复旦固体物理讲义-18能带计算方法简介
合集下载
《固体能带理论》课件

分类
导带、价带、禁带等,导带与价带之 间的区域称为能隙,决定了固体是否 导电。
能带结构的形成
原子轨道重叠
固体中的原子通过轨道重叠形成分子轨道,进一步形 成能带。
周期性结构
固体中的原子按照一定的周期性排列,导致能带结构 的周期性。
电子相互作用
电子之间的相互作用会影响能带结构,包括电子间的 排斥力和交换力等。
量子场论和量子力学
与量子场论和量子力学的结合,将有助于更全面地描述和理解固体中的电子行为 和相互作用。
谢谢聆听
新材料的设计与发现
拓扑材料
随着拓扑学的发展,将会有更多具有独特电子结构和性质的拓扑材料被发现, 为新材料的设计和开发提供新的思路。
二维材料
二维材料具有独特的物理性质和结构,未来将会有更多新型二维材料被发现和 应用。
与其他理论的结合与发展
强关联理论
固体能带理论与强关联理论的结合,将有助于更深入地理解强关联体系中的电子 行为和物理性质。
电子在能带中的状态
01
02
03
占据电子
价带中的电子被原子轨道 上的电子占据,导带中的 电子较为自由。
热激发
在温度较高时,价带中的 电子可以被激发到导带中 ,形成电流。
光电效应
光照在固体表面时,能量 较高的光子可以使价带中 的电子激发到导带中,产 生光电流。
03 固体能带理论的的基本方程,描述 了电子密度随时间和空间的变化 。
02
交换相关泛函
03
自洽迭代方法
描述电子间的交换和相关作用的 能量,是密度泛函理论中的重要 部分。
通过迭代求解哈特里-福克方程 ,得到电子密度和总能量,直至 收敛。
格林函数方法
格林函数
导带、价带、禁带等,导带与价带之 间的区域称为能隙,决定了固体是否 导电。
能带结构的形成
原子轨道重叠
固体中的原子通过轨道重叠形成分子轨道,进一步形 成能带。
周期性结构
固体中的原子按照一定的周期性排列,导致能带结构 的周期性。
电子相互作用
电子之间的相互作用会影响能带结构,包括电子间的 排斥力和交换力等。
量子场论和量子力学
与量子场论和量子力学的结合,将有助于更全面地描述和理解固体中的电子行为 和相互作用。
谢谢聆听
新材料的设计与发现
拓扑材料
随着拓扑学的发展,将会有更多具有独特电子结构和性质的拓扑材料被发现, 为新材料的设计和开发提供新的思路。
二维材料
二维材料具有独特的物理性质和结构,未来将会有更多新型二维材料被发现和 应用。
与其他理论的结合与发展
强关联理论
固体能带理论与强关联理论的结合,将有助于更深入地理解强关联体系中的电子 行为和物理性质。
电子在能带中的状态
01
02
03
占据电子
价带中的电子被原子轨道 上的电子占据,导带中的 电子较为自由。
热激发
在温度较高时,价带中的 电子可以被激发到导带中 ,形成电流。
光电效应
光照在固体表面时,能量 较高的光子可以使价带中 的电子激发到导带中,产 生光电流。
03 固体能带理论的的基本方程,描述 了电子密度随时间和空间的变化 。
02
交换相关泛函
03
自洽迭代方法
描述电子间的交换和相关作用的 能量,是密度泛函理论中的重要 部分。
通过迭代求解哈特里-福克方程 ,得到电子密度和总能量,直至 收敛。
格林函数方法
格林函数
《固体物理能带理论》课件

探索禁带宽度
禁带宽度的影响
深入探究禁带宽度对材料性质的 影响,介绍如何利用禁带宽度调 控材料性质。
直接/间接带隙
介绍直接带隙和间接带隙的概念 和特点,以及如何通过调控禁带 宽度实现它们之间的转换。
量子点
了解量子点的概念及其在光伏、 光催化、发光等方面的应用。
电子在周期势场中的行为
布拉歇特条件
探究布拉歇特条件的作用和意义,以及如何通过布拉歇特条件来理解材料导电性。
电子自旋
介绍电子自旋的概念和特点,以及在磁性材料中的重要作用。
量子霍尔效应
了解量子霍尔效应的概念和特点,以及其在电子学、自旋测量等方面的应用。
应用能带理论
1
太阳能电池
探究太阳能电池的原理和构造,以及如
半导体激光器
2
何利用能带理论来提高太阳能电池的性 能。
介绍半导体激光器的原理和构造,以及
如何通过能带理论来优化激光器的性能。
《固体物理能带理论》 PPT课件
通过本PPT了解固体物理能带理论,理解能带的概念和特点,并探究能带理论 在实际应用中的应用。
什么是固体物理能带理论?
