反馈控制系统的分析
反馈控制系统的基本概念

控制器
控制器
被控过程
控制器
被控过程
控制器
被控过程
反馈控制系统:
前馈控制系统:
前馈---反馈 控制系统
三. 按给定值变化规律分类
t
t
t
r
r
r
恒值控制系统: 给定值不随时间变化 例 恒温,恒压系统
随动控制系统: 给定值按需求随机变化 例 雷达跟踪, 靠模加工系统
03
扰动
04
被控量
05
设定器
06
被控过程
07
传感器
08
控制器
09
按系统环节连接形式分类
10
闭环控制系统 :
11
开环控制系统:
12
第四节 自动控制系统的分类
开环控制系统举例
电 热 丝
加 热 炉
220v~
调压器
功率放大器
负载
电 位 器
M
例1.4.1 开环温度控制系统
开环控制系统特点: 1. 信号从输入到输出无反馈,单向传递. 2. 结构简单. 3. 控制精度不高,无法抑制扰动.
性能要求 (性能指标,约束条件)
控制器的结构和参数设计和整定
性能校核 (计算,仿真,实验)
第二节 反馈控制系统的基本概念
信息反馈-------最基本的自动控制原理 反馈控制系统的中的常用术语: 给定值(参考输入值) 偏差值 控制量 被控量 扰动量(内扰,外扰) 自动控制装置 = 传感器 + 控制器 + 给定器 + 执行器 受控过程(受控对象) 控制系统 = 受控过程+控制装置
----单位阶跃函数
抛物线信号(Parabolic Function)
反馈控制系统的稳定性分析

1. 稳定裕量的检验
上式如代图入3-系2统2所的示特,征令方s程式z ,即得把1 以虚z轴为左变移量的。新将特1 征方
程式,然后再检验新特征方程式有几个根位于新虚轴
(垂直线 s )的1右边。如果所有根均在新虚轴的
左边(新劳斯阵列式第一列均为正数),则说系统具有
稳定裕量 。1
j
试说明系统是否稳定。
解:系统的闭环传递函数为
(s) G(s)
1 G(s)
k s(2s 1) k
2s2
k sk
D(s) 2s2 s k 0
s 1,2
1
1 8k 4
系统稳定
三、代数稳定判据-劳斯判据
1. 系统稳定性的初步判别(必要条件)
设系统的闭环特征方程式为如下标准形式:
从表中可看出,第 一列符号改变一次, 故有一个根在直线 s= -1(即新座标 虚轴)的右边,因 此稳定裕量不到1。
2. 分析系统参数对稳定性的影响
设一单位反馈控制系统如图3-23所示,求使系统稳定
的k的范围
R(s)
1
k C(s)
s (s 1)(s 5)
图3-23
解(1)系统的传递函数为:
M M M MK
s1
f1
K
s0 g1
K
11
12
b1
1
a1
a0 a1
a2 a3
b2
1 a1
a0 a1
a4 a5
LL
b 直至其余 i 项均为零。
c1
1 b1
a1 b1
a3 b2
c2
1 b1
a1 b1
a5 b3
人体的反馈控制系统

人体的反馈控制系统人体的反馈控制系统反馈控制系统(feedback control system)是一种“闭环”系统,即控制部分发出信号,指示受控部分活动,而受控部分的活动可被一定的感受装置感受,感受装置再将受控部分的活动情况作为反馈信号送回到控制部分,控制部分可以根据反馈信号来改变自己的活动,调整对受控部分的指令,因而能对受控部分的活动进行调节。
如果经过反馈调节,受控部分的活动向和它原先活动相反的方向发生改变,这种方式的调节称为负反馈(negative feedback)调节;相反,如果反馈调节使受控部分继续加强向原来方向的活动,则称为正反馈(positive feedback)调节。
在正常人体内,绝大多数控制系统都是负反馈方式的调节,只有少数是正反馈调节。
(一)负反馈控制系统当一个系统的活动处于某种平衡或稳定状态时,如果因某种外界因素使该系统的受控部分活动增强,则该系统原先的平衡或稳定状态遭受破坏。
在存在负反馈控制机制的情况下,如果受控部分的活动增强,可通过相应的感受装置将这个信息反馈给控制部分;控制部分经分析后,发出指令使受控部分的活动减弱,向原先的平衡状态的方向转变,甚至完全恢复到原先的平衡状态。
