激素及其作用机制
激素的生理作用和分子机制

激素的生理作用和分子机制激素是一种可以影响细胞和组织的分泌物,它可以通过血液循环传递到各个器官和细胞中,从而调节人体的生理和生化过程。
激素在维持生命活动中发挥着重要的作用,对人类的健康和疾病治疗有着不可或缺的意义。
激素的生理作用激素的生理作用可以分为以下几个方面:1.调节代谢:激素能够调节细胞和组织的代谢,例如胰岛素能够促进葡萄糖的吸收和利用,甲状腺激素则能够调节体内热量的产生和消耗。
2.调节生长和发育:人体的生长和发育是由激素调节的,生长激素、性激素和甲状腺激素等都能影响体内的生长和发育过程。
3.调节机体的应激反应:应激激素包括肾上腺素、去甲肾上腺素等,它们能够促进机体的应激反应,增强机体的应变能力。
4.调节生殖功能:性激素是调节人体生殖功能的重要激素,雄激素和雌激素能够影响生殖系统的发育和生理功能。
激素的分子机制激素产生后通过血液循环到达细胞表面,然后会与细胞上的激素受体结合,从而启动细胞内的信号传递过程。
激素受体一般是跨过细胞膜的转膜蛋白,例如内源性激素受体家族包括酪氨酸激酶受体、鸟苷酸环化酶受体等。
激素与受体的结合会触发一系列细胞内信号传递过程,这些信号最终会导致DNA的转录和翻译,从而调节细胞生理和生化过程。
例如,胰岛素和胰岛素受体结合后能够启动细胞内的PI3K/Akt信号通路,促进葡萄糖的吸收和利用;雄激素和雌激素与核受体结合后能够促进DNA的转录和表达,影响生殖系统的发育和功能。
总结激素是维持人体正常生理和生化过程的重要调节物质,它们通过与受体结合,启动细胞内的信号传递过程,并最终影响DNA的转录和翻译,从而调节生理和生化过程。
对于了解激素的生理作用和分子机制,有助于更好地理解人体的调节机制,控制和治疗疾病。
激素的种类与作用机制

激素的种类与作用机制激素是一种体内的化学物质,通常由内分泌器官分泌,在体内具有重要的生理功能。
那么,究竟有哪些激素,它们的作用机制是什么呢?本文将一一阐述。
一、胰岛素胰岛素是由胰腺分泌的激素,主要作用是降低血糖水平。
当人体摄入食物后,胰岛素会被释放到血液中,促进细胞对葡萄糖的吸收和利用,同时抑制肝脏对葡萄糖的合成。
如果胰岛素分泌不足,就容易引发糖尿病。
二、甲状腺激素甲状腺激素是由甲状腺分泌的激素,它们的主要作用是调节身体的新陈代谢、促进细胞分裂和发育。
如果甲状腺激素分泌过多,就会导致甲状腺功能亢进症;如果分泌不足,就会引起甲状腺功能减退症。
三、雌激素和孕激素雌激素和孕激素是由卵巢分泌的激素,它们的主要作用是调节女性的生殖功能、促进性成熟和维持生殖器官的发育。
此外,它们还具有保护心脏和骨骼、改善视力和皮肤、缓解更年期症状等作用。
如果分泌过多,就会出现月经不调、乳腺增生等问题;如果分泌不足,就会引起月经失调、不孕等症状。
四、睾酮和睾丸激素睾酮和睾丸激素是由睾丸分泌的激素,它们的主要作用是调节男性的生殖功能、促进性成熟和发育。
此外,它们还具有维护肌肉和骨骼健康、促进红细胞生成、调节血脂代谢等作用。
如果分泌过多,就会引起男性阳痿、早憩、性腺萎缩等问题;如果分泌不足,就会出现性欲减退、肌肉失去弹性等症状。
五、促肾上腺皮质激素和皮质激素促肾上腺皮质激素和皮质激素是由肾上腺分泌的激素,它们的主要作用是抵御应激、调节免疫反应和炎症反应。
这些激素在应对抗病毒、细菌、炎症、过敏等方面发挥着重要的作用。
如果分泌过多,就会引起库欣综合征等问题;如果分泌不足,就会导致肾上腺功能不全。
