油气分离器规格系列及设计步骤
油气分离器的设计

油气分离器的设计喷油螺杆压缩机中,在压缩气体的同时,大量的油被喷入压缩机的齿间容积。
这些油和被压缩气体形成的油气混合物,在经历相同的压缩过程后,被排到机组的油气分离器中。
油气分离器是喷油螺杆压缩机机组系统中的主要设备之一。
为了降低机组排气中的含油量和循环使用机组中的润滑油,必须利用油气分离器把润滑油有效地从气体中分离出来。
一、油气分离原理与方法1.油气混合物特性在由被压缩气体和润滑油形成的油气混合物中,润滑油以气相和液相两种形式存在。
处于气相的润滑油是由液相的润滑油蒸发所产生的,其数量的多少除取决于油气混合物的温度和压力外,还与润滑油的饱和蒸气压有关。
油气混合物的温度和压力愈高,则气相的油愈多;饱和蒸气压愈低,则气相的油愈少。
气相油的特性与其他气体类似,无法用机械方法予以分离,只能用化学方法去清除。
在一般的运行工况下,油气混合物中处于气相的润滑油很少。
一是因为在通常的排气温度下,混合物中润滑油蒸气的分压力很低;二是由于润滑油在从喷入到分离的时间很短,没有足够的时间达到气相和液相间的平衡状态。
处于液相的润滑油占了所有被喷入油中的绝大部分,但这种液相油滴的尺寸范围分布很广。
大部分油滴直径通常处在1~50μm,少部分的油滴可小至与气体分子具有同样的数量级,仅有0.01μm。
显然,大油滴和小油滴的性质会有较大的差异。
在重力作用下,只要油气混合物的流速不是太快,大的油滴最终都会落到油气分离器的底部。
油滴直径越小,其下落的时间就越长。
对于直径很小的润滑油微粒,却可以长时间悬浮在空气中,无法在自身重力的作用下,从气体中被分离出来。
油气分离器的作用,就是尽可能地把这部分油滴分离出来。
2.油气分离方法按分离机理的不同,喷油螺杆压缩机机组中采用两种不同的油气分离方法。
一种称为机械法,即碰撞法或旋风分离法,它是依靠油滴自身重力以及离心力的作用,从气体中分离直径较大的油滴。
实际测试表明,对于直径大于1μm的油滴,都可采用机械法被有效地分离出来。
分离器结构尺寸设计

目录一、课程设计的基本任务 ............................................................... 错误!未定义书签。
(一)设计的目的、意义 ....................................................... 错误!未定义书签。
(二)设计要求 ....................................................................... 错误!未定义书签。
(三)工艺计算步骤 ............................................................... 错误!未定义书签。
二、课程设计理论基础 (4)(一)分离器综述 (4)(二)油气分离器原理 (4)(三)从气泡中分离出油滴的计算 (5)(四)气体的允许速度 (7)(五)分离器结构尺寸计算 (7)三、实例计算 (9)(一)基础数据 (9)1. 原油组成 (9)2.相关参数 (9)(二)计算分离器的结构尺寸 (10)四、结束语 (20)附录计算程序 (21)一、课程设计的基本任务(一)设计的目的、意义目的:在老师指导下,根据给定的原油组成、分离条件、停留时间等基础数据,按规范要求独立地完成分离器结构尺寸设计。
意义:为了满足计量、储存的需要,油井产品从井口出来后,首先要进行分离,分离的场所即油气分离器。