晶体的电子结构
介绍晶体的基本结构和存在能带 的原因,以及能带分布的规律。
能带、狄拉克相对论
进一步探究能带的特点及其与材 料导电性的关系,介绍狄拉克相 对论的意义。
Bloch定理和能带图
介绍Bloch定理的作用,以及如何 通过能带图来描绘材料的电子结 构。
深入理解价带和导带
价带的物理意义
介绍价带中电子的特征和性 质,并探讨不同能级之间的 关系。
导带的物理意义
深入剖析导带中的电子行为, 介绍电子元件中导带的作用。
轻重空穴带
固体物理基础-能带理论

NZ
e j 1 j i 4 0 ri r j
NZ
1
2
NZ ve ri i 1
1 ve ri 2
e2 j 1 j i 4 0 ri r j
NZ
1
2)单电子近似
• 电子体系的哈密顿量变为:
ˆ T Rm Rn r Rm Rn r 又 ˆ T ˆ r r T R Rm Rn m Rn Rm Rn Rm Rn 将Rn =e Rn 带入得 Rm Rn = Rn + Rm , 仅当 是Rn的线性函数 时满足,因此取 Rn =k Rn , 则
Bloch定理说明
ik Rn r Rn e r
i k r k r e uk r , uk r Rn uk r
用Bloch波函数描述的电子,或遵从周期势单电子薛 定谔方程的电子,称为Bloch电子; 布洛赫波的特征:周期性条幅的平面波;当平移晶 ik R 格矢量 ������ ������ 时,波函数只变化一个相位因子 e n • 表明在不同原胞的对应点上,波函数只相差一个相 位因子,波函数的大小相同,所以电子出现在不同 原胞的对应点上几率是相同的。这是晶体周期性的 反映。
将使矢量 ������ 平移 ������ ������ ,即
ˆ f r f r R T n Rn
各平移算符之间互相对易
ˆ T ˆ f r T ˆ f r R f r R R T m n m Rn Rn Rm ˆ T ˆ f r T ˆ f r R f r R R T n m n R R Rm m n ˆ T ˆ f r T ˆ T ˆ f r T ˆ T ˆ T ˆ T ˆ T Rm Rn Rn Rm Rm Rn Rn Rm ˆ ,T ˆ 0 T Rn Rm
e j 1 j i 4 0 ri r j
NZ
1
2
NZ ve ri i 1
1 ve ri 2
e2 j 1 j i 4 0 ri r j
NZ
1
2)单电子近似
• 电子体系的哈密顿量变为:
ˆ T Rm Rn r Rm Rn r 又 ˆ T ˆ r r T R Rm Rn m Rn Rm Rn Rm Rn 将Rn =e Rn 带入得 Rm Rn = Rn + Rm , 仅当 是Rn的线性函数 时满足,因此取 Rn =k Rn , 则
Bloch定理说明
ik Rn r Rn e r
i k r k r e uk r , uk r Rn uk r
用Bloch波函数描述的电子,或遵从周期势单电子薛 定谔方程的电子,称为Bloch电子; 布洛赫波的特征:周期性条幅的平面波;当平移晶 ik R 格矢量 ������ ������ 时,波函数只变化一个相位因子 e n • 表明在不同原胞的对应点上,波函数只相差一个相 位因子,波函数的大小相同,所以电子出现在不同 原胞的对应点上几率是相同的。这是晶体周期性的 反映。
将使矢量 ������ 平移 ������ ������ ,即
ˆ f r f r R T n Rn
各平移算符之间互相对易
ˆ T ˆ f r T ˆ f r R f r R R T m n m Rn Rn Rm ˆ T ˆ f r T ˆ f r R f r R R T n m n R R Rm m n ˆ T ˆ f r T ˆ T ˆ f r T ˆ T ˆ T ˆ T ˆ T Rm Rn Rn Rm Rm Rn Rn Rm ˆ ,T ˆ 0 T Rn Rm