六、生长激素生长激素是由垂体分泌的激素,它的主要作用是促进生长、发育和修复组织。
生长激素还可以促进体内脂肪的分解,增加蛋白质的合成、糖原的储存和钙质的吸收。
如果分泌过多,就容易引发巨人症或肥胖症;如果分泌不足,就会导致矮小症或肥胖症。
七、素蛋白激素素蛋白激素是由肝脏分泌的激素,它主要作用是调节胆固醇代谢、脂肪酸合成和氨基酸代谢。
激素及其作用机制的研究

激素及其作用机制的研究随着科技和医学的不断发展,人们对于人类身体的认识和了解也越来越深刻,激素及其作用机制成为了一个备受关注的研究领域。
激素是一种生理活性物质,对于人类体内各项生理活动都有着至关重要的作用,其作用机制也备受关注。
本篇文章将就激素及其作用机制的研究进行探讨。
一、激素的定义及类型激素是一种生理活性物质,它通常是由内分泌腺分泌,然后通过血液循环系统传输到身体的各个部位,从而调节人体各个系统的功能。
激素可以分为以下几类:类固醇激素、甲状腺激素、蛋白质质子激素、信号肽激素、生长因子等。
它们各自拥有不同的作用机制和生理效果,对于身体的生长、发育、代谢、繁殖等均有重要作用。
二、激素的作用机制激素的作用机制可以分为以下几个方面:1. 直接作用于细胞膜有一些激素会与细胞膜上的受体直接结合,从而改变细胞的离子通道,使细胞膜产生电位变化,最终引发细胞内信号传导。
2. 间接作用于细胞核类固醇激素和甲状腺激素属于脂溶性激素,可以通过细胞膜进入细胞质,进而进入细胞核。
在细胞核内,它们与核受体结合,从而影响某些基因的表达和转录,达到调节细胞功能的作用。
3. 作用于下游信号通路另外一些激素则是通过细胞膜上的G蛋白耦联受体,激活下游信号通路,从而调节细胞的功能。
三、激素的作用效果激素的生理效果多种多样,以下几个方面是其中的代表:1. 生长发育生长激素、性激素、甲状腺激素等可以促进人体的生长发育,调节骨骼的生长和骨骼的钙盐代谢,从而使身体适应不断变化的环境和生活需求。
2. 代谢调节胰岛素和糖皮质激素可以调节机体的糖代谢和脂肪代谢,从而调节血糖和血脂的水平。
3. 免疫调节某些激素如细胞因子可以调节免疫细胞的分泌,从而对于免疫系统的平衡和疾病的治疗具有重要作用。
4. 繁殖调节性激素则可以调节人体的生育机能,促进性腺的发育和卵子的成熟,同时也帮助调节胎儿的生长和发育。
四、激素的临床应用随着对激素的认识和了解不断深入,激素在临床医学领域的应用也越来越广泛。
激素作用机制

激素作用机制激素是由内分泌腺(如甲状腺、肾上腺、睾丸、卵巢等)分泌的化学物质,通过血液传递到身体各处,调控和控制身体内的生理活动和代谢过程。
激素的作用机制主要包括以下几个方面。
第一,激素通过与细胞表面受体结合来传递信号。
细胞膜表面存在多种激素受体,激素与相应的受体结合后,可以引发一系列的信号转导过程。
这些信号转导过程可以通过改变细胞内的第二信使浓度,如环腺苷酸、钙离子等,来调控细胞内的生理反应。
这种作用机制主要适用于蛋白质激素,如胰岛素、生长激素等。
第二,激素可以通过进入细胞内直接影响基因表达。
部分脂溶性激素,如类固醇激素(如雌激素、睾丸激素、皮质醇等)和甲状腺激素,通过穿过细胞膜进入细胞,与细胞内核内的核受体结合。
在细胞核内,激素-受体复合物可以结合到DNA上的特定区域,调控特定基因的转录和翻译过程,从而改变基因表达。
这种作用机制主要适用于脂溶性激素。
第三,激素可以通过调节细胞内信号传导的其他过程来发挥作用。
例如,胰岛素通过激活细胞内的胰岛素受体,促进葡萄糖的摄取和利用,同时抑制肝脏中糖原的分解,从而调节血糖水平。