反之,如果受控部分的活动过低,则可以通过负反馈机制使其活动增强,结果也是向原先平衡状态的方向恢复。
所以,负反馈控制系统的作用是使系统的活动保持稳定。
机体的内环境和各种生理活动之所以能够维持稳态,就是因为体内许多负反馈控制系统的存在和发挥作用。
举例来说,脑内的心血管活动中枢通过交感神经和迷走神经控制心脏和血管的活动,使动脉血压维持在一定的水平。
当由于某种原因使心脏活动增强、血管收缩而导致动脉血压高于正常时,动脉压力感受器就立即将这一信息通过传人神经反馈到心血管中枢,心血管中枢的活动就会发生相应的改变,使心脏活动减弱,血管舒张,于是动脉血压向正常水平恢复。
在另一些情况下,例如当人体由卧位转变为立位时,体内有一部分血液滞留在下肢静脉内,使单位时间内流回心脏的血量减少,动脉血压降低;此时动脉压力感受器传人中枢的神经冲动立即减少,使心血管中枢活动发生改变,其结果是心脏活动加强,血管收缩,动脉血压回升至原先的水平。
控制系统实时反馈

控制系统实时反馈控制系统是现代工业生产中不可或缺的一部分,它的作用是通过对生产过程进行监测和控制,实现生产过程的稳定运行和优化。
而控制系统的实时反馈则是保证这一目标实现的重要手段之一。
一、什么是控制系统实时反馈控制系统实时反馈是指在控制系统中通过传感器、仪表等装置对生产过程的参数进行持续监测,并将监测到的数据传递给控制器,根据该数据实时调整控制器的输出信号,以达到对生产过程的实时控制和调整。
二、控制系统实时反馈的重要性1. 提高生产过程的稳定性:通过实时监测生产过程的参数,及时发现并纠正异常情况,保证生产过程的稳定运行,降低生产过程中的变异性和偏差。
2. 快速响应生产过程的变化:实时反馈可以对生产过程中的变化进行及时感知,并通过调整控制器的输出信号快速响应,保证生产过程的变化得到有效控制。
3. 提高生产效率和质量:通过实时反馈可以对生产过程进行优化调整,提高生产效率和产品质量,降低成本。
4. 预防事故发生:通过实时监测生产过程中的参数,及时发现潜在的风险和问题,采取相应的措施进行预防,避免事故的发生。
5. 数据分析和改进:实时反馈数据可以被记录和分析,通过对数据的处理和分析,可以找到生产过程中的问题和瓶颈,并进行改进和优化。
三、实现控制系统实时反馈的关键技术和方法1. 传感器技术:合理选择和配置传感器,对生产过程中的关键参数进行准确、稳定的监测。
2. 数据传输与处理技术:确保传感器采集的数据能够及时、准确地传输给控制器,并对数据进行处理和分析,抽取有用信息。
3. 控制算法:建立合适的控制算法,根据传感器监测到的数据进行实时调整和优化,实现对生产过程的实时控制。
4. 控制器的性能和可靠性:控制器应具备良好的性能和可靠性,能够对实时反馈信号进行快速响应和调整。
5. 安全保护机制:加入安全保护机制,防止因实时反馈引起的异常情况对生产过程产生不良影响。
四、控制系统实时反馈在实际中的应用1. 工业生产自动化控制:控制系统实时反馈在工业生产自动化控制中得到广泛应用,可以对生产线的各个环节进行监测和控制,提高生产效率和质量。
反馈控制系统稳定性问题及改进方法研究

反馈控制系统稳定性问题及改进方法研究1. 研究背景反馈控制系统是一种常用的控制系统,广泛应用于工业自动化、机器人控制、飞行器等领域。
然而,反馈控制系统在实际应用中常常面临稳定性问题,如系统振荡、不稳定等。
这些问题对系统的性能、可靠性和安全性都会产生负面影响,因此需要进行研究和改进。
2. 稳定性问题的原因分析反馈控制系统稳定性问题的产生原因有多种,主要包括以下几个方面:a. 参数不确定性:如果系统参数存在不确定性,如变化范围较大或存在随机性,会导致系统的稳定性下降。
b. 时滞问题:反馈控制系统中的时滞(包括传感器延迟、信号传输延迟等)会导致系统的稳定性退化。
c. 非线性特性:系统的非线性特性会导致系统稳定性问题的产生和加剧。
d. 信号干扰:如果系统受到外部信号干扰或噪声干扰,会导致系统的稳定性受到影响。
3. 稳定性改进方法针对反馈控制系统的稳定性问题,可以采取如下改进方法:a. 参数估计与鲁棒控制:通过参数估计技术,对系统的参数进行辨识和估计,从而提高系统的鲁棒性和稳定性。
