谈陶瓷显微组织与材料性能之间的关系
陶瓷的分类及性能

陶瓷材料的力学性能陶瓷材料陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。
金属:金属键高分子:共价键(主价键)范德瓦尔键(次价键)陶瓷:离子键和共价键。
普通陶瓷,天然粘土为原料,混料成形,烧结而成。
工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。
工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。
硬度高,弹性模量高,塑性韧性差,强度可靠性差。
常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。
一、陶瓷材料的结构和显微组织1、结构特点陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。
可以通过改变晶体结构的晶型变化改变其性能。
如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料”2、显微组织晶体相,玻璃相,气相晶界、夹杂(种类、数量、尺寸、形态、分布、影响材料的力学性能。
(可通过热处理改善材料的力学性能)陶瓷的分类玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃陶瓷—普通陶瓷日用,建筑卫生,电器(绝缘),化工,多孔……特种陶瓷-电容器,压电,磁性,电光,高温……金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工……玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷…2.陶瓷的生产(1)原料制备(拣选,破碎,磨细,混合)普通陶瓷(粘土,石英,长石等天然材料)特种陶瓷(人工的化学或化工原料--- 各种化合物如氧、碳、氮、硼化合物)(2)坯料的成形(可塑成形,注浆成形,压制成形)(3)烧成或烧结3. 陶瓷的性能(1)硬度是各类材料中最高的。
(高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV)(2)刚度是各类材料中最高的(塑料1380MN/m2,钢MN/m2)(3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。
2 (E/1000--E/100)。
陶瓷工艺学显微结构与性质.pptx

五、机械强度
提高釉面强度的有效方法是使釉面承受压应力,釉面承 受压应力的能力是其承受张应力能力的数十倍。
通常用下述两种方法使釉面承受压应力: 一是通过调整釉料组成,烧成后让釉面的热膨胀系数比 坯体的小,冷却时坯体收缩大于釉面收缩,釉面承受 压应力。 二是釉烧至成熟温度后,迅速冷却,结果是釉表层首先 冷却凝固,而内部还是塑性状态,内外存在温差,外 部收缩小,内部收缩大,形成釉面表层处于压应力, 内层处于张应力。
❖ 一般情况下,瓷坯中的残留石英的量会多于方石英的 量,因石英的热膨胀系数与玻璃体的热膨胀系数相差 较大,冷却时会在瓷坯中形成应力,对瓷坯的强度造 成影响。合理的石英颗粒能大大提高瓷坯的强度,同 时石英能使瓷坯的透光度和白度得到改善。
第4页/共20页