另外,一些激素可以通过调控细胞的自噬和凋亡过程来影响细胞生长和存活。
这种作用机制是激素通过调整细胞内的代谢和能量平衡来发挥作用。
最后,激素还可以通过负反馈机制来调节自身的分泌和作用。
当体内激素水平过高或过低时,正常的生理反应是通过负反馈机制调节激素的分泌和作用程度。
例如,当血糖浓度升高时,胰岛素的分泌增加,促进葡萄糖的摄取和利用,使血糖水平恢复到正常范围。
当血糖浓度降低时,则胰岛素的分泌减少,避免过度降低血糖水平。
总之,激素通过与细胞受体结合、影响基因表达、调节细胞内信号传导和通过负反馈机制来发挥作用。
这些作用机制相互作用,共同调控和控制着身体内的各个生理活动和代谢过程。
激素作用机制及调节途径

激素作用机制及调节途径激素是一类重要的生物活性物质,在动植物体内起着调节、控制和调整生理过程的作用。
它们通过特定的信号传递机制,与机体内的靶细胞相互作用,调节生长、发育、代谢和其他重要的生理功能。
本文将探讨激素的作用机制以及调节激素产生和释放的途径。
一、激素作用机制激素的作用机制主要分为两种:膜受体介导的作用机制和细胞核受体介导的作用机制。
1. 膜受体介导的作用机制膜受体介导的作用机制是指激素通过与受体蛋白结合,进而引发一系列细胞内的信号传递过程。
这类受体主要分为上位受体和离体受体。
上位受体包括酪氨酸激酶受体和GPCR(G蛋白偶联受体)。
酪氨酸激酶受体通常由一个跨膜结构的受体蛋白和一个细胞外的激素结合位点组成,激素结合后受体激活,内源性酪氨酸激酶活性增强,进而磷酸化特定靶蛋白。
GPCR受体则通过与G蛋白结合,使其活性增强,进而调节腺苷酸水平、离子通道开闭以及细胞内二次信使的生成。
离体受体则又分为离体核受体和离体胞质受体。
离体核受体包括甲状腺激素受体、类固醇激素受体等,它们在核内结合DNA,进而调节基因的转录和翻译过程。
离体胞质受体则通过与胞质内的蛋白结合,影响细胞的酶活性或代谢通路。
2. 细胞核受体介导的作用机制细胞核受体是一种特殊的蛋白,能够结合激素并直接与细胞核内的DNA结合。
它们包括甲状腺激素受体、类固醇激素受体等。
激素进入细胞后,与细胞核受体结合,形成激素-受体复合物。
这种复合物能够结合到某些特定的区域上,在基因的启动子区域上增强或抑制基因的转录,从而调节细胞内的相应蛋白的合成。
二、激素调节途径激素的产生和释放受到多种因素的调节。
下面列举几个常见的调节途径。
1. 反馈调节反馈调节是指机体内某些细胞群或器官的活动状态通过一种信号途径反馈到激素产生的细胞或器官,从而影响激素的合成和释放。
例如,甲状腺激素的合成和释放受到下丘脑垂体甲状腺轴的调节,当甲状腺激素水平过低时,下丘脑释放甲状腺促性腺激素释放激素(TRH),促使垂体释放促甲状腺激素(TSH),进而刺激甲状腺合成和释放甲状腺激素。
激素的调节和作用机制

激素的调节和作用机制激素是一类由内分泌腺体分泌的化学物质,它们通过血液传递到身体的各个组织和器官,调节和控制着身体内多种生理功能的平衡。
激素的调节和作用机制是一个复杂而精密的过程,涉及到多个腺体、反馈机制和信号传递途径。
本文将通过解析激素的分类、分泌机制、作用方式和调节机制等方面,来深入探讨激素的调节和作用机制。
一、激素的分类与分泌机制激素根据化学性质和功能可分为多个类别,包括蛋白质激素、类固醇激素、氨基酸衍生物激素和甲状腺激素等。
蛋白质激素和氨基酸衍生物激素多为水溶性,可以通过外源性刺激或者腺体自发分泌释放到血液中;而类固醇激素和甲状腺激素则是脂溶性,需要通过转运蛋白结合携带到靶细胞。