鲁棒控制策略可以针对参数不确定性,克服参数变化带来的稳定性问题。
b. 时滞补偿:采用时滞补偿技术,通过估计和预测时滞,对控制器进行补偿,消除由于时滞引起的不稳定性。
c. 非线性控制方法:针对系统的非线性特性,可以采用模糊控制、神经网络控制等非线性控制方法。
这些方法可以更好地处理系统的非线性特性,提高系统的稳定性和性能。
d. 信号处理与滤波:对于受到信号干扰的系统,可以通过信号处理和滤波技术来减小干扰的影响,提高系统的稳定性。
4. 实验研究为了验证改进方法的有效性,可以进行实验研究。
首先,建立反馈控制系统的数学模型,并模拟各种稳定性问题的影响。
然后,针对每个稳定性问题,应用相应的改进方法进行实验,比较改进前后系统的稳定性和性能。
实验结果可以提供参考,为实际应用中的系统优化提供指导。
5. 结论反馈控制系统的稳定性问题对于系统的性能和可靠性具有重要影响,需要进行研究和改进。
第一章 反馈控制系统的概念(本)

5 在反馈控制系统中,调节单元根据________的大小和方向,输出一个控制信号。 A.给定位 B.偏差 C.测量值 D.扰动量
6 在反馈控制系统中,设定值如果按照某一函数规律变化,则称为________。 A. 定值控制 B. 程序控制 C.随动控制 D.函数控制
7 在反馈控制系统中,执行机构的输入是________。 A.被控参数的实际信号 C.被控参数的偏差信号 B. 调节器的输出信号 D.被控参数的给定信号
过渡过程 : transient:指自动控制系统在动态中被控量随时间的变化过程。 或者说是从一个平衡态过渡到另一个平衡态的过程。 y
t 平衡状态 平衡 状态 过渡过程
自动控制系统过渡过程曲线
二.控制系统的典型输入信号 为便于系统分析,定义几种常见的系统输入信号:
( 1)阶跃输入: ( 2)速度输入 :
( 3)加速度输入:
( 4)脉冲输入:
( 5)正弦输入: 其中,阶跃输入对系统的工作最为不利。
r(t) R 0 r(t)
r(t)
Rt
t
0 r(t)
t
½ Rt2
0
0
t
t
r(t) 1/h 0 h t 单位脉冲函数
h→0
r(t)
r(t)→∞
0
t
h→0时,称为理想的单 位脉冲函数,记作δ(t)。
三. 评定控制系统动态过程品质的指标
四. 反馈控制系统的分类
1.按所用能源分类:气动控制系统和电动控制系统 2.按仪表的结构形式分类:单元组合仪表和基地式仪表 单元组合仪表:各单元分别制成一台独立仪表 基地式仪表 : 各单元组装成一台仪表 3. 按给定值的变化规律分类:
( a)定值控制;(b)程序控制;(c)随动控制。
线性反馈控制系统的基本结构及其特点

求得ωb≈9.0;综合考虑响应速度和带宽要求,取ωn=10。于是,
闭环主导极点为s1,2=-7.07±j7.07,取非主导极点为s3=-10ωn=100。
第6章 线性定常系统的综合
(3)确定状态反馈矩阵K。状态反馈系统的特征多项式为
第6章 线性定常系统的综合
定理6.6-受控系统(A,B,C)通过状态反馈实现解耦控制的
环极点任意配置的充要条件是该受控系统状态完全可观。
证 根据对偶原理,如果受控系统Σ0(A,B,C)可观,则对偶系
统Σ0(AT,BT,CT)必然可控,因而可以任意配置(AT-CTHT)的特征
值。而(AT-CTHT)的特征值与(A-HC)的特征值是相同的,故当
且仅当Σ0(A,B,C)可观时,可以任意配置(A-HC)的特征值。
减小ζ,这就会使系统最大超调 Mp 增大。可见只靠调整增益
K 无法同时使ζ和ωn 都取最佳值。这从根轨迹来看,由于可调
参数只有 K,故系统特征根,即闭环极点只能在系统的根轨迹
这条线上,而无法在根轨迹以外的s 平面的其他点上实现。
第6章 线性定常系统的综合
方法二:状态反馈法。
第6章 线性定常系统的综合
图6-9 模拟结构图
第6章 线性定常系统的综合
第6章 线性定常系统的综合
第6章 线性定常系统的综合
图6-10 加入状态反馈后的模拟结构图
第6章 线性定常系统的综合
