二次函数单元测试试卷[上学期] 浙教版

合集下载

浙教版数学九年级上册第1单元 二次函数能力测试(含答案)

浙教版数学九年级上册第1单元 二次函数能力测试(含答案)

浙教版数学九年级上册第一单元二次函数能力测试一,选择题(共10小题,每小题3分,共30分)1.将抛物线y =x 2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数 关系式是( )A .y =(x +2)2+2B .y =(x +2)2-2C .y =(x -2)2+2D .y =(x -2)2-22. 某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例.如图表示的是该电路中电流I 与电阻R 之间函数关系的图像,则用电阻R 表示电流I 的函数解析式为( )A.I=R 2 B. I=R 3 C. I=R 6 D. I=-R6 3..已知二次函数y =2(x -3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-3;③其图象顶点坐标为(3,-1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A.1个 B.2个 C.3个 D.4个4.设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >> 5.已知反比例函数y =(b 为常数),当x >0时,y 随x 的增大而增大,则一次函数y =x +b 的图象不经过第几象限( ) A.一 B.二 C.三 D.四6.二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )A .3- B .3 C .6- D .97.如图,两个反比例函数1y x=和2y x =-的图象分别是1l 和2l .设点P 在1l 上,PC ⊥x 轴,垂足为C ,交2l 于点A ,PD ⊥y 轴,垂足为D ,交2l 于点B ,则三角形P AB 的面积为( ) A ,3 B ,4 C ,92D ,5 8. 如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数xky =(x >0)的图象与△ABC 有公共点,则k 的取值范围是( )x yAP B DC O 1l 2l第6题 第7题A.2≤k ≤9B.2≤k ≤8C.2≤k ≤5D.5≤k ≤89.二次函数y=ax 2+bx+1(a ≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .﹣1<t <110.如图,正方形ABCD 的边长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B →C 和A →D →C 的路径向点C 运动,设运动时间为x (单位:s ),四边形PBDQ 的面积为y (单位:cm 2),则y 与x (0≤x ≤8)之间函数关系可以用图象表示为( )二,填空题(共6小题,每小题4分,共24分)11.下列函数:①y=2x ﹣1;②y=﹣;③y=x 2+8x ﹣2;④y=;⑤y=;⑥y=中,y 是x的反比例函数的有 .(填序号)12、已知下列函数 ①2y x = ②2y x =- ③()212y x =-+,其中,图象通过平移可以得到函数223y x x =+-的图像的有 (填写所有正确选项的序号)13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是 14.如图,已知函数y=2x 和函数的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,若△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,则满足条件的P 点坐标是 ______ ___ .15. 把二次函数2)1(2+-=x y 的图象绕原点旋转180°后得到的图象解析式为。

浙教版九年级上册:第一章 二次函数 单元测试(含答案)

浙教版九年级上册:第一章 二次函数 单元测试(含答案)