激素的分泌由相应的内分泌腺体调控,其中最重要的腺体包括垂体、甲状腺、肾上腺和胰岛等。
这些腺体受到多种内外环境因素的调节,使其能够根据身体需要释放合适的激素。
例如,垂体受到下丘脑释放激素的调节,通过对促释放因子的反馈机制,调控着生长激素、卵泡刺激素、黄体生成素等激素的分泌。
二、激素的作用方式激素通过与特定的受体结合,触发一系列生物化学反应,实现对细胞和器官功能的调控。
细胞膜上的受体主要与水溶性激素结合,而细胞内的受体主要与脂溶性激素结合。
水溶性激素经过受体的结合后,通过激活腺苷酸环化酶的功能,使腺苷酸转变为第二信使(如cAMP),从而调节细胞内多种酶的活性,最终影响细胞的生理功能。
脂溶性激素则通过与核内受体结合,调控基因的转录和翻译,从而影响蛋白质的合成和细胞功能的改变。
激素的作用方式并不是简单的直接刺激细胞,而是通过信号传递网络来实现调节。
这些信号传递网络包括多种细胞信号通路,如蛋白激酶A、蛋白激酶C和酪氨酸激酶等。
通过这些信号通路的激活、抑制和交叉调节,激素的作用能够在细胞内产生复杂的生物效应。
三、激素的调节机制激素的分泌和作用往往受到多种机制的调节。
其中最常见的是反馈调节机制,包括负反馈和正反馈。
负反馈是指当激素作用于靶组织后,产生的效应抑制了激素的分泌,从而达到维持环境稳定的目的。
激素的调节机制及其作用

激素的调节机制及其作用激素是一类分泌于内分泌腺体的物质,它们可以通过血液循环到达身体各个部位,对于机体的正常运作有着重要的作用。
激素可以分为蛋白质激素和类固醇激素两种。
在机体内部,激素分泌的调节是一个非常复杂的过程,涉及到许多生理、神经和环境因素。
本文将从激素分泌调节机制、激素的类型及其作用等几个方面进行探讨。
一、激素的分泌调节机制1.反馈调节激素的分泌调节机制中最为普遍的方法是反馈调节。
反馈调节指的是机体对于某种激素的分泌量进行控制的机制。
例如,甲状腺素的分泌就受到血中的TSH (促甲状腺激素)的控制。
当血中甲状腺素含量过低时,垂体前叶会分泌TSH,刺激甲状腺分泌甲状腺素。
一旦甲状腺素的含量升高到一定水平,它会抑制TSH 的分泌,从而达到一种平衡,保持机体内甲状腺素的平稳水平。
2.神经调节神经调节指的是神经系统对于激素分泌的调节。
例如,肾上腺素和去甲肾上腺素的分泌主要受到交感神经系统的调节。
当身体处于紧急状态,交感神经会向肾上腺发出信号,促进肾上腺素和去甲肾上腺素的分泌,从而使身体处于“战斗或逃跑”的状态。
而当身体处于放松状态,则交感神经系统会减弱对肾上腺素和去甲肾上腺素的刺激作用。
3.环境因素调节环境因素调节也是激素分泌的一个重要调节机制。
例如,葡萄糖水平的升高会刺激胰岛素的分泌。
胰岛素可以促进体内细胞对葡萄糖的吸收利用,帮助维持血糖的稳定。
而当葡萄糖水平下降时,胰岛素的分泌也相应减少。
二、激素的类型及其作用1.类固醇激素类固醇激素是一类由胆固醇合成的激素,在机体内部起到了重要的调节作用。
常见的类固醇激素包括雄激素、雌激素、孕激素和肾上腺皮质激素等。
它们可以参与到机体的许多生理过程中,例如性腺发育、生殖功能、钙质代谢、代谢调节等。
2.蛋白质激素蛋白质激素也是分泌于内分泌腺体的激素。
与类固醇激素不同的是,蛋白质激素分子体积较大,不能通过细胞膜进入到细胞内,而是与细胞外的膜受体结合,进而影响细胞内的信号通路。
激素作用机制及其在农业中的应用

激素作用机制及其在农业中的应用植物激素是一种重要的信号分子,可以调节植物的生长发育和适应环境的能力。