固体能带理论简介

k ( x) eikxuk ( x)
uk ( x) 是周期等于晶格常数
a 的周期函数 uk ( x) uk ( x na)
9
这一结果称为布洛赫定理
证明布洛赫定理 势场具有周期结构,则电子概率密度具有相同的周期性,即
| k ( x) |2 | k ( x a) |2
则:
4
•隧道效应:
晶体是由大量原子有规则 地排列形成的,晶体中包含 着大量的离子,如正离子和 电子,它们之间存在着相互 作用。 离子实
u (r )
r0
f (r )
r
r0
单个正离子 的库仑势
r
各离子的库仑势场迭加形 成周期势场,这个势场是 由一系列势垒组成的。
各库仑势叠加
成的周期势
5
离子实
单个正离子 的库仑势
28
六. 固体能带与原子能级
设想组成晶体的N个原子原来都是孤立存在的,都处于某一能 级,具有相同的能量,当它们靠拢来形成晶体时,每个原子中 的电子不仅受到本身正离子或原子核的作用,还要受到其它正 离子或原子核的作用,这些相互作用都具有相应的能量,电子 原来(原子孤立时)的能量状态就发生了改变,原来的一个能 级就分裂为非常接近的N个。 原子能级分裂成能带。如图。 能带是从原子能级分裂(或 称展宽)而成的,因此表示能 带时常沿用分裂前原子能级的 名称,如 s, p, d , 带
正是能带论,导致了电子科学与技术学科的形成和发展。
1
“能带理论”:是一个近似的理论。在固体中存在着 大量的电子,它们的运动是相互关联着的,每个电 子的运动都要受其它电子运动的牵连,这种多电子 系统严格的解显然是不可能的。 “能带理论”:是单电子近似的理论,就是把每个电子 的运动看成是独立的在一个等效势场中的运动。
固体物理学:第四章 能带理论

第三步简化 —— 周期性势场 所有离子势场和其它电子的平均场是周期性势场
能量本征值的计算 选取某个具有布洛赫函数形式的完全集合,晶体中
的电子的波函数按此函数集合展开。
将电子的波函数代入薛定谔方程,确定展开式中的 系数应满足的久期方程,求解久期方程得到能量本征 值。
电子波函数的计算
根据能量本征值确定电子波函数展开式中的系数, 得到具体的波函数。
能带理论是研究固体中电子运动的主要理论基础。 能带理论对固体中电子的状态进行了较为精确的物理 描述,成功地解释了固体的导电性,所以它一直是固 体物理学的核心部分之一。
(#) (#)中
能带理论是用量子力学研究固体中电子的运动规律,把原 本复杂的多体问题经过一定的近似处理后,转化为一个电子在 周期性势场中的运动,晶体中其它所有电荷的影响均可以用此 单电子的周期性势场来概括。有时也称能带理论为固体的单电 子理论。
这一能级分裂成由 N条能级组成的能带后,能 带最多能容纳 2N(2l +1)个电子。
例如,1s、2s能带,最多容纳 2N个电子。
2p、3p能带,最多容纳 6N个电子。
电子排布时,应从最低的能级排起。
能带理论强调了共有化的价电子以及在波矢 空间中的色散关系,在解释实验现象和预测物理 性质方面都取得了可观的成功。说明了导体、非 导体的区别,是研究半导体理论问题的基础,推 动了半导体技术的发展。
能带理论是一个近似理论,存在着一定的局限性。
注意:能带理论的局限性
1. 一些过渡金属化合物晶体 价电子的迁移率小, 自由程与晶格间距相当, 电
子不为原子所共有, 周期场失去意义,能带理论不适 用了。
2.非晶态固体 非晶态固体和液态金属只有短程有序,两种物质的电
子能谱显然不是长程序的周期场的结果。
能量本征值的计算 选取某个具有布洛赫函数形式的完全集合,晶体中
的电子的波函数按此函数集合展开。