分离后所得油、气的数量和质量除了与油气的组成、分离压力、分离温度有关外,也与油气在分离器内停留的时间有关,当油气的组成、分离压力、分离温度及处理量一定时,分离效果由分离器的尺寸决定,合理的设计或选择分离器的尺寸对改善分离效果非常必要。
(二)设计要求1.初分离段应能将气液混合物中液体大部分分离出来2.储液段要有足够的容积,以缓冲来油管线的液量波动和油气自然分离3.有足够的长度和高度,是直径100um以上的油滴靠重力沉降,以防气体过多地带走油滴4.在分离器的主体部分应有减少紊流的措施,保证液滴沉降5.要有捕集的器除雾,以捕捉二次分离后气体中更小的液滴6.要有压力和液面控制(三)工艺计算步骤1.根据油气平衡计算中所确定的气液处理量、物性、分离压力、分离温度等基础资料,并参照现场具体情况选择分离器类型。
油-气-水三相分离器的设计

重力式分离器的研制最初是以油气或油水两相分离作为目的的。最早的油气分离器基本都是采用空筒结构,发展较成熟的早期油气两相分离器以前苏联油田上使用的CTT型卧式分离器[2]为代表,该型分离器由疏流室、集液室、油气接收室以及分离器室四部分组成,内部安装有疏流板、折流板和除雾器等一些简单的内部构件,可以处理有较广范围汽油比的油气混合液;而早期的油水分离器是由油水分离池发展而来,油水分离池的发展经历了API(普通隔油池)、PPI(平行板隔油池)和CPI(波纹板隔油池)[3]。API型油水分离池由美国石油学会研制,之后壳牌公司在此基础上通过添加内部倾斜平板得到了PPI型油水分离池,不久又对其进行改进,将平板换为波纹板,不仅提升了分离效果,同时也降低了成本。CPI型油水分离池的优点是油水分离效果好,停留时间短(一般不超过30分钟),占地面积小。
设备体积大。一般油气水三相分离器体积较大,尤其是卧室油气水三相分离器占地面积相当大,导致使用成本增加。以卧式油气水三相分离器为例,解决上述问题的一种有效方法就是对分离器内多相流进行流场分析,从而选取合适的内部构件并进行合理安装。正确选取内部构件可缩短分离时间,提高分离效率,从而使分离器结构紧凑,有效减小占地面积。
图2立式旋风分离器结构
另外,威瑞泰默斯生产的高效复合三相分离器STS采用气液中度旋流技术、压缩气浮选技术、油水界位精确测定技术、水洗技术、斜板沉降技术等,有效消除了段赛流的影响,加速了油水的分离,取得了较高的分离效果;山东科瑞控股集团有限公司生产的YQ01型三相分离器,在提高分离效率减少设备投资的同时,也提高了产品的适用范围,该产品可适应-40℃~60℃的环境温度[6]。
学生:XXX
指导教师:XX
[摘要]:随着石油资源消耗的不断增加以及可开采石油资源的减少,油页岩成为备受关注的石油替代能源。油气水三相分离器是油页岩地表系统中的关键设备,采出混合液在卧式油气水三相分离器中经由重力沉降以及碰撞聚结达到油、气、水的分离。油气田生产的天然气及原油含有不凝气,通常采用轻烃回收、原油稳定、天然气净化等装置来回收轻质油及其它产品,这些装置都有对油、气、水混合液进行分离的工艺过程。本文针对生产实践中所取得的一些数据进行模拟设计出所对应油气水三相分离器的参数,并对其进行ANSYS模拟所受应力情况。
(完整版)油气分离器

2. 分离出油水混合液中的伴生气,伴生气进伴生气处理系统。经处 理后,油中含气达到如下要求:
分离质量(%)K≤ 0.5cm3/m3(气) 分离程度(%)S ≤ 0.05m3/m3 (液) 3. 除去油水混合液中砂等杂质。
由于海洋平台与浮式处理 油轮主要完成采油、采气及 集输的任务,因此在平台及 处理油轮上以重力式分离器 为主。
1.5.2 按分离器功能进行分类
分离器