第1章综合测评卷一、选择题(每题3分,共30分)1.下列各式中,y 是x 的二次函数的是(C ).A.x 2+2y 2=2B.x=y 2C.3x 2-2y=1D.21x +2y-3=02.对于二次函数y=(x-1)2+3的图象,下列说法正确的是(C ).A.开口向下B.对称轴是直线x=-1C.顶点坐标是(1,3)D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD)花园,这个矩形花园的最大面积是(C ).A.16m 2 B.12m 2 C.18m 2D.以上都不对4.如果抛物线y=mx 2+(m-3)x-m+2经过原点,那么m 的值等于(C ).A.0B.1C.2D.35.如图所示,直线x=1是抛物线y=ax 2+bx+c 的对称轴,那么有(D ).A.abc >0B.b <a+cC.a+b+c <0D.c <2b(第5题)(第6题)(第7题)(第8题)6.已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是(C ).A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y=ax 2+bx+c 的顶点为点P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A ′,则AA ′的长度为(A ).A.343 B.241 C.32D.38.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB=8m ,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC=1m ,则门高OE 为(B ).A.9mB.764m C.8.7m D.9.3m9.已知二次函数y=x 2+bx+c 与x 轴只有一个交点,且图象过A(x 1,m),B(x 1+n ,m)两点,则m ,n 满足的关系为(D ).A.m=21n B.m=41n C.m=21n 2D.m=41n 210.已知二次函数y=-(x-1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为(D ).A.25 B.2 C.23 D.21(第10题答图)【解析】二次函数y=-(x-1)2+5的大致图象如答图所示:①当m ≤0≤x ≤n <1时,当x=m 时y 取最小值,即2m=-(m-1)2+5,解得m=-2或m=2(舍去).当x=n 时y 取最大值,即2n=-(n-1)2+5,解得n=2或n=-2(均不合题意,舍去).②当m ≤0≤x ≤1≤n 时,当x=m 时y 取最小值,由①知m=-2.当x=1时y 取最大值,即2n=-(1-1)2+5,解得n=25,或x=n 时y 取最小值,x=1时y 取最大值,2m=-(n-1)2+5,n=25,∴m=811.∵m <0,∴此种情形不合题意.∴m+n=-2+25=21.故选D.二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y=3x 2的图象重合,那么这个二次函数的表达式可以是y=3(x+2)2+3(只要写出一个).12.如图所示,抛物线y=ax 2+bx+c(a >0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P(5,0)在抛物线上,则9a-3b+c 的值为.(第12题)(第13题)(第14题)(第15题)13.如图所示,抛物线y=ax 2+bx+c 与x 轴相交于点A ,B(m+2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),则点A 的坐标是(-2,0).14.如图所示,将两个正方形并排组成矩形OABC ,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M ,N 的二次函数的图象也过矩形的顶点B ,C ,若三个正方形边长均为1,则此二次函数的表达式为y=-34x 2+38x+1.15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图所示.这种工艺品的销售量y (件)关于降价x (元)的函数表达式为y=60+x.16.已知抛物线y=a(x-1)(x+a2)的图象与x 轴交于点A ,B ,与y 轴交于点C ,若△ABC 为等腰三角形,则a 的值是2或34或251 .三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25).(1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小?【答案】(1)设抛物线的函数表达式为y=a (x-2)2-3,把(1,-25)代入,得-25=a-3,即a=21.∴抛物线的函数表达式为y=21x 2-2x-1.图略.(2)∵抛物线对称轴为直线x=2,且a>0,∴当x ≥2时,y 随x 的增大而增大;当x ≤2时,y 随x 的增大而减小.18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y=4x-21x 2的图象的一段,斜坡的截线OA 是一次函数y=21x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标.(2)求网球在斜坡上的落点A 的竖直高度.【答案】(1)∵y=4x-21x 2=-21(x-4)2+8,∴网球抛出的最高点的坐标为(4,8).(2)由题意得4x-21x 2=21x,解得x=0或x=7.当x=7时,y=21×7=27.∴网球在斜坡的落点A的垂直高度为27.19.(8分)若直线y=x+3与二次函数y=-x 2+2x+3的图象交于A ,B 两点,(1)求A ,B 两点的坐标.(2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?【答案】(1)由题意得⎩⎨⎧++-=+=3232x x y x y ,解得⎩⎨⎧==30y x 或⎩⎨⎧==41y x .∴A ,B 两点的坐标分别为(0,3),(1,4).(2)∵A ,B 两点的坐标是(0,3),(1,4),∴OA=3,OA 边上的高线长是1.∴S △OAB =21×3×1=23.(3)当x <0或x >1时,一次函数的值大于二次函数的值.20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x(km),乘坐地铁的时间y 1(min)是关于x 的一次函数,其关系如下表所示:地铁站A B C D E x(km)89111.513y 1(min)182222528(1)求y 1关于x 的函数表达式.(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=21x 2-11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【答案】(1)设y 1=kx+b ,将(8,18),(9,20)代入,得⎩⎨⎧=+=+209188b k b k ,解得⎩⎨⎧==22b k .∴y 1关于x 的函数表达式为y 1=2x+2.(2)设李华从文化宫回到家所需的时间为y.则y=y 1+y 2=2x+2+21x 2-11x+78=21x 2-9x+80.∴当x=9时,y 有最小值,y min =2149802142⨯-⨯⨯=39.5.∴李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5min.21.(10分)已知二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A.(1)当a=21时,求点A 的坐标.(2)过点A 的直线y=x+k 与二次函数的图象相交于另一点B ,当b ≥-1时,求点B 的横坐标m 的取值范围.【答案】(1)∵二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A ,∴Δ=b 2-4a×21=b 2-2a=0.∵a=21,∴b 2=1.∵b <0,∴b=-1.∴二次函数的表达式为y=21x 2-x+21.当y=0时,21x 2-x+21=0,解得x 1=x 2=1,∴A(1,0).(2)∵b 2=2a ,∴a=21b 2,∴y=21b 2x 2+bx+21=21(bx+1)2.当y=0时,x=-b 1,∴A (-b 1,0).将点A (-b 1,0)代入y=x+k ,得k=b 1.由⎪⎪⎩⎪⎪⎨⎧+=++=b x y bx x b y 1212122消去y 得21b 2x 2+(b-1)x+21-b 1=0,解得x 1=-b 1,x2=22b b -.∵点A 的横坐标为-b 1,∴点B 的横坐标m=22b b -.∴m=22b b -=2(21b -b 21)=2(b 1-41)2-81.∵2>0,∴当b 1<41时,m 随b1的增大而减小.∵-1≤b <0,∴b 1≤-1.∴m ≥2×(-1-41)2-81=3,即m ≥3.22.(12分)设函数y=kx 2+(2k+1)x+1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k ,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k ,当x<m 时,y 随着x 的增大而增大,试求出m 的一个值.【答案】(1)如:y=x+1,y=x 2+3x+1,图略.(2)不论k 取何值,函数y=kx 2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),且与x 轴至少有1个交点.证明如下:由y=kx 2+(2k+1)x+1,得k(x 2+2x)+(x -y+1)=0.当x 2+2x=0,x -y+1=0,即x=0,y=1,或x=-2,y=-1时,上式对任意实数k 都成立,∴函数的图象必过定点(0,1),(-2,-1).∵当k=0时,函数y=x+1的图象与x 轴有一个交点;当k ≠0时,Δ=(2k+1)2-4k=4k 2+1>0,函数图象与x 轴有两个交点,∴函数y=kx 2+(2k+1)x+1的图象与x 轴至少有1个交点.(3)只要写出的m ≤-1就可以.∵k<0,∴函数y=kx 2+(2k+1)x+1的图象在对称轴直线x=-k k 212+的左侧,y 随x 的增大而增大.由题意得m ≤-k k 212+.∵当k<0时,k k 212+=-1-k21>-1.∴m ≤-1.23.(12分)如图1所示,点P(m ,n)是抛物线y=41x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为点H .【特例探究】(1)当m=0时,OP=1,PH=1;当m=4时,OP=5,PH=5.【猜想验证】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想.【拓展应用】(3)如图2所示,图1中的抛物线y=41x 2-1变成y=x 2-4x+3,直线l 变成y=m(m <-1).已知抛物线y=x 2-4x+3的顶点为点M ,交x 轴于A ,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y=m(m <-1)与对称轴交于点C ,若对于抛物线上每一点都满足:该点到直线y=m 的距离等于该点到点N 的距离.①用含m 的代数式表示MC ,MN 及GN 的长,并写出相应的解答过程.②求m 的值及点N 的坐标.(第23题)【答案】(1)1,1,5,5.(2)猜想:OP=PH.证明:设PH 交x 轴于点Q ∵P 在y=41x 2-1上,∴P (m ,41m 2-1),PQ=∣41m 2-1∣,OQ=|m|.∵△OPQ 是直角三角形,∴OP=22OQ PQ +=222141m m +⎪⎭⎫ ⎝⎛+=22141⎪⎭⎫ ⎝⎛+m =14m 2+1.∵PH=yp-(-2)=(41m 2-1)-(-2)=41m 2+1,∴OP=PH.(3)①∵M (2,-1),∴CM=MN=-m-1.GN=CG-CM-MN=-m-2(-m-1)=2+m.②点B 的坐标是(3,0),BG=1,GN=2+m.由勾股定理得BN=22GN BG +=()2221m ++.∵对于抛物线上每一点都有:该点到直线y=m 的距离等于该点到点N 的距离,∴1+(2+m )2=(-m )2,解得m=-45.∵GN=2+m=2-45=43,∴N (2,-43).。

