算法设计与分析期末考试卷及答案a.(优选)
《算法设计与分析》考试题目及答案(DOC)

《算法设计与分析》考试题目及答案(DOC)D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。
A.B.C.D. void backtrack (int t){if (t>n) output(x);elsefor (int i=t;i<=n;i++) {swap(x[t], x[i]);if (legal(t)) backtrack(t+1); swap(x[t], x[i]);}}void backtrack (int t){if (t>n) output(x);elsefor (int i=0;i<=1;i++) {x[t]=i;if (legal(t)) backtrack(t+1); }}10. 回溯法的效率不依赖于以下哪一个因素?(C )A.产生x[k]的时间;B.满足显约束的x[k]值的个数;C.问题的解空间的形式;D.计算上界函数bound的时间;E.满足约束函数和上界函数约束的所有x[k]的个数。
F.计算约束函数constraint的时间;11. 常见的两种分支限界法为(D)A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO)分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO)分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性S(n)是指(B)A.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数。
B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和。
C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数。
算法设计与分析期末试卷A卷

算法设计与分析期末试卷A卷一、选择题1.二分搜索算法是利用(A)实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法解析:二分搜索是一种基于分治策略的算法。
2.回溯法解旅行售货员问题时的解空间树是(A)。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树解析:旅行售货员问题的解空间树是子集树,因为每个结点代表一个城市的集合。
3.下列算法中通常以自底向上的方式求解最优解的是(B)。
A、备忘录法B、动态规划法C、贪心法D、回溯法解析:动态规划法通常以自底向上的方式求解最优解。
4.下面不是分支界限法搜索方式的是(D)。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先解析:分支界限法搜索方式包括广度优先、最小耗费优先和最大效益优先,但不包括深度优先。
5.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为(B)。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)解析:最优装载问题采用贪心算法的主要计算量在于将集装箱依其重量从小到大排序,因此时间复杂度为O(nlogn)。
6.分支限界法解最大团问题时,活结点表的组织形式是(B)。
A、最小堆B、最大堆C、栈D、数组解析:分支限界法解最大团问题时,活结点表的组织形式是最大堆。
7、下面问题(B)不能使用贪心法解决。
A 单源最短路径问题C 最小花费生成树问题B N皇后问题D 背包问题解析:N皇后问题不能使用贪心法解决。
8.下列算法中不能解决0/1背包问题的是(A)A 贪心法B 动态规划C 回溯法D 分支限界法解析:贪心法不能解决0/1背包问题。
9.背包问题的贪心算法所需的计算时间为(B)A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)解析:背包问题的贪心算法所需的计算时间为O (nlogn)。
二、填空题1.算法的复杂性有时间复杂性和空间复杂性之分。
2.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有穷性四条性质。
电大计算机本科_算法设计与分析(期末考试复习题含答案)