计量分离器
主要作用是完成 油气水的初步分离并 计量,一般属低压分 离器。
生产分离器
主要作用是完成多 口生产井集中进行初 步分离后密闭输送, 属中高压分离器。
特点:
有界面控制器和堰 板:不适用于重质油或 者有大量乳化物或石蜡 的场合。
槽和堰的设计:要 求水堰板应放置于低于 油堰板一个距离。
现场应用:
锦州20-2计量分 离器、聚集分离器等
埕北离水分 离器、计量分离器、 热处理器等
2.2 三相分离器
2.2.1 一般三相卧式分离器基本结构及工作过程
气液混合流体经气液进口 进入分离器进行基本相分离, 气体进入气体通道通过整流和 重力沉降,分离出液滴;液体 进入液体空间分离出气泡,同 时在重力条件下,油向上流动, 水向下流动得以油水分离,气 体在离开分离器之前经捕雾器 除去小液滴后从出气口流出, 油从顶部经过溢流隔板进入油 槽并从出油口流出,水从排水 口流出。
第三节 分离器的检验标准
3.1 分离质量K
▪ 定义:分离器出口处每标准立方米气体 所带液量的多少。
▪ 计算公式:
K V液 /V气 100%
摩托车油气分离器设计规范

.Q/LX摩托车和轻便摩托车油气分离器设计规范发布前言为控制摩托车燃油蒸发污染物对环境的污染,保护环境,节约能源。
使摩托车燃油蒸发污染物排放符合国家强制性标准GB 20998-2007《摩托车和轻便摩托车燃油蒸发污染物排放限值及测量方法》的规定,在摩托车油箱上设置油气分离器,以利于收集燃油蒸气。
为规范油气分离器的设计、明确相关要求及方法,特制定本规范。
油气分离器设计规范1 范围本规范规定了摩托车和轻便摩托车(以下统称摩托车)用油气分离器设计的基本要求、原则、方案选择及检测方法等。
本规范适用于全新或改进设计的摩托车。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 191-2008 包装储运图示标志GB 20998-2007 摩托车和轻便摩托车燃油蒸发污染物排放限值及测量方法3 基本要求3.1 通气性:油气分离器应具有良好的通气性能,以保证摩托车燃油箱内部的大气平衡,避免油箱内部产生负压而导致供油不畅,出现发动机熄火等现象。
3.2 密封性:按照GB 20998-2007的要求,燃油蒸发控制系统应具有良好的密封性,避免摩托车燃油蒸发污染物因昼间换气损失和热浸损失而排放到大气中。
油气分离器通大气的燃油蒸发管接头及油箱出油口堵上后,整个油箱系统应具有良好的密封性能。
4 设计原则及方案选择4.1 设计原则4.1.1 为保证油气分离器的通气性及密封性,油气分离器应设计成为油箱内部与燃油蒸发收集系统的唯一通道。
4.1.2 为减少摩托车在运动过程中燃油蒸发管接头的燃油溢出量,油气分离器应尽可能设置于燃油箱的最高位置(摩托车处于水平位置)。
4.1.3 为保证油气分离器具有良好的油气分离效果,在油气分离器内部应设置类似迷宫或单向阀结构。
4.1.4 燃油蒸发管接头“孔径”需根据车型设计匹配确定。
高压气体用油气分离器的设计

考虑铸 造偏差、工艺性和介质腐蚀等因素
而 附加 的裕量 ,单 位为mi ; l l
该油 气分 离器分 离方 法按 两级进 行分 离 。第一 级 用机械法 作为预分 离 ,它是 依靠油滴 自身重力以及离心 力的作 用 ,从 气体 中分 离直径 较大 的油 滴 ( 径大 于 直
岛 —— 阀体外径与内径的比 ; [ 】— —材料的许用拉应力 ,单位为MP ,在 a /b 。 n / 两者中取最小值 ; n
推 广应 用 。
=、高压气体用油气分离器结构特点及
工作原理
1 技术性能参数 .