浙教版九年级数学上册第一章二次函数单元测试卷含答案

浙教版九年级数学上册第一章二次函数单元测试卷含答案

第一章 二次函数单元测试卷(本试卷共三大题,26个小题 试卷分值:150分 考试时间:120分钟) 姓名: 班级: 得分:一、填空题(本题有10个小题,每小题4分,共40分) 1.抛物线2(1)3y x =-+的对称轴是( ) A .直线1x =B .直线3x =C .直线1x =-D .直线3x =-2.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为 ( ) A .2(3)2y x =++ B .2(3)2y x =-- C .2(6)2y x =-- D .2(3)2y x =-+3.若二次函数c x x y ++=22配方后为7)(2++=h x y ,则c 、h 的值分别为( ) A .8、-1 B .8、1 C .6、-1 D .6、1 4.二次函数y =2(x -1)2+3的图像的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)5.已知二次函数2y 3=-+x x m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程230-+=x x m 的两实数根是( )A .x 1=1,x 2=-2B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=3 6.二次函数2(1)2y x =-+的最小值是( ) A .2-B .2C .1-D .17.抛物线24y x x =-的对称轴是 ( ) A .x =-2B .x =4C .x =2D .x =-48.已知二次函数y =2(x -3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-3;③其图象顶点坐标为(3,-1);④当x <3,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个9.已知二次函数y =ax 2+bx +c 的图象如图,①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b >m (am +b )(m ≠1),其中结论正确的有( )A . ③④B . ③⑤C . ③④⑤D . ②③④⑤ 10.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则正比例函数y =(b +c )x 的图象与反比例函数的图象在同一坐标系中大致是( )O O O O O y y yy y xxxxx-11A .B .C .D .二、认真填一填 (本题有8个小题, 每小题4分, 共32分) 11.抛物线22(1)2y x =-++的顶点的坐标是12.进价为30元/件的商品,当售价为40元/件时,每天可销售40件,售价每涨1元,每天少销售1件,当售价为 元时每天销售该商品获得利润最大,最大利润是 ___________元.13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为y =-112(x -4)2+3,由此可知铅球推出的距离是________m .14.请你写出一个抛物线的表达式,此抛物线满足对称轴是y 轴,且在y 轴的左侧部分是上升的,那么这个抛物线表达式可以是 .15.将抛物线y =(x +2)2-3的图像向上平移5个单位,得到函数解析式为 .16.若函数y =a (x -h )2+k 的图象经过原点,最小值为8,且形状与抛物线y =-2x 2-2x +3相 同,则此函数关系式______.17.周长为16cm 的矩形的最大面积为____,此时矩形边长为____,实际上此时矩形是 18.如图,抛物线y =ax 2+1与双曲线y =xm的交点A 的横坐标是2,则关于x 的不等式xm+ax 2+1<0的解集是 .三、解答题(本题有8个小题,共78分.解答应写出文字说明,证明过程或推演步骤.) 19.(6分)已知抛物线c bx x y ++=2经过点(1,-4)和(-1,2).求抛物线解析式.20.(8分)如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点, 且A (一1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.21.(8分)某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价1元,其销量就减少20件。

新浙教版九年级数学上册《二次函数》测试卷(附答案)

新浙教版九年级数学上册《二次函数》测试卷(附答案)

新浙教版九年级数学上册《二次函数》测试卷(附答案)二次函数测试卷(100分,90分钟)一、选择题(每题3分,共30分)1.下列函数中,y是x的二次函数的是()A。

y = (2x-1) - (2x+1)(2x-1)B。

y = x-1C。

y = 1/2D。

x-2y-2 = 2x-12.(2012,德阳,一题多解)在同一平面直角坐标系内,将函数图象沿x轴方向向右平移2个单位后再沿y轴向下平移1个单位,得到图象的顶点坐标是()A。

(-1,1)B。

(1,-2)C。

(2,-2)D。

(1,-1)3.(2012,滨州)抛物线y = -3x^2 - x + 4与坐标轴的交点个数是()A。

3B。

2C。

1D。

04.(2012,桂林)如图1,把抛物线y = x^2沿直线y=x平移2个单位后,其顶点在直线上的点A处,则平移后的抛物线表达式是()A。

y = (x+1)^2 - 1B。

y = (x+1)^2 + 1C。

y = (x-1)^2 + 1D。

y = (x-1)^2 - 15.设二次函数y = x^2 + bx + c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A。

c=3B。

c≥3C。

1≤c≤3D。

c≤36.(2013,菏泽)已知b<0,二次函数y = ax^2 + bx + a^2-1的图象为如图2所示的四个图象之一.试根据图象分析,a的值应等于()A。

-2B。

-1C。

1D。

27.(2013,内江)若抛物线y = x^2 - 2x + c与y轴的交点坐标为(0,-3),则下列说法不正确的是()A。

抛物线开口向上B。

抛物线的对称轴是直线x=1C。

当x=1时,y的最大值为-4D。

抛物线与x轴的交点坐标为(-1,0),(3,0)8.(2013,日照)如图3,已知抛物线y = -x^2 + 4x和直线y = 2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A。

数学浙教版九年级上册第1章二次函数单元检测题(解析版)

数学浙教版九年级上册第1章二次函数单元检测题(解析版)

2019-2019 学年数学浙教版九年级上册第 1 章二次函数单元检测题一、选择题(本大题共10 小题,每题 3 分,共 30 分)1.若 y=(k+2)是二次函数,且当x>0 时, y 随的增大而增大.则k=()A. ﹣3B. 2C.﹣3 或2 D. 32.将抛物线 y=2x2怎样平移可获取抛物线 y=2(x﹣4)2﹣1()A.向左平移 4 个单位,再向上平移 1 个单位B.向左平移 4 个单位,再向下平移 1 个单位C.向右平移 4 个单位,再向上平移 1 个单位D.向右平移 4 个单位,再向下平移 1 个单位3.已知抛物线 y=ax2+bx+c(a≠0)在平面直角坐标系中的地点以下图,则以下结论中,正确的选项是()A.a<0B.b>0C.a+b+c=0D.4a﹣2b+c>04.已知点( 2,y1),(5.4,y2),(1.5,y3)在抛物 y=2x 2 8x+m2的象上, y1,y2,y3大小关系是()A.y 2>y1>y3B.y2>y3>y1C.y1>y2>y3D.y3>y2>y15.若二次函数的分析式y=2x24x+3,其函数象与x 交点的状况是()A. 没有交点B. 有一个交点C. 有两个交点 D. 以上都不6.已知二次函数 y=ax2+bx+c,且 a<0,a b+c>0,必定有()A.b24ac>0B.b24ac=0C.b24ac<0D.b24ac≤07.因为被墨水染,一道数学能到以下文字:已知二次函数y=ax2+bx+c 的象点(1,0)⋯求:个二次函数的象对于直x=2称.依据有信息,中的二次函数不必定拥有的性是()A. 点( 3,0)B. 点是( 2, 2)C. 在 x 上截得的段的度是 2D. c=3a8.林书豪身高 1.91m,在某次投篮中,球的运动路线是抛物线y=x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离约为()B.4m9. 已知函数,若使y=k成立的x值恰巧有三个,则k 的值为()A.0B.1C.2D.310.如图,在平面直角坐标系中,四边形 OABC 是菱形,点 C 的坐标为(4,0),∠ AOC=60°,垂直于 x 轴的直线 l 从 y 轴出发,沿 x 轴正方向以每秒1 个单位长度的速度向右平移,设直线 l 与菱形 OABC 的两边分别交于点 M ,N(点 M 在点 N 的上方),若△ OMN 的面积为 S,直线 l 的运动时间为 t 秒第 3页 /共 24页(0≤t ≤4),则能大概反应S 与 t 的函数关系的图象是()A. B.C. D.二、填空题(本大题共6小题,每题 3 分,共18分)11.抛物线 y= ﹣2x2+6x﹣1的极点坐标为 ________ 。