4、气孔 ❖ 气孔在瓷坯中的多少、大小、形状、分布、位置对
多孔性陶瓷吸湿膨胀的原因是气孔吸收水分,吸收水分 与构成气孔壁的物质形成水和吸附而使胎体膨胀。
改善措施:1)烧成温度的提高将降低气孔率,从而减弱 吸湿膨胀性;2)减少碱金属氧化物含量,引入碱土金属 氧化物,如加入石灰石、白云石或滑石等原料,可以提 高玻璃相的化学稳定性,减小吸湿膨胀性。3)引入氧化 铝粉,对降低吸湿膨胀也有效。
第14页/共20页
六、表面硬度 陶瓷表面硬度是指瓷胎表面或釉面抵抗外来压缩、摩
擦与刻划作用的能力。它是材料的一种重要力学性能。 陶瓷表面硬度测定的方法有莫氏硬度法、维氏显微硬
度法、流砂法以及玛尔登划痕法等四种。 前两种属静载压痕法,是目前陶瓷常用方法。它们都
是将一硬的物体在静载下压入被测物体表面,表面被 压入一凹面,以凹面单位面积上的荷载表示被测物体 硬度或者以凹面单位对角线长度的负荷表示被测物体 硬度。
陶瓷的显微结构及性能

2.3 瓷器的性质
衡量日用细瓷的质量分为外观质量和内在质量
外观质量 白度 透光度 釉面光泽度 尺寸规格及 装饰等 内在质量 热稳定性:经受从200℃到20℃水中急冷一次未裂。 致密度 机械强度 硬度 坯釉结合性 产品表面铅溶出量等 一般要求在60-70%,高白瓷>80 % 一般细瓷透光度为 Ir 为2-20% 高级细瓷光泽度≥114度
2.3.4 铅溶出量
1、概念
含铅的釉料、彩料在酸液作用下可溶性铅会溶出来。 由于铅元素及其氧化物对人体健康有害(对儿童影响大,血液/升 ≤12.7mg),中国高级日用瓷产品质量标准中规定“与食物接触的表面,画 面铅溶出量不得超过百万分之七”。
2.测定方法
( 1 )样品的浸泡:按要求取样和处理后,在4%的醋酸溶液中,在22±2℃ 温度浸泡24小时±10分钟; (2)测定浸泡液体积,准确至2%; (3)测定浸泡液中铅的溶出量。
长石瓷瓷胎的显微结构: 莫来石、残余石英晶体、玻璃相、气孔。
原 料 配 比
粘土 40-60% 长石 20-30% 石英 20-30%
1250-1400℃
玻璃 40-60%
莫来石 20-30%
相 残余石英 20-30 组 成 %
少量气孔
长石瓷显微结构形成过程
• <1000℃
650℃ Al2 O3 2SiO2 2H 2 O 550 ~ Al2 O3 2SiO2+2H 2 O
高岭石
偏高岭石
950℃ 3( Al2O3 2SiO2 ) 3Al2O3 2SiO2+4SiO2
偏高岭石
(一次)莫来石
无定形石英
℃ SiO2 573 SiO2
ΔV=+0.82%
谈陶瓷显微组织与材料性能之间的关系

谈陶瓷显微组织与材料性能之间的关系陶瓷材料的物理性能在很大程度上取决于其显微结构,在某些情况下甚至是决定性的,掌握它们之间的内在关系可以有针对性地优化制备工艺,从而提高陶瓷的物理性能。
陶瓷是多晶多相的材料,其显微组织包括:多晶相的种类,晶粒的大小、形态、取向和分布,位错、晶界的状况,玻璃相的形态和分布,气孔的形态、大小、数量和分布,各种杂质、缺陷、裂纹存在的开式、大小、数量和分布,畴结构的状态和分布等。
在显微镜下研究陶瓷材料的显微组织,找出其物相组成、组织、性能之间的联系和规律是发展新型陶瓷材料的基础。
陶瓷材料主要组成相为晶体相、玻璃相和气相。
研究陶瓷显微组织与性能之间的关系,就是要研究晶体相、玻璃相和气相分别对材料性能的影响。
研究这个问题有着重要的意义,主要有以下几点:(1)当我们了解了陶瓷显微组织与材料性能之间的关系后,我们就可以通过研究陶瓷的显微组织结构而对材料的性能做出评价。