进气压力 :4 MP 。 5 a
公称通径 :2rm。 5 a
【 关键词】 高压 气源 系统
器 分离滤芯
油 气分 离 导 向螺 旋
工作温度 :≤10C。ຫໍສະໝຸດ 2 ̄ 一、刖 吾
初始压降 :≤00 MP 。 .2 a
— —
1 m) ;第二级 用亲和 聚结法作 为精分离 ,通过耐 腐 蚀的特殊玻璃纤维材料制成 的滤 芯进 行精过滤 ,使直径 在 1 i以下的油 滴先聚结 为直径 较大的油 滴 ,然 后再 n
分离 出来 。 }
、
分别为常温下材料的抗拉强度和屈服强度,
单位为MP ; a
力、n b ——分别为以 盯 为强度指标的安全系数和 。 b 为
9
() 2
式中 f B ——考虑腐蚀裕量后 阀体 的壁厚 , 单位为m m; D —— 阀体中腔最大内径 ,单位为m N m,根据 结构 需要 选定 ;
图1 油气分离器结构
l 底脚 2 . 出气接头 3导向螺旋器 4 . 简体 5 . 分离滤芯 6 挡油伞 7封头 8排污阀 9 气接头 . . 进
11211一级油气分离器制-38723

压力容器产品工艺文件产品名称:一级油气分离器工艺编号:GY11118 规格:Φ1400×30×4810 容器类别:Ⅱ类图号:制-38723 产品编号:11211编制:审核:大庆油田石油石化设备厂编制日期:2011 年 12 月 3 日制造工艺流程图符号:注释H—停止点;E—检查点;W—见证点;R-审核;RT—射线检测制造工艺流程图符号:注释H—停止点;E—检查点;W—见证点;R-审核;RT—射线检测第 1页共 2 页总体要求1、本设备的设计、制造、检验及验收按GB150-1998《钢制压力容器》及JB/T4731-2005《钢制卧式容器》执行,并受TSG R0004-2009《固定式压力容器安全技术监察规程》监察。
2、本设备用钢板按GB713-2008《锅炉和压力容器用钢板》中的规定执行,使用状态为正火;壳体用钢板应按JB/T4730-2005《承压设备无损检测》逐张进行超声波检查,质量等级不低于Ⅲ级;电加热器套管用无缝钢管整根供货,按GB9948-2006《石油裂化用无缝钢管》执行,其余无缝钢管按GB/T8163-2008《输送流体用无缝钢管》执行;锻件按NB/T47008-2010《承压设备用碳素钢和合金钢锻件》执行,使用状态为正火+回火;法兰、法兰盖用锻件16Mn按相应法兰标准规定执行;螺柱、螺母应符合HG/T20613-2009《钢制管法兰用紧固件》的规定,使用状态为调质。
3、焊接材料及焊接要求按JB/T4709-2000《钢制压力容器焊接规程》的规定执行,焊条还应符合JB/T4747-2002《压力容器用钢焊条订货技术条件》的规定。
焊缝坡口型式及尺寸除图中注明外按GB/T985.1-2008《气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口》和GB/T985.2-2008《埋弧焊的推荐坡口》的规定执行。
第 2页共 2 页4、本设备的A、B类焊缝按JB/T4730-2005《承压设备无损检测》进行100%射线检测,检测技术等级不应低于AB级,Ⅱ级合格;C、D类焊缝表面按JB/T4730-2005《承压设备无损检测》进行100%磁粉检测,Ⅰ级合格。
油气分离

4 残油量的测定及结果
按《 ISO573 - 2 - 96 一般用压缩机悬浮油含 量测试方法 》,对安装该油气分离器的螺杆压缩 机进行了悬浮油含量测试 ,测试系统布置如图 4 所示 。
图 4 压缩空气取样位置
在额定工况下 ,对油气分离器后的压缩空气
进行取样检测其悬浮油含量 ,实测空气中含油量 为 2. 3mg /m3 ,在规定的范围内 ,典型测试结果如 表 1所示 。
(1)油滴分离 。油滴从压缩空气中分离出来 的各种物理方法对微米级的玻璃纤维吸收细油滴 的效果影响因油滴大小而异 。纤维的数量 、直径 和油气流速是决定分离效果的决定因素 。图 2为 通过试验得出的油滴分离效果图 (过滤纤维直径 为 3μm ) 。从图中可以看到 ,较大的油滴流速越 高 ,分离效果越好 ;而较小的油滴 ,则流速越低 ,分