第一章 二次函数 单元测试卷(含答案)2024-2025学年浙教版数学九年级上册

第一章 二次函数 单元测试卷(含答案)2024-2025学年浙教版数学九年级上册

二次函数单元测试卷一、选择题(每题3分,共30分)1.下列各式中,y是x的二次函数的是( )A.y=1x2B.y=x2+1x+1C.y=2x2−1D.y=x2−12.一个二次函数图象的顶点坐标是(2,4),且过另一点(0,−4),则这个二次函数的解析式为( )A.y=−2(x+2)2+4B.y=2(x+2)2−4C.y=−2(x−2)2+4D.y=2(x−2)2−43.已知A(−1,y1),B(1,y2),C(3,y3)三点都在抛物线y=x2−3x+m上,则y1、y2、y3的大小关系为( )A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y2<y14.将抛物线y=3x2+2先向左平移2个单位长度,再向下平移3个单位长度,则得到的抛物线的解析式为( )A.y=3(x−2)2−1B.y=3(x−2)2+5C.y=3(x+2)2−1D.y=3(x+2)2+55.在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是( )A.B.C.D.6.若m<n<0,且关于x的方程a x2−2ax+3−m=0(a<0)的解为x1,x2(x1<x2),关于x的方程a x2−2ax+3−n=0(a<0)的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x27.已知二次函数y=a x2+bx+c满足以下三个条件:①b2a>4c,②a−b+c<0,③b<c,则它的图象可能是( )A.B.C.D.8.小明在解二次函数y=a x2+bx+c时,只抄对了a=1,b=4,求得图象过点(−1,0).他核对时,发现所抄的c比原来的c值大2.则抛物线与x轴交点的情况是( )A.只有一个交点B.有两个交点C.没有交点D.不确定9.已知二次函数y=x2−bx+1,当−32≤x≤12时,函数y有最小值12,则b的值为( )A.−2或32B.−116或32C.±2D.−2或−11610.如图,把二次函数y=a x2+bx+c(a≠0)的图象在x轴上方的部分沿着x轴翻折,得到的新函数叫做y=a x2+bx+c(a≠0)的“陷阱”函数.小明同学画出了y=a x2+bx+c(a≠0)的“陷阱”函数的图象,如图所示并写出了关于该函数的4个结论,其中正确结论的个数为( )①图象具有对称性,对称轴是直线x=1;②由图象得a=1,b=−2,c=−3;③该“陷阱”函数与y轴交点坐标为(0,−3);④y=−a x2−bx−c(a≠0)的“陷阱”函数与y=a x2+bx+c(a≠0)的“陷阱”函数的图象是完全相同的.A.1B.2C.3D.4二、填空题(每题4分,共24分)11.若y=(m2+m)x m2+1−x+3是关于x的二次函数,则m= .12.如图所示,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx.小强骑自行车从拱梁一端沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10 s时和26 s时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需 s. 13.二次函数y=ax2+bx+c的图象与x轴交于A,B两点,顶点为C,其中点A,C坐标如图所示,则一元二次方程ax2+bx+c=0的根是 第12题图第13题图第16题图14.若把二次函数y=x2−2x−2化为y=(x−ℎ)2+k的形式,其中ℎ,k为常数,则ℎ+k= .15.y关于x的二次函数y=a x2+a2,在−1≤x≤1时有最大值6,则2a= .16.如图,在平面直角坐标系中,抛物线y=1x2−3x与x轴的正半轴交于点E.矩形ABCD2的边AB在线段OE上,点C、D在抛物线上,则矩形ABCD周长的最大值为 .三、综合题(17-20、22每题6分,21、23每题8分,共46分)17.已知点M为二次函数y=−(x−m)2+4m+1图象的顶点,直线y=kx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由;(2)如图,若二次函数图象也经过点A,B,且kx+5>−(x−m)2+4m+1,根据图象,直接写出x的取值范围.18.如图,二次函数y=a x2+2ax+c的图象与x轴交于A,B两点(点A在点B的左侧),与y轴正半轴交于点C,且OA=OC=3.(1)求二次函数及直线AC的解析式.(2)P是抛物线上一点,且在x轴上方,若∠ABP=45°,求点P的坐标.19.为了振兴乡村经济,增加村民收入,某村委会干部带领村民把一片坡地改造后种植了优质葡萄,今年正式上市销售,并在网上直播推销优质葡萄.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为y={mx−76m(1≤x<20,x为正整数),n(20≤x≤30,x为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售葡萄的成本是18元/千克,每天的利润是W元.(1)m= ,n= ;(2)销售优质葡萄第几天时,当天的利润最大?最大利润是多少?20.如图,△ABC中,AC=BC,∠ACB=90°,A(−2,0),C(6,0),反比例函数y=kx (k≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=kx(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.21.如图,已知二次函数y=a x2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=a x2+2x+c的表达式;(2)连接PO,PC,并把ΔPOC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.22.根据以下素材,探索完成任务.如何设计跳长绳方案素材1图1是集体跳长绳比赛,比赛时,各队跳绳10人,摇绳2人,共计12人.图2是绳甩到最高处时的示意图,可以近似的看作一条抛物线,正在甩绳的甲、乙两位队员拿绳的手间距6米,到地面的距离均为1米,绳子最高点距离地面2.5米.素材2某队跳绳成员有6名男生和4名女生,男生身高1.70米至1.80米,女生身高1.66米至1.68米.跳长绳比赛时,可以采用一路纵队或两路纵队并排的方式安排队员位置,但为了保证安全,人与人之间距离至少0.5米.问题解决任务1确定长绳形状在图2中建立合适的直角坐标系,并求出抛物线的函数表达式.任务2探究站队方式当该队以一路纵队的方式跳绳时,绳子能否顺利的甩过所有队员的头顶?任务3拟定位置方案为了更顺利的完成跳绳,现按中间高两边低的方式居中安排站位.请在你所建立的坐标系中,求出左边第一位跳绳队员横坐标的最大取值范围.23.如图,对称轴为直线x=−1的抛物线y=a x2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(−3,0),且点(2,5)在抛物线y=a x2+bx+c上.(1)求抛物线的解析式;(2)点C为抛物线与y轴的交点;①点P在抛物线上,且S△POC=4S△BOC,求点P点坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析部分1.【答案】C2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】B9.【答案】A10.【答案】C11.【答案】112.【答案】3613.