(2)通过对陶瓷的结构缺陷的检测分析,从显微组织上找出其缺陷原因,我们可以提出改善或防止结构缺陷的措施。
(3)通过材料的显微组织研究,从材料物理化学的基本原理出发,为新材料的设计或材料改性提供依据或参考。
(4)研究工艺条件对显微组织的影响,通过优化生产工艺,提高材料的性能。
一、晶体相对材料性能的影响晶相是由原子、离子、分子在空间有规律排列成的结晶相。
晶相是决定陶瓷材料性能呢个的主导物相。
由于陶瓷是多晶材料,故晶相又可分为主晶相、次晶相、析出相和夹杂相。
此时主晶相就成为主导陶瓷性能的主导晶相。
主晶相是材料的主要组成部分,材料的性能主要取决于主晶的性质。
次晶相是材料的次要组成部分。
例如Si3N4材料中的颗粒状的六方结构的相β-Si3N4为主晶相;针状的菱方结构的α-Si3N4为次晶相,含量较少。
析出相,由粘土、长石、石英烧成的陶瓷的析出相大多数是莫来石,一次析出的莫来石为颗粒状,二次析出的莫来石为针状,可提高陶瓷材料的强度。
陶瓷材料的显微结构

相同蠕变条件下:1300℃,250MPa,100h YL-a(晶界宽度1nm); YL-b(晶界宽度2.5nm) YL-b的蠕变量为YL-a的2.4倍
(3)重烧结Si3N4
反应烧结+更高温度烧结
低温氮化后,经1atmN2 压 力,1850℃,2h,室温抗 折强度550MPa
Si3N4烧结温度高,接近其挥发分解温度(1890℃); 常压下,提高烧成温度增加致密度比较困难; 发展了一种新工艺———气氛加压烧结工艺; 提高了烧成温度,抑制了烧成过程中的挥发与分解,制备出性能 优良的陶瓷材料
温度↑,陶瓷的强度↓ 高温破坏:广泛分布的显微结构 损伤的积累过程;
室温破坏:已经存在的裂纹的突 然破坏所致。
高温下损伤的形成与材料承受蠕变或蠕 变破坏的能力有关。 与高温强度有关的重要因素— 晶界相
I. 烧结助剂如MgO等与Si3N4中的SiO2 杂质 反应形成硅酸盐液相; II. 冷却过程中,这些促进烧结致密的液相形 成玻璃相驻留在晶界上,形成一层薄的非 晶态层(约1nm); III.材料在高温下(高于晶界玻璃相的转变温 度)受力时,由于蠕变裂纹的生长而破坏; IV.晶界玻璃相成为物质的快速传递区,导致 蠕变孔穴的迅速形成; V. 网状裂纹扩展并最终相互连接,导致材料 完全破坏。
他形晶:较迟结晶的晶体,在受抑制情况下生长发育,形成晶 形很不完整的晶体。
97瓷中刚玉半自形晶结构 莫来石陶瓷中莫来石 1、自形晶;2、半自形晶;3、他形晶 日用陶瓷中石英晶体受到熔 陶瓷自形晶的结构 蚀后呈他形晶结构
多晶体的晶形
§4.1 陶瓷显微结构类型
瓷 坯 中 晶 质 和 非 晶 质 的 含 量 全晶质 主 晶 相 的 晶 粒 尺 度
低温氮化后,经15atmN2 压 力,1950℃,2h,室温强度 750MPa,硬度HRA91~92
陶瓷材料结构及性能分类新结构陶瓷材料科学基础

二、陶瓷材料的分类
1、按化学成分分类 可将陶瓷材料分为氧化物陶瓷、碳化物陶瓷、 氮化物陶瓷及其它化合物陶瓷。
玻璃幕 墙 导电玻 璃
2、按使用的原材料分类
可将陶瓷材料分为普通陶瓷和特种陶瓷。
普通陶瓷以天然的岩石、 矿石、黏土等材料作原 料。 特种陶瓷采用人工合成 的材料作原料。 3、按性能和用途分类 可将陶瓷材料分为结构 陶瓷和功能陶瓷两类。