1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。
A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( A ).A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9。
实现循环赛日程表利用的算法是( A ).A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D ).A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B ).A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A ).A、分治法B、动态规划法C、贪心法D、回溯法18.下面是贪心算法的基本要素的是( C )。
《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?2.算法分析的目的是什么?3.算法的时间复杂性与问题的什么因素相关?4.算法的渐进时间复杂性的含义?5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?6.简述二分检索(折半查找)算法的基本过程。
7.背包问题的目标函数和贪心算法最优化量度相同吗?8.采用回溯法求解的问题,其解如何表示?有什么规定?9.回溯法的搜索特点是什么?10.n皇后问题回溯算法的判别函数place的基本流程是什么?11.为什么用分治法设计的算法一般有递归调用?12.为什么要分析最坏情况下的算法时间复杂性?13.简述渐进时间复杂性上界的定义。
14.二分检索算法最多的比较次数?15.快速排序算法最坏情况下需要多少次比较运算?16.贪心算法的基本思想?17.回溯法的解(x1,x2,……x n)的隐约束一般指什么?18.阐述归并排序的分治思路。
19.快速排序的基本思想是什么。
20.什么是直接递归和间接递归?消除递归一般要用到什么数据结构?21.什么是哈密顿环问题?22.用回溯法求解哈密顿环,如何定义判定函数?23.请写出prim算法的基本思想。
二、复杂性分析1、MERGESORT(low,high)if low<high;then mid←(low,high)/2;MERGESORT(low,mid);MERGESORT(mid+1,high);MERGE(low,mid,high);endifend MERGESORT2、procedure S1(P,W,M,X,n)i←1; a←0while i≤ n doif W(i)>M then return endifa←a+ii←i+1 ;repeatend3.procedure PARTITION(m,p)Integer m,p,i;global A(m:p-1)v←A(m);i←mlooploop i←i+1 until A(i) ≥v repeatloop p←p-1 until A(p) ≤v repeatif i<pthen call INTERCHANGE(A(i),A(p))else exitendifrepeatA(m) ←A(p);A(p) ←vEnd PARTITION4.procedure F1(n)if n<2 then return(1)else return(F2(2,n,1,1))endifend F1procedure F2(i,n,x,y)if i≤nthen call F2(i+1,n,y,x+y)endifreturn(y)end F25.procedure MAX(A,n,j)xmax←A(1);j←1for i←2 to n doif A(i)>xmax then xmax←A(i); j←i;endif repeatend MAX6.procedure BINSRCH(A,n,x,j)integer low,high,mid,j,n;low←1;high←nwhile low≤high domid←|_(low+high)/2_|case:x<A(mid):high←mid-1:x>A(mid):low←mid+1:else:j ←mid; returnendcase repeat j ←0 end BINSRCH三、算法理解1、写出多段图最短路经动态规划算法求解下列实例的过程,并求出最优值。
《算法设计与分析》考试题目及答案(DOC)

6. 能采用贪心算法求最优解的问题,一般具有的重要性质为:(A) A. 最优子结构性质与贪心选择性质 B.重叠子问题性质与贪心选择性质
3. 所谓贪心选择性质是指(所求问题的整体最优解可以通过一系列局部最 优的选择,即贪心选择来达到)。
4. 所谓最优子结构性质是指(问题的最优解包含了其子问题的最优解)。 5. 回溯法是指(具有限界函数的深度优先生成法)。 6. 用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间。在任 何时刻,算法只保存从根结点到当前扩展结点的路径。如果解空间树 中 从根结点到叶结点的最长路径的长度为 h(n),则回溯法所需的计算空间通 常为(O(h(n)))。 7. 回溯法的算法框架按照问题的解空间一般分为(子集树)算法框架与
12. 用回溯法解图} 的 m 着色问题时,使用下面的函数 OK 检查当前扩展结点的
每一个儿子所相应的颜色的可用性,则需耗时(渐进时间上限)(O(mn))。
Bool Color::OK(int k) {//
for(int j=1;j<=n;j++) if((a[k][j]= =1)&&(x[j]= =x[k])) return false;
f(n)个单位时间。用 T(n)表示该分治法解规模为|P|=n 的问题所需的计算时
间,则有:T (n)
kT (n
O(1) / m)
f
(n)
n 1 n 1
华南师范大学算法设计与分析AB卷及答案