将电子的波函数代入薛定谔方程,确定展开式中的 系数应满足的久期方程,求解久期方程得到能量本征 值。
电子波函数的计算
根据能量本征值确定电子波函数展开式中的系数, 得到具体的波函数。
能带理论是研究固体中电子运动的主要理论基础。 能带理论对固体中电子的状态进行了较为精确的物理 描述,成功地解释了固体的导电性,所以它一直是固 体物理学的核心部分之一。
(#) (#)中
能带理论是用量子力学研究固体中电子的运动规律,把原 本复杂的多体问题经过一定的近似处理后,转化为一个电子在 周期性势场中的运动,晶体中其它所有电荷的影响均可以用此 单电子的周期性势场来概括。有时也称能带理论为固体的单电 子理论。
这一能级分裂成由 N条能级组成的能带后,能 带最多能容纳 2N(2l +1)个电子。
例如,1s、2s能带,最多容纳 2N个电子。
2p、3p能带,最多容纳 6N个电子。
电子排布时,应从最低的能级排起。
能带理论强调了共有化的价电子以及在波矢 空间中的色散关系,在解释实验现象和预测物理 性质方面都取得了可观的成功。说明了导体、非 导体的区别,是研究半导体理论问题的基础,推 动了半导体技术的发展。
能带理论是一个近似理论,存在着一定的局限性。
注意:能带理论的局限性
1. 一些过渡金属化合物晶体 价电子的迁移率小, 自由程与晶格间距相当, 电
子不为原子所共有, 周期场失去意义,能带理论不适 用了。
2.非晶态固体 非晶态固体和液态金属只有短程有序,两种物质的电
子能谱显然不是长程序的周期场的结果。
固体物理课件第四章:能带理论能带理论(1)

填充的部分(允带)和禁止填充的部分(禁带)相间组成 的能带,所以这种理论称为能带论。
需要指出的是:
在固体物理中,能带论是从周期性势场中推导出来的,这 是由于人们对固体性质的研究首先是从晶态固体开始的。而周 期性势场的引入也使问题得以简化,从而使理论研究工作容易 进行。所以,晶态固体一直是固体物理的主要研究对象。然而,
系统的哈密顿量可以简化为NZ个电子哈密顿量之和:
N 2 1 Ze2 ˆ H i2 ue (ri ) i 1 2m n 1 4 0 ri Rm NZ
因此可以用分离变量法对单个电子独立求解(单电子近似)。 单电子所受的势场为:
T T f r
TT- T T 晶格周期性:
2 2 T Hf r T r U r f r 2m 2 2 r a U r a f r a 2m
{
H r E r
其中 是平移算符 T 的本征值。为了确定平移算符的本征 值,引入周期性边界条件。
设晶体为一平行六面体,其棱边沿三个基矢方向,N1,N2和N3 分别是沿a1,a2和a3方向的原胞数,即晶体的总原胞数为 N =N1N2N3 。
周期性边界条件:
r r N a
i k Rn k r Rn e k r
它表明在不同原胞的对应点上,波函数只相差一个相位因子
e
i k Rn
,它不影响波函数的大小,所以电子出现在不同原胞的
对应点上几率是相同的。这是晶体周期性的反映。
Bloch 定理:
周期势场中 的电子波函 数必定是按 晶格周期函 数调幅的平 面波。
需要指出的是:
在固体物理中,能带论是从周期性势场中推导出来的,这 是由于人们对固体性质的研究首先是从晶态固体开始的。而周 期性势场的引入也使问题得以简化,从而使理论研究工作容易 进行。所以,晶态固体一直是固体物理的主要研究对象。然而,
系统的哈密顿量可以简化为NZ个电子哈密顿量之和:
N 2 1 Ze2 ˆ H i2 ue (ri ) i 1 2m n 1 4 0 ri Rm NZ
因此可以用分离变量法对单个电子独立求解(单电子近似)。 单电子所受的势场为:
T T f r
TT- T T 晶格周期性:
2 2 T Hf r T r U r f r 2m 2 2 r a U r a f r a 2m