6.2.2 输出反馈极点配置
输出反馈有两种方式
(1)采用从输出到ሶ 反馈,如图6-3所示。
定理6.4 对受控系统采用从输出到ሶ 的线性反馈实现闭
图6-4 控制系统结构图
反馈控制微分系统的稳定性分析

反馈控制微分系统的稳定性分析稳定性是控制系统设计中的一个重要指标,它决定了系统在长时间运行中是否能够保持良好的性能。
而是探究系统在存在反馈控制和微分操作的情况下是否能够保持稳定的研究。
在反馈控制微分系统中,系统的输出值通过传感器测量并与期望值进行比较,得到误差信号。
然后,该误差信号经过控制器进行处理,产生控制信号,通过执行器对系统进行调节,使得系统的输出接近期望值。
微分操作则是通过对误差信号进行微分运算,得到误差的变化率,用于进一步调节系统的响应速度。
稳定性分析的核心是确定系统的传递函数,并通过对其进行分析来判断系统是否稳定。
对于反馈控制微分系统,我们可以将其表示为一个闭环传递函数,其中包含控制器、执行器、传感器和被控对象。
通过对传递函数进行极点分析,可以确定系统的稳定性。
在稳定性分析中,我们通常关注系统的极点位置,特别是极点的实部。
如果所有极点的实部都小于零,则系统是稳定的;如果存在一个或多个极点的实部大于零,则系统是不稳定的。
此外,如果存在一个或多个极点的实部等于零,则系统可能是边界稳定的。
稳定性分析还可以通过根轨迹法进行。
根轨迹是系统所有极点随控制器增益变化而形成的轨迹。
通过观察根轨迹的形状,我们可以得出系统的稳定性信息。
如果根轨迹都位于单位圆内部,则系统是稳定的;如果根轨迹有一个或多个位于单位圆上或外部,则系统是不稳定的。
除了极点和根轨迹分析,稳定性分析还可以使用频域方法,如Nyquist稳定性判据和Bode稳定性判据。
这些方法通过分析系统的频率响应来判断系统的稳定性。
综上所述,反馈控制微分系统的稳定性分析是控制系统设计中的重要环节。
通过对系统的传递函数进行极点分析、根轨迹分析以及频域分析,我们可以判断系统的稳定性,并在设计过程中进行相应的调整,以保证系统在长时间运行中具有良好的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3.3a已知两个线性系统
12 s 4 G1 ( s ) 2 s 5s 2
,
s6 G2 ( s ) 2 s 7s 1
分别应用series和parallel函数进行系统的串并联连接。
3.feedback 系统的反馈连接。 格式1:sys=feedback(sys1,sys2,sign) 格式2:sys=feedback(sys1,sys2,feedin,feedout,sign) 功能: 实现两个系统的反馈连接。 说明: 格式1:对于SISO系统,sys1表示前向通道传函, sys2表示反馈通道, sign=1,正反馈. sign=-1,负反馈 (默认值,可省略) 格式2:在已确立的MIMO系统sys1中,由sys2做为反馈 构成输出反馈系统。其中feedin和feedout分 别指定了sys1的输入、输出端口号。最终实现 的反馈系统与sys1具有相同的输入、输出端。 sign含义同格式1
第三章
3.1 3.2 3.3 3.4 3.5 3.6
反馈控制系统的分析
系统的数学模型 系统的时域分析 系统的根轨迹分析 系统的频域分析 系统的性质分析 离散系统的分析
3.1
反馈控制系统的数学模型
控制系统的分析是系统设计的重要步骤之一
•在设计控制器前要分析系统的不可变部分,确定原系统在哪 些方面的性能指标不满足设计要求,有针对性的设计控制器; •控制器设计完成后要验证整个闭环系统的性能指标是否满足 设计要求。 在控制系统基本理论和控制系统工具箱函数的基础上, 利用MATLAB语言及其工具箱来解决控制系统的分析问题,包 括系统模型的建立、模型的转换以及线性系统的时域 分析、频域分析、根轨迹分析和系统的稳定性分析, 为系统的仿真和设计做准备