【答案】x1=-2,x2=114.【答案】-215.【答案】2或−616.【答案】1317.【答案】(1)解:点M在直线y=4x+1上,∵y=−(x−m)2+4m+1,∴点M坐标为(m,4m+1),把x=m代入y=4x+1上得y=4m+1,∴点M(m,4m+1)在直线y=4x+1上;(2)解:把x=0代入y=kx+5,可得y=5,∴点B坐标为(0,5),把(0,5)代入y=−(x−m)2+4m+1,可得5=−m2+4m+1,解得m1=m2=2,∴y=−(x−2)2+9,把y=0代入y=−(x−2)2+9,可得0=−(x−2)2+9,解得x1=−1,x2=5,∵点A在x轴正半轴上,∴点A坐标为(5,0),∴x<0或x>5时,kx+5>−(x−m)2+4m+1.18.【答案】(1)解:∵OA=OC=3,∴点A(−3,0),C(0,3),∴{9a−6a+c=0c=3,解得{a=−1c=3,∴二次函数的解析式为y=−x2−2x+3,设直线AC的解析式为y=kx+b(k≠0),将点A(−3,0),C(0,3)代入,得{−3k+b=0b=3,解得{k=1b=3,∴直线AC的解析式为y=x+3;(2)解:如图,过点B作BP⊥AC交抛物线于点P,∵OA=OC,OA⊥OC,∴∠CAB=45°,∴∠ABP=45°,∴直线PB可以看作由直线y=-x向右平移得到,∴设PB的解析式为y=−x+m,∵二次函数的表达式为y=−x2−2x+3,令y=0,即−x2−2x+3=0,解得x1=−3,x2=1,∴点B(1,0),代入y=−x+m,得m=1,∴PB的解析式为y=−x+1,联立得{y=−x2−2x+3y=−x+1,解得{x=1y=0或{x=−2 y=3,∴点P的坐标为(−2,3).19.【答案】(1)−12;25(2)解:由(1)知第x天的销售量为20+4(x−1)=(4x+16)千克.当1≤x<20时,W=(4x+16)(−12x+38−18)=−2x2+72x+320=−2(x−18)2+968,∴当x=18时,W取得最大值,最大值为968.当20≤x≤30时,W=(4x+16)(25−18)=28x+112.∵a=28>0,∴W随x的增大而增大,∴W最大=28×30+112=952.∵968>952,∴当x=18时,W最大=968.答:销售优质葡萄第18天时,当天的利润最大,最大利润是968元.20.【答案】(1)解:∵A(−2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∵∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(−2,0),B(6,8)代入y=ax+b,得{a=1,b=2.∴直线AB的函数表达式为y=x+2.将点D(m,4)代入y=x+2,得m=2.∴D(2,4).将D(2,4)代入y=kx,得k=8.(2)解:延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°.∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°.∵AB∥MP,∴∠MPL=∠BLP=45°,∴∠QMP=∠QPM=45°,∴QM=QP.设点P 的坐标为(t ,8t),(2<t <6),则PQ =t ,PN =6−t .∴MQ =PQ =t .∴S △PMN =12⋅PN ⋅MQ =12⋅(6−t)⋅t =−12(t−3)2+92.∴当t =3时,S △PMN 有最大值92,此时P(3,83).21.【答案】(1)解:将点B 和点C 的坐标代入 y =a x 2+2x +c ,得 {c =39a +6+c =0 ,解得 a =−1 , c =3 .∴ 该二次函数的表达式为 y =−x 2+2x +3 .(2)解:若四边形POP′C 是菱形,则点P 在线段CO 的垂直平分线上;如图,连接PP′,则PE ⊥CO ,垂足为E ,∵ C (0,3),∴ E(0, 32 ),∴ 点P 的纵坐标等于 32 .∴−x 2+2x +3=32 ,解得 x 1=2+102, x 2=2−102(不合题意,舍去),∴ 点P 的坐标为( 2+102, 32 ).(3)解:过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (m , −m 2+2m +3 ),设直线BC 的表达式为 y =kx +3 ,则 3k +3=0 , 解得 k =−1 .∴直线BC 的表达式为 y =−x +3 .∴Q 点的坐标为(m , −m +3 ),∴QP =−m 2+3m .当 −x 2+2x +3=0 ,解得 x 1=−1,x 2=3 ,∴ AO=1,AB=4,∴ S 四边形ABPC =S △ABC +S △CPQ +S △BPQ= 12AB ⋅OC +12QP ⋅OF +12QP ⋅FB = 12×4×3+12(−m 2+3m)×3当 m =32时,四边形ABPC 的面积最大.此时P 点的坐标为 (32,154) ,四边形ABPC 的面积的最大值为 758.22.【答案】解:任务一:以左边摇绳人与地面的交点为原点,地面所在直线为 x 轴,建立直角坐标系,如图:由已知可得, (0,1) , (6,1) 在抛物线上,且抛物线顶点的纵坐标为 2.5 ,设抛物线解析式为 y =a x 2+bx +c ,∴{c =136a +6b +c =14ac−b 24a=52 ,解得 {a =−16b =1c =1,∴抛物线的函数解析式为 y =−16x 2+x +1 ;任务二:∵y =−16x 2+x +1=−16(x−3)2+52,∴抛物线的对称轴为直线 x =3 ,10 名同学,以直线 x =3 为对称轴,分布在对称轴两侧,男同学站中间,女同学站两边,对称轴左侧的 3 位男同学所在位置横坐标分布是 3−0.5×12=114 , 114−0.5=94和 94−0.5=74,当 x =74 时, y =−16×(74−3)2+52=21596≈2.24>1.8 ,∴绳子能顺利的甩过男队员的头顶,同理当 x =34 时, y =−16×(34−3)2+52=5332≈1.656<1.66 ,∴绳子不能顺利的甩过女队员的头顶;∴绳子不能顺利的甩过所有队员的头顶;任务三:两路并排,一排 5 人,当 y =1.66 时, −16x 2+x +1=1.66 ,解得 x =3+3145 或 x =3−3145,但第一位跳绳队员横坐标需不大于 2 (否则第二、三位队员的间距不够 0.5 米)∴3−3145<x ≤2 .23.【答案】(1)解:∵抛物线的对称轴为直线x =−1,又∵点A(−3,0)与(2,5)在抛物线上,∴{9a−3b +c =04a +2b +c =5−b 2a=−1,解得{a =1b =2c =−3,∴抛物线的解析式为y =x 2+2x−3;(2)解:①由(1)知,二次函数的解析式为y =x 2+2x−3,∴抛物线与y 轴的交点C 的坐标为(0,−3),与x 轴的另一交点为B(1,0),则OC =3,OB =1,设P 点坐标为(x ,x 2+2x−3),∵S △POC =4S △BOC ,∴12×3×|x|=4×12×3×1,∴|x|=4,则x =±4,当x =4时,x 2+2x−3=16+8−3=21,当x =−4时,x 2+2x−3=16−8−3=5,∴点P 的坐标为(4,21)或(−4,5);②如图,设直线AC 的解析式为y =kx +t ,将A(−3,0),C(0,−3)代入得{−3k +t =0t =−3,解得{k =−1t =−3,∴直线AC 的解析式为y =−x−3,设Q 点坐标为(x ,−x−3),−3≤x ≤0,则D 点坐标为(x ,x 2+2x−3),∴QD =(−x−3)−(x 2+2x−3)=−x 2−3x =−(x +32)2+94,∴当x =−32时,线段QD 的长度有最大值94.。