{
H r E r
其中 是平移算符 T 的本征值。为了确定平移算符的本征 值,引入周期性边界条件。
设晶体为一平行六面体,其棱边沿三个基矢方向,N1,N2和N3 分别是沿a1,a2和a3方向的原胞数,即晶体的总原胞数为 N =N1N2N3 。
周期性边界条件:
r r N a
i k Rn k r Rn e k r
它表明在不同原胞的对应点上,波函数只相差一个相位因子
e
i k Rn
,它不影响波函数的大小,所以电子出现在不同原胞的
对应点上几率是相同的。这是晶体周期性的反映。
Bloch 定理:
周期势场中 的电子波函 数必定是按 晶格周期函 数调幅的平 面波。
《固体物理基础教学课件》第4章-能带理论

2021/6/20
第 四 章 固体的能带
能带重叠示意图
金刚石的能带
2021/6/20
钠的能带
第 四 章 固体的能带
电子在周期性晶格中的运动,电子共有化,受到 周期性势场的作用。
孤立原子中电子的 势阱
2021/6/20
势垒
电子能级
+
第 四 章 固体的能带
解定态薛定谔方程, 可以得出两点重要结论: [ 2 2 V (r)] E
第 四 章 固体的能带理论
§4.1 能带理论简介 §4.2 固体的能带 §4.3 导体和绝缘体 §4.4 推导能带的近似思想 §4.5 布洛赫定理
2021/6/20
第 四 章 固体的能带理论
研究固体中电子运动的主要理论基础 定性地阐明了晶体中电子运动的普遍性的特点 说明了导体、半导体及绝缘体的区别 晶体中电子的平均自由程为什么远大于原子的间距 提供了分析半导体理论问题的基础,推动了半导体
为什么把空带或不满带称为导带? 因为只有这种能带中的电子才能导电。
2021/6/20
第 四 章 固体的能带
导电——电子在电场作用下作定向运动,
以一定速度漂移, v 10 -2 cm/s
E
电子得到附加能量
到较高的能级上去,
这只有导带中的电子才有可能。
2021/6/20
第 四 章 固体的能带
p2 E
1982 1989
80286 80486
13.4万 120万
1993 pentium
320万
1995
pentium MMX
550万
………
集成度每 10 年增加 1000 倍 !
2021/6/20
第 四 章 固体的能带理论
第 四 章 固体的能带
能带重叠示意图
金刚石的能带
2021/6/20
钠的能带
第 四 章 固体的能带
电子在周期性晶格中的运动,电子共有化,受到 周期性势场的作用。
孤立原子中电子的 势阱
2021/6/20
势垒
电子能级
+
第 四 章 固体的能带
解定态薛定谔方程, 可以得出两点重要结论: [ 2 2 V (r)] E
第 四 章 固体的能带理论
§4.1 能带理论简介 §4.2 固体的能带 §4.3 导体和绝缘体 §4.4 推导能带的近似思想 §4.5 布洛赫定理
2021/6/20
第 四 章 固体的能带理论
研究固体中电子运动的主要理论基础 定性地阐明了晶体中电子运动的普遍性的特点 说明了导体、半导体及绝缘体的区别 晶体中电子的平均自由程为什么远大于原子的间距 提供了分析半导体理论问题的基础,推动了半导体
为什么把空带或不满带称为导带? 因为只有这种能带中的电子才能导电。
2021/6/20
第 四 章 固体的能带
导电——电子在电场作用下作定向运动,
以一定速度漂移, v 10 -2 cm/s
E
电子得到附加能量
到较高的能级上去,
这只有导带中的电子才有可能。
2021/6/20
第 四 章 固体的能带
p2 E
1982 1989
80286 80486
13.4万 120万
1993 pentium
320万
1995
pentium MMX
550万
………
集成度每 10 年增加 1000 倍 !