27 13
31
18 45
16 17
53
五、 动态规划法的应用(15 分) 考虑用算法 MATCHAIN 矩阵链相乘的方法把下面的 4 个矩阵相乘,
M 1 : 4 × 5, M 2 : 5 × 3, M 3 : 3 × 6, M 4 : 6 × 4, M 5 : 4 × 5
A2-
C[1,1]=0 C[1,2]=60 C[1,3]=132 C[1,4]=180
C[1,5]=252
M1
M 1M 2
C[2,2]=0
(M 1 M 2 )M 3
C[2,3]=90
(M 1 M 2 )(M 3 M 4 ) (M 1 M 2 )((M 3 M 4 ) M 5 )
六、 贪心算法的应用(10 分) 在下面的有向图中应用算法 DIJSTRA,假设顶点 1 是起始顶点。
9 7
2 1 12 3
2
4 2
8 6 4
3
5
5
七、 回溯法的应用(20 分) 1、请描述回溯算法的一般步骤。 2、在回溯法的应用的综合性实验中,您选做了哪一道题目,请简要叙述你是 如何用回溯法解决这个问题的,即给出该问题下回溯法的几个要素。 3、谈谈你在这次综合实验中的收获和感想。
∞ 14 14 14
七、 回溯法的应用(20 分) 1、请描述回溯算法的一般步骤。 (6 分) 2、在回溯法的应用的综合性实验中,您选做了哪一道题目,请简要叙述你是如 何用回溯法解决这个问题的,即给出该问题下回溯法的几个要素。 (9 分) 3、谈谈你在这次综合实验中的收获和感想。 (5 分) 1、回溯法一般步骤包括以下几点: (每答对 1 点给 2 分,此问 6 分) 1)将解空间表示成一棵树(解空间树) ,求解问题就转化为在树 T 中搜索解 对应的树结点; 2)定义剪枝操作(需考虑约束条件和目标值两方面) ; 3)从树 T 的根结点开始,用深度优先法搜索该树,而跳过肯定不包含问题 解对应的结点的子树的搜索(剪枝) ,以提高效率。 2、解空间描述正确给 5 分,剪枝操作描述正确给 4 分,总体描述正确酌情给分。 (9 分) 3、根据回答的实际情况酌情给分。 (5 分)
《算法设计与分析》考试题目及答案

《算法分析与设计》期末复习题一、选择题1.应用Johnson法则的流水作业调度采用的算法是(D)A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi塔问题如下图所示。
现要求将塔座A上的的所有圆盘移到塔座B上,并仍按同样顺序叠置。
移动圆盘时遵守Hanoi塔问题的移动规则。
由此设计出解Hanoi塔问题的递归算法正确的为:(B)Hanoi塔4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。
A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6.能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。
A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。
A.B.C.D.10.x[k]的个数。
11. 常见的两种分支限界法为(D)A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO)分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO)分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性S(n)是指(B)A.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数。
(完整版)算法设计与分析期末考试卷及答案a