浙教版九年级数学上册第一章二次函数检测题含答案

浙教版九年级数学上册第一章二次函数检测题含答案

浙教版九年级数学上册第一章二次函数检测题含答案第1章二次函数检测卷一、选择题(本大题共10小题,每小题4分,共40分) 1.下列各点不在抛物线y=x2-2图象上的是( ) A.(-1,-1) B.(2,2) C.(-2,0) D.(0,-2)2.二次函数y=(x-3)(x+2)的图象的对称轴是( ) A.x=3 B.x=-2 C.x=-12 D.x=123.抛物线y=-3x2+2x-1与坐标轴的交点个数为( )A.0个B.1个C.2个D.3个4.童装专卖店销售一种童装,若这种童装每天获利y(元)与销售单价x(元)满足关系y=-x2+50x-500,若要想获得最大利润,则销售单价x为( )A.25元B.20元C.30元D.40元5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )第5题图A.a>0B.当-1<x<3时,y>0C.c<0D.当x≥1时,y随x的增大而增大6.若A(-134,y1)、B(-1,y2)、C(53,y3)为二次函数y=-x2-4x+k的图象上的三点,则y1、y2、y3的大小关系是( )A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y37.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为( )A.y=2(x+3)2+4 B.y=2(x+3)2-4C.y=2(x-3)2-4 D.y=2(x-3)2+48.若二次方程(x-a)(x-b)-2=0的两根是m,n,且a<b,m<n,则实数a,b,m,n的大小关系是( ) A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b9.(资阳中考)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:第9题图①4ac-b2<0;②4a+c<2b;③3b+2c<0;④m(am +b)+b<a(m≠-1),其中正确结论的个数是( ) A.4个B.3个C.2个D.1个10.如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:第10题图①无论x取何值,y2的值总是正数;②a=1;③当x =0时,y2-y1=4;④2AB=3AC;其中正确结论是( ) A.①②B.②③C.③④D.①④二、填空题(本大题共6小题,每小题5分,共30分) 11.抛物线y=49(x-3)2与x轴的交点为A,与y轴的交点为B,则△AOB的面积为______.12.某二次函数的图象与x轴交于点(-1,0),(4,0),且它的形状与抛物线y=-x2形状相同.则这个二次函数的解析式为____ .13.某人乘雪橇沿如图所示的斜坡笔直滑下,滑下的路程s(米)与时间t(秒)间的关系式为s=10t+t2,若滑到坡底的时间为2秒,则此人下滑的高度为____米.第13题图14.如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是____.第14题图15.(荆州中考)若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为.16.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:x …-1 0 1 3 …y …-1 3 5 3 …下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小;③3是方程ax2+(b-1)x+c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的是____.三、解答题(本大题共8小题,共80分)17.(8分)已知二次函数y=-x2+4x-3,其图象与y轴交于点B,与x轴交于A,C两点.求△ABC的周长和面积.18.(8分)在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.第18题图19.(8分)在关于x,y的二元一次方程组x+2y=a,2x-y=1中.(1)若a=3,求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最值.20.(8分)在平面直角坐标系中,△AOB的位置如图所示.已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).第20题图(1)求点B的坐标;(2)求过A,O,B三点的抛物线的函数表达式;(3)设点B关于抛物线的对称轴l的对称点为B′,求△AB′B的面积.21.(10分)某校九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运动的轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1米处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?第21题图22.(12分)(衢州中考)已知二次函数y=x2+x的图象,如图所示.(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1的根(精确到0.1);(2)在同一直角坐标系中画出一次函数y=12x+32的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值;(3)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在P点上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数y=12x+32的图象上,请说明理由.第22题图23.(12分)某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:价格x(元/个) …30 40 50 60 …销售量y(万个) … 5 4 3 2 …同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式;(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?24.(14分)如图,抛物线y=ax2+bx与x轴交于O、A两点,与直线y=x交于点B,点A、B的坐标分别为(3,0)、(2,2).