植物激素的种类有很多,比如生长素、赤霉素、脱落酸、乙烯、腺苷酸、激动素等,这些激素有着不同的生理作用和作用机制。
在农业中,激素的应用范围很广,可以促进植物生长、提高农作物产量和品质、改善环境等。
本文将介绍激素的作用机制及其在农业中的应用。
一、激素的作用机制1、生长素:生长素是一种可以促进植物细胞的伸长和分化的植物激素。
生长素可以通过控制细胞壁松弛和水分的流动来影响细胞的大小和形态。
生长素还可以促进植物根系的伸长和侧根的分化。
此外,生长素还可以影响植物的光合作用、呼吸作用和传导作用等。
2、赤霉素:赤霉素是一种使细胞分裂和细胞扩张的植物激素。
赤霉素可以影响植物生长的方向和速度,促进植物对环境的适应能力和抗逆性。
赤霉素还可以调节植物的开花和抽穗,提高作物的产量和品质。
3、脱落酸:脱落酸是一种调节植物落叶的植物激素。
当植物需要进入休眠状态或面临不良环境时,脱落酸的合成会增加,促使植物叶子脱落。
脱落酸还可以促进植物的果实成熟和种子萌发。
4、乙烯:乙烯是一种在植物发育和防御过程中扮演着重要角色的植物激素。
乙烯可以影响植物的生长、开花、结实和蚜虫和细菌的感染反应。
二、激素在农业中的应用1、生长素在植物长势方面的应用。
通过在葡萄藤、西红柿等作物上使用生长素,可以促进这些作物的生长和发育,使得产量有所提高。
2、赤霉素在作物抗逆性上的应用。
喷洒赤霉素可以增强植物的抗逆能力,使得作物在干旱、低温和盐胁迫等环境中也能够生长繁殖,取得更好的收成。
3、乙烯在果蔬保鲜方面的应用。
乙烯可以促进果蔬的成熟和腐烂,因此在果蔬保鲜过程中可以利用乙烯来控制果蔬的成熟和保存期限。
4、脱落酸在果树农业中的应用。
喷洒脱落酸可以使果树的叶子脱落,从而减少叶子对水分和养分的消耗,使得果实能够更快更好地成熟。
5、激素在环境治理方面的应用。
通过激素的应用,可以改善土壤水分和氮磷含量,提高土壤的肥力,还可以降低作物对化肥的需求量,从而减少对环境的污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年4月28日星期二
激素的定义
激素是内分泌腺以及具有内分泌功能的 一些组织所产生的微量化学信息分子。它 们被释放到细胞外,通过扩散或被血液运 输到作用的细胞和器官,从而调节靶点代 谢,并通过反馈调节以适应机体内环境的 变化。
激素的特性
合成可调控性
在机体内的合成速度及合成量是受机体的内外环境改变而调控的。激素 由特定的组织、特定的细胞合成,合成后储存于特定部位,而不是直接 就释放到机体周围或体液中,而且一种或是一类激素的合成是可以受到另 一种或一类激素的调控。
腺苷环化酶(有活性)
ATP
cAMP
PKA
(无活性)
PKA
(有活性)
磷酸化酶激酶 磷酸化酶激酶-P
Pi
磷蛋白磷酸酶-1
–
糖原合酶
糖原合酶-P
磷酸化酶b 磷酸化酶a-P
Pi 磷蛋白磷酸酶-1
–
Pi 磷蛋白磷酸酶-1
–
磷蛋白磷酸酶抑制剂-P
PKA(有活性)
磷蛋白磷酸酶抑制剂
(2)调节其它功能蛋白质的磷酸化 (3)对基因表达的调节作用
elememts,HRE)。
类固醇激素与甲状腺素通过胞内 受体调节生理过程
激素受体的功能区域
DNA结合区 核定位序列 激素结合区 受体调节区
练习题
概念 激素、第二信使、受体、G蛋白偶联受 体、Ras蛋白、Raf蛋白 问答题 激素的特性? 激素化学本质及性质? 受体和配体结合的特性? G蛋白介导腺苷酸环化酶系统及磷脂酰 肌醇系统作用模式?