flag=false
_
_
end if
_
__
end for
A[i] A[1]
w =i
return w, A end SPLIT
二.计算题和简答题(每小题
1.用O、、 表示函数f与g之间阶的关系,并分别指出下列函数中阶最低和最高 的函数:
(1)f (n)=100g(n)=100n
(2)f(n)=6n+nlog ng(n)=3n
算法EX1
输入:正整数n,n=2k。输出:⋯
ex1(n)
end EX1过程ex1(n) if n=1 then pro1(n)
else
栏
名姓
级年
_
_系
_院学
pro2(n)
ex1(n/2) end if
return
end ex1
3.用Floyd算法求下图每一对顶点之间的最短路径长度, 计算矩阵D0,D1,D2和D3,其中Dk[i, j]表示从顶点i到顶点j的不经过编号大于
i=find ( (1) )
if i>0 then output i
else output“no solution”
end SEARCH
过程find (low, high)
//求A[low..high]中使得A[i]=i的一个下标并返回,若不存在,
//则返回0。
if (2) then return 0
生专
_
订
马的周游问题:给出一个nxn棋盘,已知一个中国象棋马在
_
_
棋盘上的某个起点位置(x0, y0),求一条访问每个棋盘格点恰好
_
_
一次,最后回到起点的周游路线。 (设马走日字。)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考
生 信 息 栏 __
_
__
_学
院___
__
_系_
_
_
_
_
_
专
业
_
_
_
_
_
_
年
级
姓
名
_
_
_
_
_
_
学号_
___
_ 装 订 线
考 生
信 息 栏 _
__
__
_学院_
__
__
_
系_
_
_
_
_
_
专业
_
_
_
_
_
_年
级
姓名
_
_
_
_
_
_
学号_
____ 装 订 线 pro2(n) ex1(n/2) end if return end ex1 3.用Floyd 算法求下图每一对顶点之间的最短路径长度,计算矩阵D 0,D 1,D 2和D 3,其中D k [i, j]表示从顶点i 到顶点j 的不经过编号大于k 的顶点的最短路径长度。
三.算法填空题(共34分) 1.(10分)设n 个不同的整数按升序存于数组A[1..n]中,求使得A[i]=i 的下标i 。
下面是求解该问题的分治算法。
算法 SEARCH 输入:正整数n ,存储n 个按升序排列的不同整数的数组A[1..n]。
输出:A[1..n]中使得A[i]=i 的一个下标i ,若不存在,则输出 no solution 。
i=find ( (1) ) if i>0 then output i else output “no solution ” end SEARCH 过程 find (low, high) // 求A[low..high] 中使得A[i]=i 的一个下标并返回,若不存在,
考
生 信
息 栏 __
____学
院_
__
__
_系______ 专业 ______年级
姓
名
_
_
_
_
_
_
学号_
___
_ 装
订
线
《算法设计与分析》期考试卷(A)标准答案 一. 填空题:
1. 元运算 考
生 信 息 栏 _
_
____学
院_
__
__
_系______ 专业 ______年级
姓
名
_
_
_
__
_ 学号_
_
__
_ 装
订
线
2. O
3.
∑∈n D I I t I p )()(
4. 将规模为n 的问题分解为子问题以及组合相应的子问题的解所需的时间
5. 分解,递归,组合
6. 在问题的状态空间树上作带剪枝的DFS 搜索(或:DFS+剪枝)
7. 前者分解出的子问题有重叠的,而后者分解出的子问题是相互独立(不重叠)的
8. 局部
9. 高
10. 归并排序算法
11. 不同
12. v=random (low, high); 交换A[low]和A[v]的值
随机选主元
13. 比较
n
二. 计算题和简答题:
1. 阶的关系:
(1) f(n)= O(g(n))
(2) f(n)=Ω(g(n))
(3) f(n)=Ω(g(n))
(4) f(n)= O(g(n))
(5) f(n)=Θ(g(n))
阶最低的函数是:100
阶最高的函数是:n 3
2. 该递归算法的时间复杂性T(n)满足下列递归方程:
⎩⎨⎧>+===1
n ,n log T(n/2)T(n)1n , 1T(n)2 将n=k
2, a=1, c=2, g(n)=n log 2, d=1代入该类递归方程解的一般形式得: T(n)=1+∑-=1k 0i i 22n log =1+k n log 2-∑-=1k 0i i =1+ k n log 2-
2)1k (k -=n log 2122+n log 2
12+1 所以,T(n)= n log 2122+n log 212+1=)(log 2n Θ。
3.
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∞=051060320D 0 ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡∞=051050320D 1 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∞=05850320D 2
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=058503270D 3
三. 算法填空题:
1. (1) 1, n (2) low>high (3) A[mid]=mid
(4) mid+1, high (5) find(low, mid-1)
2. (1) 0 (2) i+d (3) C[i, k-1]+C[k, j]+r[i]*r[k]*r[j+1]
(4) C[i, j] (5) C[1, n]
3. (1) i>=1 (2)k[i]+1 (3) 1
(4) i+1 (5) k[i]=0 (6) tag[x, y]=0
(7) x=x-dx[k[i]]; y=y-dy[k[i]]
四. 算法设计题:
1. 贪心选择策略:从起点的加油站起每次加满油后不加油行驶尽可能远,直至油箱中的油
耗尽前所能到达的最远的油站为止,在该油站再加满油。
算法 MINSTOPS
输入:A 、B 两地间的距离s ,A 、B 两地间的加油站数n ,车加满油后可行驶的公里数
m ,存储各加油站离起点A 的距离的数组d[1..n]。
输出:从A 地到B 地的最少加油次数k 以及最优解x[1..k](x[i]表示第i 次加油的加油
站序号),若问题无解,则输出no solution 。
d[n+1]=s; //设置虚拟加油站第n+1站。
for i=1 to n
if d[i+1]-d[i]>m then
output “no solution ”; return //无解,返回
end if
end for
k=1; x[k]=1 //在第1站加满油。
s1=m //s1为用汽车的当前油量可行驶至的地点与A 点的距离
i=2
while s1<s
if d[i+1]>s1 then //以汽车的当前油量无法到达第i+1站。
k=k+1; x[k]=i //在第i 站加满油。
s1=d[i]+m //刷新s1的值
end if
i=i+1
end while
output k, x[1..k]
MINSTOPS
最坏情况下的时间复杂性:Θ(n)
最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改
11 / 11word.。