点P在抛物线上,过点P作y轴的平行线交射线OB于点Q,以PQ为边向右作矩形PQMN,且PN=1,设点P的横坐标为m(m>0,且m≠2).第24题图(1)求这条抛物线的解析式;(2)求矩形PQMN的周长C与m之间的函数关系式;(3)当矩形PQMN是正方形时,求m的值.活页参考答案上册第1章二次函数检测卷1.C 2.D 3.B 4.A 5.B 6.C 7.A 8.A 9.B 10.D11.612.y=-x2+3x+4或y=x2-3x-413.1214.-215.-1或2或116.①③④17.令x=0,得y=-3,故B点坐标为(0,-3),解方程-x2+4x-3=0,得x1=1,x2=3.故A、C两点的坐标为(1,0),(3,0).所以AC=3-1=2,AB=12+32=10,BC=32+32=32,OB=│-3│=3.C△ABC =AB+BC+AC=2+10+32;S△ABC=12AC•OB=12×2×3=3.18.(1)y=(x-1)2-4,即y=x2-2x-3; (2)令y=0,得x2-2x-3=0,解方程,得x1=-1,x2=3.所以二次函数图象与x轴的两个交点坐标分别为(3,0)和(-1,0).所以二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x轴的另一个交点坐标为(4,0).19.(1)a=3时,方程组为x+2y=3①,2x-y=1②;②×2得,4x-2y=2③,①+③得,5x=5,解得x =1,把x=1代入①得,1+2y=3,解得y=1,所以,方程组的解是x=1,y=1;(2)方程组的两个方程相加得,3x+y=a+1,所以S=a(3x+y)=a(a+1)=a2+a,所以,当a=-12×1=-12时,S有最小值.20.第20题图(1)过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C,D,则∠ACO=∠ODB=90°,∴∠AOC+∠OAC =90°.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∴∠OAC=∠BOD.又∵AO=BO,∴△ACO≌△ODB(AAS).∴OD=AC=1,DB=OC=3.∴点B的坐标为(1,3);(2)∵抛物线过原点,∴可设抛物线的函数表达式为y=ax2+bx.将点A(-3,1),B(1,3)的坐标代入,得9a-3b=1,a+b=3,解得a=56,b=136.∴所求抛物线的函数表达式为y=56x2+136x; (3)由(2)得,抛物线的对称轴为直线x=-1310,点B的坐标为(1,3),∴点B′的坐标为-185,3.设BB′边上的高为h,则h=3-1=2.|BB′|=1+185=235.∴S △AB′B=12BB′•h=12×235×2=235. 21.(1)根据题意可知,抛物线经过(0,209),顶点坐标为(4,4),则可设其解析式为y=a(x-4)2+4,解得a=-19.则所求抛物线的解析式为y=-19(x-4)2+4.又篮圈的坐标是(7,3),代入解析式得,y=-19(7-4)2+4=3.所以能够投中;(2)当x=1时,y=3,此时3.1>3,故乙队员能够拦截成功.22.(1)∵令y=0得:x2+x=0,解得:x1=0,x2=-1,∴抛物线与x轴的交点坐标为(0,0),(-1,0).作直线y=1,交抛物线于A、B两点,分别过A、B两点,作AC⊥x轴,垂足为C,BD⊥x轴,垂足为D,点C 和点D的横坐标即为方程的根.根据图1可知方程的解为x1≈-1.6,x2≈0.6;(2)∵将x=0代入y=12x +32得y=32,将x=1代入得:y=2,∴直线y=12x +32经过点(0,32),(1,2).直线y=12x+32的图象如图2所示,由函数图象可知:当x<-1.5或x>1时,一次函数的值小于二次函数的值;(3)先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标为P(-1,1).平移后的表达式为y=(x+1)2+1,即y=x2+2x+2.点P在y=12x+32的函数图象上.理由:∵把x=-1代入得y=1,∴点P的坐标符合直线的解析式.∴点P在直线y=12x+32的函数图象上.第22题图23.(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则30a+b=5,40a+b =4,解得:a=-110,b=8.∴函数解析式为:y=-110x+8; (2)根据题意得:z =(x-20)y-40=(x-20)(-110x+8)-40=-110x2+10x-200=-110(x2-100x)-200=-110[(x-50)2-2500]-200=-110(x-50)2+50,∵-110<0,∴x =50,z最大=50.∴该公司销售这种计算器的净得利润z与销售价格x的函数解析式为z=-110x2+10x -200,销售价格定为50元/个时净得利润最大,最大值是50万元;第23题图(3)当公司要求净得利润为40万元时,即-110(x-50)2+50=40,解得:x1=40,x2=60.作函数图象的草图,通过观察函数y=-110(x-50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y =-110x+8,y随x的增大而减少,∴若还需考虑销售量尽可能大,销售价格应定为40元/个.24.(1)把A(3,0)、B(2,2)两点坐标代入y=ax2+bx,得9a+3b=0,4a+2b=2,计算得出a=-1,b=3.故抛物线所对应的函数表达式为y=-x2+3x. (2)∵点P在抛物线y=-x2+3x上,∴可以设P(m,-m2+3m),∵PQ∥y轴,∴Q(m,m).①当0<m<2时,如图1中,PQ=-m2+3m-m=-m2+2m,C=2(-m2+2m)+2=-2m2+4m+2. ②当m>2时,如图2中,PQ=m-(-m2+3m)=m2-2m,C=2(m2-2m)+2=2m2-4m+2. (3)∵矩形PQMN是正方形,∴PQ=PN=1,当0<m<2时,如图3中,-m2+2m=1,计算得出m=1.当m>2时,如图4中,m2-2m=1,计算得出m=1+2(或1-2不合题意舍弃).第24题图。

浙教版九年级数学上册 第一章 二次函数单元测试卷及答案

浙教版九年级数学上册  第一章 二次函数单元测试卷及答案

第一章二次函数姓名:_______________班级:_______________学号:_______________(总分:100分考试时间:60分钟考试难度:0.60)一、填空题(每空3分,共15分)1、二次函数的最小值是.2、如图为长方形时钟钟面示意图,时钟的中心在长方形对角线的交点上,长方形的宽为20厘米,钟面数字2在长方形的顶点处,则长方形的长为_________厘米。