玻璃相结构特点:硅氧四面体组成不规则的空间 网, 形成玻璃的骨架。 玻璃相成分:氧化硅和其它氧化物
(三)、气相
气相是陶瓷内部残留的孔洞;成因复杂,影 响因素多。 陶瓷根据气孔率分致密陶瓷、无开孔陶瓷 和多孔陶瓷。 气孔对陶瓷的性能不利(多孔陶瓷除外) 气孔率:普通陶瓷5%~10% 特种陶瓷5%以下 金属陶瓷低于0.5%。
(2) 硅酸盐化合物的几种类型
按照连接方式划分,硅酸盐化合物可以分为以下几 种类型: ①孤立状硅酸盐 ②复合状硅酸盐 ③环状或链状硅酸盐 ④层状硅酸盐 ⑤立体网络状硅酸盐
①孤立状硅酸盐(岛状结构单元)
其单元体(SiO44-) 互相独立,不发生相 互连接。 化学组成一般可以表 示为2RO· 2。 SiO 其中RO表示金属氧化 物如MgO、CaO、 FeO等。 具有这类结构的有橄 榄石和石榴石等。
AX化合物的特征是:A和X原子或离子 是高度有序的,属于这类结构的有: (1)CsCl型 (2)NaCl型 (3) ZnS闪锌矿型 (4)纤维锌矿型
(以下分别介绍)
(1)CsCl型 这种化合物的结构见图3-2。A原子(或离 子)位于8个X原子的中心,X原子(或离子) 也处于8个A原子的中心。但应该注意的是, 这种结构并不是体心立方的。确切的说,它 是简单立方的,它相当于把简单立方的A原 子和X原子晶格相对平移a/2,到达彼此的 中心位置而形成。
陶瓷材料的显微组织作用及其功能

陶瓷材料的显微组织作用及其功能下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 引言陶瓷材料作为一类重要的工程材料,在各个领域中有着广泛的应用。
陶瓷的显微结构及性能课件

生物陶瓷 生物陶瓷具有良好的生物相容性和耐腐蚀性,在生物医疗 领域有广泛应用,如人工关节、牙齿等。
环保与可持续发展
1 2 3
降低能耗 陶瓷产业是高能耗产业,通过技术进步和产业升 级,降低陶瓷产业的能耗,有利于环境保护和可 持续发展。
陶瓷在医疗领域中用于制造人工关节、牙 科材料等,如人工关节置换材料、牙齿修 复材料等。
CHAPTER 02
陶瓷的显微结构
陶瓷的晶体结构
01
02
03
晶体结构定义
陶瓷的晶体结构是指陶瓷 内部质点的排列方式,包 括原子、分子的位置和排 列顺序。
晶体结构的分类
根据原子排列的规律性, 陶瓷的晶体结构可分为晶 体和玻璃相两大类。
原料处理
对原料进行破碎、混合、干燥等处 理,以保证其均匀性和稳定性。
成型工 艺
塑性成型
利用黏土的可塑性,通过压滤、 挤压、注浆等工艺成型。
干压成型
将粉末状原料在模具中加压成型, 适用于形状复杂的陶瓷部件。
热压成型
在加热条件下加压成型,适用于 热塑性陶瓷材料。
烧成工艺
烧成温度
控制烧成温度,以实现陶瓷的完全烧结和性能优化。
晶体结构的稳定性
晶体结构的稳定性决定了 陶瓷的力学性能、热学性 能和化学稳定性等。
陶瓷的显微组织
显微组织的定义
陶瓷的显微组织是指陶瓷中晶粒的大 小、形状、分布和晶界特征等。
显微组织与性能关系
陶瓷的显微组织对其力学性能、热学 性能、电学性能和磁学性能等均有影 响。
显微组织的影响因素
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谈陶瓷显微组织与材料性能之间的关系陶瓷材料的物理性能在很大程度上取决于其显微结构,在某些情况下甚至是决定性的,掌握它们之间的内在关系可以有针对性地优化制备工艺,从而提高陶瓷的物理性能。