能和受体结合,但不能产生生物学效应, 这种配体叫做拮抗剂(antagonist)。
受体功能
能识别自己特异的信号物质-配体。 把识别和接受的信号准确无误地放大
并传递到细胞内部,启动一系列细胞 内信号级联反应,最后导致特定的细 胞效应。
受体和配体结合的化学键
离子键、氢键、范德华力、疏水作用。
受体-配体结合的特点
GRB2
P
二聚化 SOS
P
细 Ras-GTP 胞
膜
Raf P
MAPKK
P
细
胞
反式作用因子 P
核
调控基因表达
MAPK
P
调节其他蛋白活性
细胞内受体作用机制
胞内受体 核内受体 胞浆内受体
配体 类固醇激素 甲状腺激素
激素调节元件
配体-受体二元复合物识别并结合到 特定的DNA顺序,从而诱导基因转录活 性,即受体本身就是一种转录调节因 子。被激素活化的受体结合的DNA序列 ,即激素调节元件(hormon regulatory
受体的定义
是细胞组成的一类生物大分子,能识别并特 异性地与有生物活性的化学信号物质结合,从而 引发细胞内一系列生化反应,最终导致该细胞产 生特定生物效应。从化学本质上看,受体主要是 蛋白质,特别是糖蛋白,还有一些糖脂等。
能与受体呈特异性结合的生物活性分子则称
配体(ligand)。
配体与受体结合后产生生物效应,这种配 体称为激动剂(agonist)。
(1) DAG,IP3的生物合成和功能
DAG,IP3 的 功 能
IP3 :与内质网和肌浆网上的受体结合, 促使细胞内 Ca2+释放。
DAG:在磷脂酰丝氨酸和Ca2+协同下激活 PKC。
PKC 的结构
C1
C2
C3
C4
调节域
,, 催化域
调节域
C1:富含 Cys,DAG结合部位 C2:Ca2+ 结合部位
作用特异性
一种激素只专一性地使一类或一种细胞产生特定的生理效应。激素的 作用因靶细胞存在有特异性识别和结合激素的受体来实现的。
作用的微量性
靶细胞产生生理效应所需激素的量少,一方面是作用的特异性,另一方 面是激素与其结合的受体的亲和力极高,再则通过级联放大机制扩增 信息强度
激素分泌的可控性
微量性—分泌的严谨性(一种或一类激素的分泌,受到机体、生理状 态、机体内外环境因素改变的调控。此外,也受到另一种或另一类激 素的调控)
cGMP的合成和降解
GC GTP
Mg2+
cGMP
PPi
磷酸二酯酶 H2O Ca2+ 或 Mg2+
5´- GMP
PKG的功能
使有关蛋白或酶类的丝、苏氨酸残基磷酸化
激素
R
GC
胞膜
GC
NO
GTP
cGMP
PKG
蛋白质磷酸化
* 生理效应:如心钠素、NO舒张血管平滑肌。
1.4 第二信使-NO系统
2 通过相关激酶的信号传导
作用通过中间介质
生化反应和多个相关分子的介导,信息的级联放大
作用“快反应”和“慢反应”
激素作用靶细胞后发挥生理效应的时间
脱敏作用
激素长时间作用靶细胞时,靶细胞会产生一种降低其自 身对激素应答强度的倾向
激素的化学本质和分类
依据化学本质分类: 氨基酸衍生物类(甲状腺分泌的甲状腺素、肾上腺髓质
分泌的肾上腺激素等)
3 有丝分裂原激活蛋白激酶的信号转导
mitogen activated protein kinase kinase kinase
有丝分裂原活化蛋白的激酶 Ras蛋白家族
Raf蛋白家族 MAPK蛋白家族
受体型TPK-Ras-MAPK信息转导途径
细胞外信号 EGF、PDGF等
具PTK活性的受体
有两种构象:非活化型;活化型
信息传递过程中的G蛋白
家族 主要亚型 效应分子功能
Gs Gs
刺激腺苷环化酶和Ca2+通道
Gi Gil、Gi2 抑制腺苷环化酶 Gq Gq、G11 激活磷脂酶C-β G12 G12、G13 刺激/抑制Na+/H+交换
2 离子通道受体
