ,A′C′ =6㎝; (2)在△ABC中AB=4㎝,BC=6 AC=4㎝ , AC=8㎝,
2、你能得出什么结论呢?请用一句话概括出结果。
若两个三角形三组对应边比值相等那么两三角形相似.
3、你知道这两个三角形相似的依据是什么吗? 能否给出证明呢?
已知:如图△ABC和△A`B`C`中
A`B`:AB=A`C`:AC=B`C`:BC.
求证:△ABC∽△A`B`C`
证明:在△ABC的边AB(或延长线)上截取AD=A`B`, B`
过点D作DE∥BC交AC于点E.
A
∴AD:AB=AE:AC=DE:BC,△ADE∽△ABC
∵AD=A`B`∴AD:AB=A`B`:AB

人教版数学九年级下册27用角的关系判定三角形相似课件(56张)

人教版数学九年级下册27用角的关系判定三角形相似课件(56张)
那么,满足斜边和一条直角边成比例的两个直角三角形相似 吗?
事实上,这两个直角三角形相似.下面我们给出证明. 如图,在Rt△ABC和Rt△A′B′C′中, ∠C=90°, ∠C′=90°, AB AC ,
AB AC
求证: Rt△ABC∽Rt△A′B′C′ .
分析:要证Rt△ABC∽Rt△A′B′C′ ,可设法证
巩固新知
1 底角相等的两个等腰三角形是否相似?顶角相等的两个等
腰三角形呢?证明你的结论.
解:底角相等的两个等腰三角形相似.已知:在△ABC中,AB=AC, 在△A′B′C′中,A′B′=A′C′,且∠B=∠B′. 求证: △ABC∽△A′B′C′.证明:在△ABC中,∵AB=AC,∴∠B=∠C, 同理∠B′=∠C′.又∵∠B=∠B′,∴∠C=∠C′. ∴△ABC∽△A′B′C′. 顶角相等的两个等腰三角形相似.已知:在 △ABC中,AB=AC,在△A′B′C′中,A′B′=A′C′,且∠A=∠A′.求 证:△ABC∽△A′B′C′.证明:在△ABC中,∵AB=AC,∴∠B= ∠C,同理∠B′=∠C′.又∵∠B= 180- A ,∠B′= 180- A , ∠A=∠A′,∴∠B=∠B′.又∵∠A=∠2 A′,∴△ABC∽△2A′B′C′.
解:由题意,得∠D=∠C=90°.
①当 A D D P 时,△ADP∽△PCQ, PC CQ 1
等,两组直角边对应成比例,斜边和一直角边对应
D∠C.′=∵A9B0°=,10,AC=83,k∴由和勾股4定k理(k可是得BC正=6整. 数)为直角边的直角三角形一定与
直角三角形相似的判定定理:
Rt△ABC相似吗?为什么? ∴ ΔABC ∽ ΔA'B'C'
又∵∠B=∠B′,∴∠C=∠C′.

新人教版九年级数学下册 第27章 相似 课件

新人教版九年级数学下册 第27章  相似 课件

图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以 看做是由另一个图形_________ 放大 或 缩小 得到的,实际的建筑物 _________ 相似 的,用 和它的模型是___________ 复印机把一个图形放大或缩小后所 得的图形,也是与原来的图 _________ 相似 的.
1、如图,从放大镜里看到的三角尺 和原来的三角尺相似吗?
• 认识形状相同的图形。
• 对相似图形概念的理解。
• 抓住形状相同的图形的特征,认
识其内涵。
回顾旧知
全等图形
A' B
A
B'
C'
C
形状、 大小完全相 同的图形是 全等图形。
新课导入
多啦A梦的2寸照片和4寸照片,他的形状改变 了吗?大小呢?
符合国家标准的两面共青团团旗的形状 相同吗?大小呢?
四阶魔方和三阶魔方形状相同吗?大小呢?
A
E A E B B
D C C
D
A
D
A
D
B
C
B
C
A
A
C B C
B
你从上述几组图片发现了什么?
它们的大小不一定相等,
形状相同.
知识要点
两个图形的形状 完全相同 ________,但图形 的大小位置 不一定相同 __________,这样的图形叫 做相似图形。
图形的放大
图形的放大
两个图形相似
不规则四边形
B
A
请分别量出 这两个不规则四 边形各内角的度 数,求出对应边 的长度。
C
缩小 B1
A1
对 应 角 有 什 么 D 关 系?
对应边有什么关系? C1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

①4:2=5:x=6:y ②4:x=5:2=6:y ③4:x=5:y=6:2
4
5
6
2
相似三角形的判定方法
平行于三角形一边的直线与其他两边( 或延长线)相交,所构成的三角形与原三角形 相似;
三边对应成比例的,两三角形相似.
(2) AB=12cm, BC=15cm, AC=24cm A’B’=16cm,B’C’=20cm,A’C’=30cm
试说明∠BAD=∠CAE.
A E
∴ΔABC∽ΔADE
D C
∴∠BAC=∠DAE
B
∴∠BAC━∠DAC=∠DAE━∠DAC
即∠BAD=∠CAE
答案是2:1
要作两个形状相同的三角形框架,其中一个三角形 的三边的长分别为4、5、6,另一个三角形框架的 一边长为2,怎样选料可使这两个三角形相似?这个 问题有其他答案吗?
人教版九年级数学下册 相似三角形的判定(2)
(12PPT)
2020/9/19
2020/9/19
1. 对应角_相__等____, 对应边成—比—例————的两个三角 形,叫做相似三角形 .
2. 相似三角形的对—应——角—相——等—, 各对应边—成——比—例——。 3.如何识别两三角形是否相似?
平行于三角形一边的直线和其他两边(或两边的延 长线)相交,所构成的三角形与原三角形相似。
∴△A`B`C`∽△ABC
B
C
A
A’
B
C B’
C’
△ABC∽△A’B’C’
如果一个三角形的三条边和另一个三角形的 三条边对应成比例,那么这两个三角形相似.
简单地说:三边对应成比例,两三角形相似.
例1:在△ABC和△A′B′C′中,已知:
(1)AB=6 cm, BC=8 cm,AC=10 cm,
A′B′=18 cm,B′C′=24 cm,A′C′=30 cm. 试判定△ABC与A′B′C′是否相似,并说明理由.
过点D作DE∥BC交AC于点E.
∴AD:AB=AE:AC=DE:BC,△ADE∽△ABC B`
C`
∵AD=A`B`∴AD:AB=A`B`:AB
A
又A`B`:AB=B`C`:BC=C`A`:CA
∴DE:BC=B`C`:BC,EA:CA=C`A`:CA. D
E
因此DE=B`C`,EA=C`A`.
∴△ADE≌△A`B`C`
A
D
E
D
E
O
∵ DE∥BC
∴ △ ADE ∽ △ ABC
B
CB
C
思考:有没有其他简单的办法判断两个三角形相似?
三边对应成
A
比例
A’
B’
C’
B
C
是否有△ABC∽△A’B’C’?
已知:如图△ABC和△A`B`C`中A`B`:AB=A`C`:AC=B`C`:BC.
求证:△ABC∽△A`B`C`
ቤተ መጻሕፍቲ ባይዱ
A`
证明:在△ABC的边AB(或延长线)上截取AD=A`B`,
相关文档
最新文档