2021/6/20
第 四 章 固体的能带理论
复旦固体物理讲义-18能带计算方法简介

平面波 缀加平面波 线性组合缀加平面波 散射函数 原子轨道线性组合 数值
非周期性 周期性 对称性 非自旋极化 自旋极化
14
能带计算方法分类
• 各种能带计算方法基本上可分为
* 对晶体势场V(r)的不同近似 * 对组成晶体电子波函数的基函数的不同选取
根据不同的研究对象、根据计算条件对势场和 基函数作不同的近似处理不同的物理思想
http://10.107.0.68/~jgche/ 能带计算方法简介
5
0 G
X
W
L
G
K
如何考虑问题?
• 布里渊区边界空晶格模型能带简并
* 近自由电子布里渊区边界能带分裂
• 空晶格模型能带
* 能带填充?
http://10.107.0.68/~jgche/
能带计算方法简介
6
解答
•
k F 3 n
2
1/ 3
2 a
9 2
1/ 3
2 1.127 a
• •
边界的高对称点上,简并将打开,此外,由 于K~L完全在布里渊区边界上,各是二重简 并,也将打开; 计算自由电子的费米球半径,kF=? 下面5个高对称点中,W和K点大,计算其波 矢。自由电子的费米能级应该比第一条能带 与W点的交点稍高。考虑到边界散射引起的 费米面畸变,必须稍高于W点处由于边界散 射所引起的能级分裂
• 这是个线性方程组,写成矩阵形式
H E C 0
E 单位矩阵 c1 c2 C ... c n Vij V ( K i K j )
24
T1 V12 V13 ... V1n V21 T 2 V23 ... V2n H ... V V V ... T n n1 n2 n3 Ti ( K i k ) 2
非周期性 周期性 对称性 非自旋极化 自旋极化
14
能带计算方法分类
• 各种能带计算方法基本上可分为
* 对晶体势场V(r)的不同近似 * 对组成晶体电子波函数的基函数的不同选取
根据不同的研究对象、根据计算条件对势场和 基函数作不同的近似处理不同的物理思想
http://10.107.0.68/~jgche/ 能带计算方法简介
5
0 G
X
W
L
G
K
如何考虑问题?
• 布里渊区边界空晶格模型能带简并
* 近自由电子布里渊区边界能带分裂
• 空晶格模型能带
* 能带填充?
http://10.107.0.68/~jgche/
能带计算方法简介
6
解答
•
k F 3 n
2
1/ 3
2 a
9 2
1/ 3
2 1.127 a
• •
边界的高对称点上,简并将打开,此外,由 于K~L完全在布里渊区边界上,各是二重简 并,也将打开; 计算自由电子的费米球半径,kF=? 下面5个高对称点中,W和K点大,计算其波 矢。自由电子的费米能级应该比第一条能带 与W点的交点稍高。考虑到边界散射引起的 费米面畸变,必须稍高于W点处由于边界散 射所引起的能级分裂
• 这是个线性方程组,写成矩阵形式
H E C 0
E 单位矩阵 c1 c2 C ... c n Vij V ( K i K j )
24
T1 V12 V13 ... V1n V21 T 2 V23 ... V2n H ... V V V ... T n n1 n2 n3 Ti ( K i k ) 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 得到
2
V ( r ) ( k , r ) E ( k ) ( k , r )
2 r
V (r ) E (k )
1 V
c ( k , K ) e i ( k K ) r 0
http://10.107.0.68/~jgche/
能带计算方法简介
22
• 能带在能量上有交迭,但未连通
1. 费米能级位于两个能带之间,两个能带均未满 2. 两个能带之间没有能隙,下一能带全填满
•
这样的能带结构虽是金属,但导电能力差
* 区别与铁磁性半金属(half-me68/~jgche/
能带计算方法简介
12
半导体带间跃迁:直接跃迁和间接跃迁
对相互作用的合理地截断与近似 对基函数的合理地取舍与近似
• 两种主要的能带结构计算方法物理思想
* 赝势方法 * 紧束缚方法
http://10.107.0.68/~jgche/ 能带计算方法简介
2
第18讲、能带计算方法简介
1. 2. 3. 4. 5. 空晶格能带过渡到典型的金属能带 半导体能带结构 能带计算方法的物理思想 近自由电子近似——平面波方法 举例——只取两个平面波
http://10.107.0.68/~jgche/ 能带计算方法简介
10
• GaAs
* 直接能隙 * 与Si的能带不同之 处主要在价带s带 和p带之间有能 隙!全在边界上, 即 XWK ?