陶瓷是多晶多相的材料,其显微组织包括:多晶相的种类,晶粒的大小、形态、取向和分布,位错、晶界的状况,玻璃相的形态和分布,气孔的形态、大小、数量和分布,各种杂质、缺陷、裂纹存在的开式、大小、数量和分布,畴结构的状态和分布等。
在显微镜下研究陶瓷材料的显微组织,找出其物相组成、组织、性能之间的联系和规律是发展新型陶瓷材料的基础。
陶瓷材料主要组成相为晶体相、玻璃相和气相。
研究陶瓷显微组织与性能之间的关系,就是要研究晶体相、玻璃相和气相分别对材料性能的影响。
研究这个问题有着重要的意义,主要有以下几点:(1)当我们了解了陶瓷显微组织与材料性能之间的关系后,我们就可以通过研究陶瓷的显微组织结构而对材料的性能做出评价。
(2)通过对陶瓷的结构缺陷的检测分析,从显微组织上找出其缺陷原因,我们可以提出改善或防止结构缺陷的措施。
(3)通过材料的显微组织研究,从材料物理化学的基本原理出发,为新材料的设计或材料改性提供依据或参考。
(4)研究工艺条件对显微组织的影响,通过优化生产工艺,提高材料的性能。
一、晶体相对材料性能的影响晶相是由原子、离子、分子在空间有规律排列成的结晶相。
晶相是决定陶瓷材料性能呢个的主导物相。
由于陶瓷是多晶材料,故晶相又可分为主晶相、次晶相、析出相和夹杂相。
此时主晶相就成为主导陶瓷性能的主导晶相。
主晶相是材料的主要组成部分,材料的性能主要取决于主晶的性质。
次晶相是材料的次要组成部分。
例如Si3N4材料中的颗粒状的六方结构的相β-Si3N4为主晶相;针状的菱方结构的α-Si3N4为次晶相,含量较少。
析出相,由粘土、长石、石英烧成的陶瓷的析出相大多数是莫来石,一次析出的莫来石为颗粒状,二次析出的莫来石为针状,可提高陶瓷材料的强度。
夹杂相:不同材料夹杂相不同。
夹杂相量很少,其存在都会使材料的性能降低。
另外,晶相中还存在晶界和晶粒内部的细微结构。
晶界上由于原子排列紊乱,成为一种晶体的面缺陷。
晶界的数量、厚度、应力分布以及晶界上夹杂物的析出情况对材料的性能都会产生很大影响。
晶粒内部的微观结构包括滑移、孪晶、裂纹、位错、气孔、电畴、磁畴等。
1.1.主晶相对材料性能的影响氧化铝陶瓷具有强度高、耐高温、电性能和耐化学侵蚀性优良的性能,就是因为其主晶相刚玉(α-Al2O3)是一种结构紧密、离子键强度很大的晶体。
75氧化铝瓷是氧化铝的一种,含有75%的α-Al2O3,是一种电真空陶瓷。
其显微组织如图1-1所示,大部分为白色的氧化铝晶体,晶间三角处为暗黑色的玻璃相,圆形的黑洞为气孔,其中形态规则的为晶粒剥落坑。
图1-1 75氧化铝瓷的显微组织1200x除了75氧化铝陶瓷还有一种透明氧化铝陶瓷。
透明氧化铝瓷又叫烧结白刚玉,其中Al2O3的纯度在99.5%以上。
为了更好地排除气孔,提高透明度,可在真空下烧结。
图1-2为烧成后未经磨制和腐蚀,在显微镜下观察到的透明氧化铝的原始表面显微组织。
由于Al2O3纯度很高,气孔极少,可以清楚地看到氧化铝晶粒的大小,晶界的状况等。
图1-2 透明氧化铝的显微组织1200x图1-3为电熔刚玉的显微组织。
其中白色粗大的柱状晶相为α-Al2O3,暗黑色的组织为玻璃相,黑色的圆洞为气孔。
图1-3电熔刚玉的显微组织1200x1.2 次晶相对材料性能的影响当次晶相的含量达某一临界值时,将可导致某些特定性能的变化。
例如,在高压电瓷的玻璃相中,由于有大量的二次莫来石针状晶体的析出,形成网状交错分布,起着一个骨架增强的作用,从而大大提高了电瓷的机械强度。