1 前言
随着我国国民经济建设的持续增长 ,各类压 缩机的需求量不断增大 ,同时也对压缩空气的质 量要求进一步提高 。如何获得含油量低 、洁净的 高品质压缩空气 ,是压缩机行业和用户十分关注 的一个课题 。
近年来 ,合肥通用机械研究院在开发研制新 系列 LHC - 28 /147 型螺杆 - 活塞串联空压机组 过程中 ,对螺杆压缩机油气分离器进行了重新设 计 ,据试验和用户使用表明 ,该压缩空气质量 、耗 油量均达到控制目标 。新设计的油气分离器 ,体 积较老型号产品明显减小 ,油气分离芯的使用寿 命增加 ,保证了机组运转的可靠性 。本文详细介 绍该油气分离器相关设计 、试验及使用情况 。
经过粗分离后油气进入油气分离芯进行精分 离 ,且回油管将残油回收 ,洁净的气体从保压止回 阀排出 。
油气分离芯进行精分离的工作原理为“聚合 作用 ”。油气分离芯所用的微米级的玻璃纤维层 将油滴从压缩空气中分离出来 ,然后粘聚成较大 的油滴 ,重新回到压缩机油路中 。这种分离过程 可达到亚微米级 ,从而确保压缩机的油耗量和进 入到压缩空气管路中的油量为最小 。油气分离共 分 3个步骤实现 :
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.球形分离器规格和设计压力
4.分离器设计依据资料
根据油气分离器处理能力的影响因素及根据石油行业标准,在分离器的工艺设计前,首先应收集、计算和了解有关液体介质、气体介质资料和设计条件,用作为设计依据。
(1)液体介质资料
A.原油处理量: m3/d;
B.原油密度: kg/m3;
C.原油含水量: % (质量比)
D.水密度: kg/m3;
E.原油发泡程度:(有、无);
F.操作条件下原油动力粘度: Pa.s;
G.操作条件下水的动力粘度: Pa.s;
S: mg/L;
H.水中含H
2
: mg/L;
I.水中含CO
2
J.水中含氧量: mg/L;
K.是否有断塞流:(有、无);
L.原油含蜡量: % (质量比);
M.原油含砂量: % (体积比);
(2)气体介质资料
A.气体处理量: m3/d;
B.标准状态下气体密度: kg/m3;
C.操作条件下气体动力粘度: Pa.s;
含量: %(体积比);
D.气体中CO
2
S含量: %(体积比);
E.气体中H
2
(3)设计条件
A.操作温度:℃;
B.操作压力: MPa;
C.分离器型式:(立式、卧式、球形);
D .分离器功能:(两相、三相) ;
E .分离后允许原油含水量: %(质量比);
F .水中含油量: mg/L ;
G .缓冲时间: min ;
H .分离后气体带液量是否需要检测: (需、不); I .分离器是否设有排液泵: (设、不); J .控制仪表类型: (电动或气动)。
5.分离器工艺计算步骤
分离器工作时应同时满足从气体中分出油滴和从原油中分出气泡的要求,对缓冲分离器尚需满足缓冲时间的要求。
因此,计算和选择油气分离器时,应对照下述步骤进行。
根据油气平衡计算中所确定的气液处理量、物性、分离压力、分离温度等基础资料,并参照现场具体情况选择分离器的类型。
(1)根据油气平衡计算中所确定的气液处理量、物性、分离压力、分离温度等基础资料,并参照现场具体情况选择分离器的类型。
(2)按照从原油中分出气体的要求,由原油性质和操作经验确定原油在分离器内的停留时间,对缓冲分离器尚需考虑缓冲时间,据此初步确定分离器尺寸。
(3)按照从气体中分出油滴的要求,计算100微米粒径的油滴在气相中的匀速沉降速度0ω,分离器的允许气体流速g ω,分离器直径D 、长度l (或高度H )等结构尺寸。
(4)比较步聚(2)、(3)的计算结果,选较大者作为分离器尺寸。
当油气处理量很大时,往往需有多台分离器并联工作。
(5)按每台分离器的气体实际处理量、气体组成、性质、固体尘粒含量等因素确定除雾器的类型和尺寸。
应该指出的是,在国外常利用分离器制造商提供的图表来选择分离器。
不同文献、不
同厂商提供的图表可能不完全类同。