http://10.107.0.68/~jgche/
能带计算方法简介
11
半金属(semimetal)能带示例
16
能带如何形成——紧束缚观点
• 紧束缚近似认为晶体电子好象孤立原子的电子 一样紧紧束缚在该原子周围
* 孤立原子的分裂能级由于孤立原子互相靠拢,有相 互作用,孤立原子能级从而扩展成能带
• 由于与周围的束缚在其他原子上的电子仅有很 小的相互作用
* 因此,可以用孤立原子的电子波函数构成晶体波函 数,并且只考虑与紧邻原子的相互作用
http://10.107.0.68/~jgche/ 能带计算方法简介
17
评论
• 设问:晶体电子共有化与紧束缚思想矛盾? • 设问:晶体电子共有化在紧束缚方法中如何体 现? • 紧束缚方法用局域波函数和周期性的相因子来 构成满足Bloch函数的基函数 • 而近自由电子用平面波基函数是自然的
* 平面波本身就是非局域的! * 平面波本身就是调幅为常数的Bloch函数!
上讲回顾
• 金属、绝缘体和半导体
* 电子如何填充能带可用原胞内电子填充判断? * 满带、空带、禁带。满带不导电!
• 结构因子与布里渊边界能级简并的分裂
* 物理原因同X射线衍射的消光现象原胞内等价原 子波函数在布里渊区边界反射相干
• 三维空晶格模型的能带结构
* 为何发生能带重叠?能带简约图如何得到?由于3D 布里渊区的复杂结构,与1D不同,高布里渊区能带 E(k+K)并不一定比低布里渊区能带高,例子 * 如何给出能带结构?沿B区边界高对称轴,因为能 带在布里渊区边界上简并被打开,发生畸变。可反 映能带特征。特别对金属,除此外与自由电子类似
* 靠近核区,波函数振荡对应平面波波矢大的成分! * 远离核区,波函数平滑对应平面波波矢小的成分!
http://10.107.0.68/~jgche/ 能带计算方法简介
19
平面波方法
• 数学上,看Bloch波函数
( k , r ) e i k r u ( k , r )
u (k , r ) u (k , r R )
http://10.107.0.68/~jgche/ 能带计算方法简介
5
0 G
X
W
L
G
K
如何考虑问题?
• 布里渊区边界空晶格模型能带简并
* 近自由电子布里渊区边界能带分裂
• 空晶格模型能带
* 能带填充?
http://10.107.0.68/~jgche/
能带计算方法简介
6
解答
•
k F 3 n
: (0,0,0); L : (0.5,0.5,0.5); X : (1,0,0); K : (0.75,0.75,0);W : (1,0.5,0)
2 2 2 2 1.118 k W 1.25 1.061 k K 0.75 2 http://10.107.0.68/~jgche/ a a 能带计算方法简介 a a
* Muffin-tin势 * 赝势
• 能带计算方法从构成晶体波函数的基函数上可 分成两大类:
* 紧束缚近似 * 近自由电子近似
http://10.107.0.68/~jgche/ 能带计算方法简介
15
能带如何形成——近自由电子观点
• 近自由电子近似认为晶体电子仅受晶体势场很 弱的作用, E(k)是连续的能级
7
free electron band structure in fcc
相关要点
• 第一个解答关 键是判断几重 简并,绘出分 裂的示意图 • 第二个解答的 关键是自由电 子费米波矢 • 金属能带有交 迭,能隙出现 在B区边界, 但并不贯通 • 为何不直接计 算EF?