图1-4瓷坯中的针状莫来石呈网状分布图1-5 粗大针状莫来石晶体的网状分布对提高制品强度极为有利1.3晶粒尺寸对性能的影响由陶瓷材料的理论断裂强度公式:式中γ——断面的表面能,E —杨氏模量,a ——晶格常数.由式可知,a 越小,σ越大.实验中发现多晶材料的流变应力与晶粒直径的平方根成反比,Hal—Petch 【1】 从位错塞积概念推导出这一关系.晶界对位错运动构成强烈的障碍,在外力作用下取向最有利的晶粒 的位错源首先开动,位错源发出的位错滑移到晶界并在晶界前堆积起来.当塞积顶端产生的应力集中达到相邻晶粒位错源开动的临界应力时变形扩展(屈服).由晶内位错塞积在晶界上引发裂纹的临界应力τc =()21d -132⎥⎦⎤⎢⎣⎡πνμν=kd 21-,,式中μ=()ν+12E ;ν——基体的表面能; k ——常数;d ——晶粒尺寸.则屈服应力:τ=τ*+ kd 21-;式中τ*——点阵中的滑移阻力.该式表明,晶粒直径越小,屈服强度越高。
因此,细化晶粒可以提高材料的韧性和强度。
另外,研究表明,多晶材料的初始裂纹尺寸与晶粒大小相当,因此晶粒愈细,则初始裂纹愈小,材料的机械强度将越高。
1.4 晶粒形貌对性能的影响例1:烧结不好的普通陶瓷制品中,主晶相基本上由鳞片状的一次莫来石构成。
而烧结良好的陶瓷坯体中,主晶相的构成中既有鳞片状的一次莫来石,也有相当数量的针状、柱状的二次莫来石。
后者的强度明显大于前者。
例2:Si 3N 4 陶瓷材料的强度随着其中β- Si 3N 4 相的含量增多而增大。
这是因为低温型的α- Si 3N 4 晶粒呈等轴状或短柱状,而高温型的β- Si 3N 4 相为针状和长柱状结晶。
1.5晶界对材料强度的影响晶界对于多晶材料来讲,是一个非常重要的组成部分,其数量、组成和性质对于材料的强度具有重要影响。
图1-6σ=2E γ a图1-7图1-6和图1-7显示的就是晶界。
晶界对材料强度的影响是当材料的破坏是沿着晶界断裂时,如果晶界数量多(细晶结构),则可使裂纹的扩展经历更曲折的路径,从而消耗更多的裂纹扩展能,对裂纹的扩展起着阻碍作用——提高材料的断裂强度。
需要注意的是如果晶界上有气孔存在,则可能造成应力的集中,加速裂纹的扩展——降低材料的断裂强度。
如果晶界纯粹由晶粒相互结合构成,可望能够提高材料的强度。
若晶界上存在玻璃相,材料的强度将降低。
二、玻璃相对材料性能的影响2.1玻璃相的形成玻璃相一般是指由高温熔体凝固下来的、结构与液体相似的非晶态固体。
陶瓷材料在烧结过程中,发生了一系列的物理化学变化,生成了熔融液相。
如果熔融态时粘度很大,即流体层间的内摩擦力很大,冷却时原子迁移比较困难,晶体的形成很难进行,而形成过冷液相,随着温度继续下降,过冷淮相粘度进一步增大,冷却到一事实上温度时,熔体固体,“冻结”成为玻璃,此时的温度称为玻璃转变温度Tg ,低于此温度表现出明显的脆性。
2.2 玻璃相的作用玻璃相具有以下几个方面的作用:(1)起粘接剂和填充剂的作用,玻璃相是一种易熔相,可以填充晶粒间隙,将晶粒粘接在一起,使材料致密化;(2)降低烧成温度,加快烧结过程;(3)阻止晶型转变,抑制晶粒长大,使晶粒细化;(4)增加陶瓷的透明度;(5)有利于杂质、添加物、气孔等的重新分布。
2.3玻璃相的特点和对材料性能的影响通常情况下,与晶相比较而言,玻璃相(1)机械强度较低;(2)热稳定性较差;(3)熔融温度较低。