烟碱样乙酰胆碱受体的分子结构
3 具有内酶活性的受体
信息传导:
1 磷酸化下游靶分子。 2 重建包含特异性识别磷酸化残基的蛋白质 的信号复合物。
3 具有内酶活性的受体
丝氨酸/苏氨酸受体激酶
与酪氨酸受体激酶区别: 将ATP分子的γ磷酸转移到靶蛋白或
靶酶分子的丝氨酸/苏氨酸残基上。
tyrosine serine threonine
3 具有内酶活性的受体
催化域 C3:ATP 结合部位 C4:结合底物并进行磷酸化转移的场所
1.2 第二信使-钙离子
Ca2+-钙调蛋白依赖性蛋白激酶途径
( Ca2+- CaM激酶途径 )
1.3 第二信使-环核苷酸
cGMP-蛋白激酶G途径 组成
受体,鸟苷酸环化酶(guanylate cyclase, GC),cGMP, 蛋白激酶G (protein kinase G,PKG)
蛋白质多肽类(垂体前叶、中叶及后叶等分泌) 甾体类(性腺 、肾上腺皮质分泌的,以环戊烷多氢菲为
母体的一类激素)
脂肪酸衍生物类(以前列腺素为代表,含有一个环戊烷
及两个脂肪酸侧链的二十碳脂肪酸)
气体分子:NO、CO
脂溶性和水溶性激素的性质
特征
脂溶性激素
水溶性激素
合成后储存 少见(甲状腺素除外) 储存
1 通过第二信使介导的信号传导 2 通过相关激酶的信号转导 3 有丝分裂原激活蛋白激酶的信号转导 4 靶细胞对配体信号的影响
1 通过第二信使介导的信息传导
第一信使first messager 由细胞分泌的调解细胞生命活动的 化学物质统称为细胞间信息物质, 又称为第一信使。
第二信使Second messager 在细胞内传递信息的小分子化合 物称为第二信使。 包括:cAMP、cGMP,IP3,Ca2+,DAG, Cer,花生四烯酸,NO
结合蛋白 总是
少见
半衰期
长
短
受体
细胞浆或细胞核
细胞膜
作用机制 直接作用于细胞核 通过第二信使
作用距离
内分泌激素
距离远,大多数属于这类,内分泌细胞将激素分泌到胞外,通 过体液循环作用于远距离的组织、器官和细胞。
旁分泌激素
只作用于临近的靶细胞
自分泌激素
作用于分泌细胞自身,自身的自我调节。
激素的作用机制与受体
2.1 酪氨酸受体激酶 2.2 丝氨酸/苏氨酸受体激酶 2.3 氨基酸激酶信号传导的级联放大
2.1 酪氨酸受体激酶
(protein tyrosine kinase,PTK)
A Ras-Raf-MAP 激酶途径
B 磷脂酶C-β
2.2 丝氨酸/苏氨酸受体激酶
激活后激活了丝氨酸/苏氨酸激酶活性 ,并通过Raf-MAP系统进行传导。
1 通过第二信使介导的信息传导
1.1 通过G蛋白偶联产生的第二信使
1.1.1 腺苷酸环化酶系统
腺苷酸环化酶
H
RR
β γ
βα GDP γ GTP
AA CC
cAMP
ATP
ATP AMP
腺苷酸环化酶 (adenylate cyclase,AC)
cAMP 磷酸二酯酶 (phosphodiesterase, PDE)
结构: 细胞外与配体的结合区、细胞内部具有激 酶活性的结构区、连接两个部分的跨膜结 构区。
3 具有内酶活性的受体
受体酪氨酸受体激酶(PTKs)
结构:细胞外与配体的结合区、细胞内部 具有酪氨酸蛋白激酶活性、连接两个部分 的跨膜结构区。
作用机制:
没有配体---受体是单体 有 配 体---受体是多聚体
1.1.2 磷脂酰肌醇系统
组成 胞外信息分子,受体, G蛋白 (Gp) 磷脂酶C(phospholipase C, PLC) 磷脂酰肌醇-4,5-二磷酸(PIP2) 甘油二脂(diacylglycerol, DAG) 三磷酸肌醇( inositol 1, 4, 5 triphosphate, IP3 ) 蛋白激酶C(protein kinase C, PKC)