* V(K=0)=0
Energy (Ryd)
http://10.107.0.68/~jgche/
能带计算方法简介
18
4、近自由电子近似——平面波方法
• 平面波方法——动量空间
* 平面波波矢大小对应不同的动量
• 近自由电子(平面波)——价电子 • 真实情况? • Ze2/r
* 靠近核区,势变化剧烈 * 远离核区,势变化平缓
• 对应的晶体波函数的性质?
• u既然是R的周期函数,也可以作Fourier展开
u (k , r ) 1 V
K
c ( k , K ) e i K r
• c(k,K)是展开系数
http://10.107.0.68/~jgche/
能带计算方法简介
20
• Bloch波函数现为
(k , r )
1 V
K
c ( k , K ) e i ( K k ) r
http://10.107.0.68/~jgche/
能带计算方法简介
• 方程有非平凡解的条件是其系数行列式为零
T1 - E V12 V21 ... Vn1
V13 ... V1n 0
T 2 - E V23 ... V2n Vn2 Vn3 ... T n E
2
det ( K k ) E ( k ) K , K ' V ( K ' K ) 0
• 价带电子吸收能量,跃迁到导带,应满足能量 和动量守恒
E(k)
导带
E(k)
中间带
导带
价带
价带
k
直接跃迁Δk=0 间接跃迁Δk≠0
13
k
3、能带计算方法的物理思想
相对论 非相对论 全电子势(Muffin-tin) 赝势 凝胶模型(自由电子气的背景) 局域密度泛函近似 非局域修正
2
V r xc r r, k E k r, k
* 由于受周期性势场的微扰,E(k)在Brillouin区边界 产生分裂、突变禁带,连续的能级形成能带
• 这时晶体电子行为与自由电子相差不大
* 因此,可以用自由电子波函数(平面波)的线形组合 来构成晶体电子波函数,描写晶体电子行为
http://10.107.0.68/~jgche/
能带计算方法简介
• 这是个线性方程组,写成矩阵形式
H E C 0
E 单位矩阵 c1 c2 C ... c n Vij V ( K i K j )
24
T1 V12 V13 ... V1n V21 T 2 V23 ... V2n H ... V V V ... T n n1 n2 n3 Ti ( K i k ) 2
2
1/ 3
2 a
9 2
1/ 3
2 1.127 a
• •
边界的高对称点上,简并将打开,此外,由 于K~L完全在布里渊区边界上,各是二重简 并,也将打开; 计算自由电子的费米球半径,kF=? 下面5个高对称点中,W和K点大,计算其波 矢。自由电子的费米能级应该比第一条能带 与W点的交点稍高。考虑到边界散射引起的 费米面畸变,必须稍高于W点处由于边界散 射所引起的能级分裂
* 价带顶和导带底概念对应化学中分子的最高占据分 子轨道和最低未占据分子轨道(HOMO和LUMO)
http://10.107.0.68/~jgche/ 能带计算方法简介
9
典型的半导体能带
• 这是典型的金刚石结构的半 导体的能带图(Si):费米能 级(价带顶),间接能隙 • 最重要的是半导体能带在价 带顶以上有贯通整个B区的 能隙——禁带 • 也仍然可以看到自由电子能 带发展而来的影子,虽然有 很大的差别 • XW之间的简并是典型的 金刚石结构因子特有,因为 其原胞内两个原子完全等价
• 其中势的Fourier展开系数为
V ( K ' K ) 1 V
V i ( K K ' ) r V ( r ) e dr
http://10.107.0.68/~jgche/
能带计算方法简介
23
( k K )
K
2
E ( k ) K ,K ' V ( K ' K ) c ( k , K ) 0
6. 平面波方法评论 7. 赝势