(4)由于玻璃相结构较疏松,因而常在结构空隙中充填了一些金属离子,这样在外电场的作用下很容易产生松弛极化,使陶瓷材料的绝缘性降低、介电损耗增大。
不同的陶瓷制品,由于质量性能的要求不同,因此对玻璃相含量的要求也不同。
在特种陶瓷材料中,玻璃相的含量一般都很低,有的甚至几乎全由晶相构成 (纯固相烧结)。
而在普通陶瓷制品中,玻璃相的含量较高,可在20%~60%之间变化。
如一些日用陶瓷,玻璃相含量甚至可达到 60%以上。
三、气相晶粒内的气孔晶界交界处的气孔晶粒内的杂质晶界 晶界上的气孔晶粒气孔也是陶瓷制品显微结构中的一个重要组成部分,对制品的性质有着重要影响。
它们可能存在于玻璃相中,也可能存在于晶界处,或者被包裹于晶粒内部。
3.1 气相的形成釉玻璃体中的气泡被包裹在晶粒中的气孔材料中气孔形成的原因比较复杂,影响因素较多,如材料制备工艺、粘接剂的种类、原材料的分解物、结晶速度、烧成气氛都影响陶瓷中气孔的存在。
采取一定的工艺手顶可以使气孔率降低或者接近于零。
3.2气相对材料的影响陶瓷的强度与弹性模量成正比,因此强度也随气孔率而变化。
σ=σ0e -bp [2] 式中σ——气孔率为P 时的强度;d ——P=0时的强度;b ——与陶瓷制备工艺有关的常数。
气孔对材料强度的影响是显然的——材料强度总是随着气孔率的增大而降低。
材料中气孔的大小、形状及其分布状态,对材料的强度也有一定程度的影响。
在气孔率一定的情况下,一般来说,闭口气孔好于开口气孔,开口气孔好于贯通气孔。
气孔均匀分布好于其集中分布气孔存在的利弊因制品的质量性能要求不同而异:(1)对于电介质陶瓷(如陶瓷电容器)来说,气孔的存在会增大陶瓷的介电损耗并降低其击穿强度。
对于透明陶瓷而言,一定大小的气孔又是入射光的散射中心,气孔的存在会降低制品的透光率。
(2)对于绝热或隔热材料而言,则希望材料中存在较大体积分数、且孔径及分布均匀的气孔。
对于过滤用的陶瓷制品,以及湿敏、气敏陶瓷材料,也希望有一定的体积分数的贯通性气孔存在。
(3)但是,无论何种制品,大量气孔的存在都会对制品的强度产生不利影响。
气孔对材料强度的影响是显然的——材料强度总是随着气孔率的增大而降低。
四、显微组织对其他性能的影响4.1晶粒尺寸、气孔对陶瓷的抗热震性能的影响陶瓷的抗热震性能也随着晶粒的增大有较大提高,原因在于晶粒越大,其强度越低,而弹性模量、泊松比不变,由式R=()2f f -1σννE ,可见抗热震损伤参数 逐步增大的趋势.式中νf —常数;ν——泊松比;σf ——固有强度.对其热震断口分析表明,晶粒越大,沿晶断裂区域越大,反之,穿晶断裂区域越大.大小均匀且弥散分布的众多气孔作为既存裂纹能够分散消耗热弹性应变能,圆滑的气孔内壁有助于松弛应力,从而有利于改善材料的抗热震损伤性能[4]。
经实验证明添加BN 颗粒的多孔Si 3N 4 及胞状的多孔莫莱石陶瓷均表现出良好的抗热震性能.其原因可归结为:BN 加入后显著降低了复合材料的弹性模量热膨胀系数和泊松比.其中,弹性模量和泊松比的降低主要原因是材料气孔率增大;热膨胀系数的减小则主要是因BN 本身热膨胀系数较小。
4.2晶粒尺寸、晶界对陶瓷材料超塑性的影响度气孔率晶粒尺寸、显微结构的稳定性是影响超塑性的内在因素;应变速率、变形温度等是影响陶瓷材料超塑性的外在因素.细晶粒超塑性机理是晶界滑移,晶粒尺寸越小,晶界越多,高温下越易产生晶界滑移,变形量越大,表现出高的超塑性[4]。
晶粒尺寸越细,流变应力越小,延伸率越高.当晶粒尺寸大于2μ m时,便不再呈现塑性现象。