(第2题图)(第5题图)3、将抛物线向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为。

4、自由下落物体的高度(米)与下落的时间(秒)的关系为.现有一铁球从离地面米高的建筑物的顶部作自由下落,到达地面需要的时间是秒.5、已知二次函数()与一次函数的图象相交于点A(-2,4),B(8,2)(如图所示),则能使成立的的取值范围是.二、选择题(每题3分,共30分)6、正比例函数的图像经过二、四象限,则抛物线的大致图像是()7、函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1 B.2 C.3 D.4(第7题图)(第8题图)8、如图所示,二次函数的图像经过点(-1,2),且与轴交点的横坐标分别为,,其中,,下列结论:①;②;③;④.其中正确的有( )A.1个B.2个C.3个D.4个9、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),则二次函数y=x2+mx+n中,当y<0时,x的取值范围是()A.x<a B.x>b C.a<x<b D.x<a或x>b10、某公园草坪的防护栏是由100段形状相同的抛物线形组成的.为了牢固起见,每段护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A.1.6 m B.100 m C.160 m D.200 m(第10题图)(第11题图)11、如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB以相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长()A.0.4米 B. 0.16米 C. 0.2米 D.0.24米12、绿茵场上,足球运动员将球踢出,球的飞行高度(米)与前行距离(米)之间的关系为:,那么当足球落地时距离原来的位置有( )A.25米B.35米C.45米D.50米13、已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x ()A. 有最小值,且最小值是B. 有最大值,且最大值是C. 有最大值,且最大值是D. 有最小值,且最小值是14、某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米(第14题图)(第15题图)15、我们在跳绳时,绳甩到最高处的形状可近似地看成是抛物线.如图2236所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m,距地面均为1 m,学生丙、丁分别站在距甲拿绳的手水平距离1 m,2.5 m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为()A.1.5 m B.1.625 m C.1.66 m D.1.67 m三、解答题(每题11分,共55分)16、已知:在Rt△ABO中,∠OAB=90°,∠BOA=30°,AB=2,若以O为坐标原点,OA所在直线为轴,建立如图所示平面直角坐标系,点B在第一象限内,将Rt△ABO沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P 作轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为很等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.17、如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数》测试卷
班级 姓名 成绩
一.选择题(每题3分,共30分)
1. 下列各式中,y 是x 的二次函数的是 ( )
A . 21xy x +=
B . 2
20x y +-= C . 2
2y ax -=- D . 2
2
10x y -+=
2.在同一坐标系中,作2
2y x =+2、2
2y x =--1、2
12
y x =
的图象,则它们 ( ) A .都是关于y 轴对称 B .顶点都在原点 C .都是抛物线开口向上 D .以上都不对
3.下列对二次函数,0(2
≠++=a c bx ax y a 、b 、c 为常数)叙述不正确的是( )
A 二次函数因变量一定有最大值或最小值
B 二次函数图像是轴对称图形
C 二次函数图象一定会与y 轴相交
D 二次函数图像一定过原点 4.若二次函数)2(2
-++=m m x mx y 的图象经过原点,则m 的值必为 ( ) A . 0或2 B . 0 C . 2 D . 无法确定
5.已知原点是抛物线2
(1)y m x =+的最高点,则m 的范围是 ( ) A . 1-<m B . 1<m C . 1->m D . 2->m
6.关于02
=--n x x 没有实数根,则n x x y --=2
的图象的顶点在 ( )
A 第一象限
B 第二象限
C 第三象限
D 第四象限 7.在同一直角坐标系中,函数b ax y -=2
与)0(≠+=ab b ax y 的图象大致如图 ( )
8.抛物线122
+-=x x y 则图象与x 轴交点为 ( ) A . 二个交点 B . 一个交点 C . 无交点
D . 不能确定
9.)0(≠+=ab b ax y 不经过第三象限,那么bx ax y +=2
的图象大致为 ( )
10.对于2)3(22
+-=x y 的图象下列叙述正确的是 ( ) A 顶点作标为(-3,2) B 对称轴为y=3
C 当3≥x 时y 随x 增大而增大
D 当3≥x 时y 随x 增大而减小
二.填空题:(每题3分,共15分)
11. 写出一个开口向上,顶点坐标是(2,-3)的函数解析式 ; 12.直线y=3与抛物线y =-x 2+8x -12的两个交点坐标分别是A ( )、B ( )
13.函数,0(2
≠++=a c bx ax y a 、b 、c 为常数)的对称轴是 ;顶点坐标是 ;
14.抛物线2
3x y =的图象向右移动两个单位,再向下移动一个单位,它的顶点坐标是 ,对称轴是 解析式是 ;
15.如果抛物线b ax y +=2
和直线y x b =+都经过点P(2,6),则a _______,b =_______,抛物线不经过第_______象限.
16.请选择一组你喜欢的c b a 、、的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:①开口向下,②当2<x 时,y 随x 的增大而增大;当2>x 时,y 随x 的增大而减小。

这样的二次函数的解析式可以是 。

三.解答题(共105分)
17.(8分)若抛物线322--=x x y 经过点A (m ,0)和点B (-2,n ),求点A 、B 的坐标。

17.(7分)请设计一个开口向下,与x 轴交于(-1,0)、(3,0)的二次函数解析式,并指出它的对称轴。

18.(8分)已知抛物线m x x y +-=42的顶点在x 轴上,求这个函数的解析式及其顶点坐标。

19.(8分)若二次函数的图象x x m y 2)1(2
+-=与直线1-=x y 没有交点,求m 的取值范围。

12分)已知二次函数的图象的顶点坐标为(3,-2)且与y 轴交与(0,2
5) (1)求函数的解析式,并画于它的图象; (2)当x 为何值时,y 随x 增大而增大。

21.(10分)若直线3+=x y 与二次函数的图象322
++-=x x y 与交A 、B 两点,求以A 、B 及原点O 为顶点的三角形的面积。

22.(6分)一台机器原价为60万元,如果每年的折旧率为x ,两年后这台机器的价格为y 万元,求与函数关系式,若折旧率以10%计算,那么两年后的该机器价值为多少? 23.(12分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少。

(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元? (2)若该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多。

24.(16分)某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP ,柱子顶端P 处装上喷头,由P 处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示)。

若已知OP =3米,喷出的水流的最高点A 距水平面的高度是4米,离柱子OP 的距离为1米。

(1)求这条抛物线的解析式;
(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外。

25.(18分)二次函数62
5
412+-=
x x y 的图象与x 轴从左到右两个交点依次为A 、B ,与y 轴交于点C ,
(1)求A 、B 、C 三点的坐标;
(2)如果P(x ,y)是抛物线AC 之间的动点,O 为坐标原点,试求△POA 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;
(3)是否存在这样的点P ,使得PO=PA ,若存在,求出点P 的坐标;若不存在,说明理由。

相关文档
最新文档