3.1.1 系统的数学模型 1.tf 传递函数模型 格式:sys=tf(num,den) 功能:建立系统的传递函数模型 说明:假设系统是单输入单输出系统(简称SISO),其输 入输出分别用u(t),y(t)来表示,则得到线性 系统的传递函数模型: bm s m bm1s m1 ... b1s b0 Y (S ) G( s ) U ( s) s n an 1s n 1 ... a1s a0
格式:sys=zpk([z],[p],[k]) 功能:建立零极点形式的数学模型 说明:系统的传递函数还可以表示成零极点形式,零极点模 型一般表示为:
( s z1 )(s z2 )...(s zm ) G( s) K ( s p1 )(s p2 )...(s pn )
其中 Zi(i=1,2…,m)和 Pi(i=1,2…,n)分别为系 统的零点和极点,K为系统的增益。[z]、[p]、[k]分别 为系统的 零极点和增益向量。
例3-3:已知系统传递函数如下
5( s 4) G(S ) ( s 1)( s 2)( s 3)
应用Matlab语言建立系统的零极点形式模型。
3.SS 状态空间模型
格式:sys=ss(A,B,C,D),sys=ss(A,B,C,D,T) 功能:建立系统的状态空间模型 说明:状态方程是研究系统的最为有效的系统数学描 述,在引进相应的状态变量后,可将一组一阶微分方 程表示成状态方程的形式。
2.parallel 格式1:sys=parallel(sys1,sys2) 格式2:sys=parallel(sys1,sys2,in1,in2,out1,out2) 功能: 将两个系统以并联方式连接成新的系统, 即sys=sys1+sys2。 说明: 并联连接时,输入信号相同,并联后其输出为sys1和 sys2这两个系统的输出之和。若用传递函数来描述,系 统输出: Y(S)=Y1(S)+Y2(S)=G1(S)U(S)+G2(S)U(S) =[G1(S)+G2(S)]U(S) 所以总的传递函数为G(s)=G1(s)+G2(s)。 格式1:对应于SISO系统的并联连接。其并联后其输出为sys1和 sys2这两个系统的输出之和。 格式2:对应于MIMO系统的并联连接。in1与in2指定了相连接的 输入端,out1和out2指定了进行信号相加的输出端。
AX BU 输入矩阵;Y为 l 维输出向量; A为n×n的系统状态阵,由系统参数决定,B为n×m维系统 输入阵;C为 l ×n维输出阵;D为 l ×m维直接传输阵。
3.1.2 系统的组合和连接 所谓系统组合,就是将两个或多个子系统按一定方式加以 连接形成新的系统。这种连接组合方式主要有串联、并联、反 馈等形式。MATLAB提供了进行这类组合连接的相关函数。 1.series 系统的串联 格式1:sys=series(sys1,sys2), 格式2:sys=series(sys1,sys2,outputs1,inputs2) 功能:用于将两个线性模型串联形成新的系统即sys=sys1*sys2 说明:格式1:对应于SISO系统的串联连接。 格式2:对应于MIMO系统的串联连接; 其中sys1的输出向量为outputs1 sys2的输入向量为inputs2
在MATLAB语言中,可以利用传递函数分子、分母多项式的系数 向量进行描述。分子num、分母den多项式的系数向量分别为:
num bm , bm1 ,..., b0
den 1, an 1 ,..., a0
这里分子、分母多项式系数按s的降幂排列。
例3-1:已知系统的传递函数为:
为了对系统的性能进行分析首先要建立其数学模 型 ,在MATLAB中提供了3种数学模型形描述的式: (1)传递函数模型tf() (2)零极点形式的数学模型zpk () (3)状态空间模型ss() 本节首先介绍利用MATLAB提供的3个函数来建立 系统的数学模型,然后在此基础上介绍各种数学模 型之间的相互转换。
2s 9 G( s) 4 3 2 s 3s 2s 4s 6
试建立系统的传递函数模型。
例3-2:已知系统传递函数如下
7(2 s 3) G(S ) 2 s (3s 1)( s 2) 2 (5s 3 3s 8)
应用Matlab语言建立系统的传递函数模型。
2.zpk 零极点形式的数学模型模型